
# Anchoring, Fastening and Restoration Systems for Concrete and Masonry



C-A-2018 | (800) 999-5099 | strongtie.com







# SIMPSON Strong-Tie

# **Product Selection Guide**

|                       |                                     |                                          |      | Tested Base Materials and Code Listings |                     |            |                                   |                                   |                         |                    |                                                          |
|-----------------------|-------------------------------------|------------------------------------------|------|-----------------------------------------|---------------------|------------|-----------------------------------|-----------------------------------|-------------------------|--------------------|----------------------------------------------------------|
| Product               |                                     | Page<br>No.                              | Cond | crete                                   | Concrete            | CI         | ΛU                                | Unreinforced<br>Clay Brick        | Other                   | Other<br>Listings  |                                                          |
|                       |                                     |                                          |      | Cracked                                 | Uncracked           | Metal Deck | Grout-Filled                      | Hollow                            | Masonry                 | Other              |                                                          |
|                       | SET-3G™                             | SE S | 21   | ESR-<br>(City of L.<br>withir           | .A. Report          | _          | _                                 | _                                 | _                       | _                  | NSF/ANSI<br>Std 61<br>ASTM C881/<br>AASHTO<br>M-235, DOT |
|                       | SET-XP®                             | SE SAP                                   | 28   | ESR-2508,<br>FL-17                      | , RR25744,<br>449.2 | _          | ER-265,<br>RR25965,<br>FL-16230.3 | ER-265,<br>RR25965,<br>FL-16230.3 | _                       | _                  | NSF/ANSI<br>Std 61<br>ASTM C881/<br>AASHTO<br>M-235, DOT |
| Adhesive Anchors      | ET-HP®                              | 8 4                                      | 44   | ESR-:<br>FL-17                          |                     | _          | ER-241<br>FL-16230.2              | _                                 | ESR-3638,<br>RR25120    | _                  | ASTM C881/<br>AASHTO<br>M-235, DOT                       |
| Adhesive              | SET                                 | 81 S                                     | 54   | _                                       | Non-IBC             | _          | Non-IBC                           | Non-IBC                           | ESR-1772,<br>FL-15730.5 | _                  | NSF/ANSI<br>Std 61<br>ASTM C881/<br>AASHTO<br>M-235, DOT |
|                       | AT-XP®                              | A SAP                                    | 74   | ER-263, I<br>FL-16                      | RR25960,<br>230.1   | _          | ER-281,<br>RR25966,<br>FL-16230.1 | _                                 | _                       | _                  | NSF/ANSI<br>Std 61<br>ASTM C881/<br>AASHTO<br>M-235, DOT |
|                       | AT                                  |                                          | 84   | _                                       | Non-IBC             | _          | Non-IBC                           | Non-IBC                           | ESR-1958                | _                  | ASTM C881/<br>AASHTO<br>M-235, DOT                       |
|                       | ETI-SLV                             | WG GNAN SAM                              | 219  | _                                       | _                   | _          | _                                 | _                                 | _                       | _                  | ASTM C881/<br>AASHTO<br>M-235                            |
|                       | ETI-LV                              | a a a a a a a a a a a a a a a a a a a    | 219  | _                                       | _                   | _          | _                                 | _                                 | _                       | _                  | NSF/ANSI<br>Std 61<br>ASTM C881/<br>AASHTO<br>M-235      |
| Restoration Solutions | ETI-GV                              | S S S S S S S S S S S S S S S S S S S    | 219  | _                                       | _                   | _          | _                                 | _                                 | _                       | _                  | ASTM C881/<br>AASHTO<br>M-235                            |
| Restoration           | Crack-Pac®                          |                                          | 221  | _                                       | _                   | _          | _                                 | _                                 | _                       | _                  | ASTM C881/<br>AASHTO<br>M-235                            |
|                       | Crack-Pac®<br>Flex H <sub>2</sub> O |                                          | 223  | _                                       | _                   | _          | _                                 | _                                 | _                       | _                  | ASTM C881/<br>AASHTO<br>M-235                            |
|                       | Heli-Tie™                           | *****                                    | 232  | _                                       | Non-IBC             | _          | Non-IBC                           | Non-IBC                           | Non-IBC                 | Wood<br>Metal Stud | _                                                        |

# **Product Selection Guide**



|                    |                                          |                                        | Tested Base Materials and Code Listings |                    |                                  |                                   |                                     |              |                       |                |                |
|--------------------|------------------------------------------|----------------------------------------|-----------------------------------------|--------------------|----------------------------------|-----------------------------------|-------------------------------------|--------------|-----------------------|----------------|----------------|
| Product            |                                          | Page<br>No.                            | Cond                                    | crete              | Concrete                         | СМИ                               |                                     | Unreinforced | Other<br>Listings     |                |                |
|                    |                                          |                                        |                                         | Cracked            | Uncracked                        | on<br>Metal Deck                  | Grout-Filled                        | Hollow       | Clay Brick<br>Masonry | Other          |                |
|                    | Titen HD®<br>(THD)                       |                                        | 115                                     | ESF                | ESR-2713, RR25741,<br>FL-15730 6 |                                   | ESR-1056,<br>RR25560,<br>FL-15730.6 | IBC          | _                     | _              | FM, DOT        |
|                    | Stainless-Steel<br>Titen HD®<br>(THD-SS) |                                        | 124                                     |                    | ER-493                           |                                   | ESR-1056,<br>RR25560,<br>FL-15730.6 | IBC          | _                     | _              | FM, DOT        |
|                    | Titen HD®<br>Rod Coupler<br>(THD-RC)     |                                        | 131                                     | Non-IBC            | _                                | _                                 | _                                   | _            | _                     | _              | _              |
|                    | Strong-Bolt® 2<br>(STB2)                 | <b>3</b>                               | 133                                     |                    | , RR25891,<br>731.2              | ESR-3037<br>RR25891<br>FL-15731.2 | ER-240,<br>RR25936<br>FL-16230.4    | _            | _                     | _              | UL, FM,<br>DOT |
|                    | Wedge-All®<br>(WA)                       |                                        | 147                                     | _                  | Non-IBC                          | Non-IBC                           | ESR-1396,<br>FL-15730.7             | _            | _                     | _              | UL, FM,<br>DOT |
| Mechanical Anchors | Sleeve-All®<br>(SL)                      |                                        | 160                                     | _                  | Non-IBC                          | _                                 | Non-IBC                             | _            | _                     | _              | UL, FM,<br>DOT |
| Mechanica          | Easy-Set<br>(EZAC)                       |                                        | 164                                     | _                  | Non-IBC                          | _                                 | _                                   | _            | _                     | _              | _              |
|                    | Tie-Wire<br>(TW)                         |                                        | 165                                     | _                  | Non-IBC                          | Non-IBC                           | _                                   | _            | _                     | _              | _              |
|                    | Titen® 2<br>(TTN2)                       |                                        | 167                                     | _                  | ER-449,<br>FL-16230              | _                                 | ER-466, F                           | FL-16230     | _                     | _              | _              |
|                    | Stainless Steel<br>Titen®<br>(TTN)       | 40000000000000000000000000000000000000 | 172                                     | _                  | FL-2355.1                        |                                   | FL-23                               | 355.1        | _                     | _              | _              |
|                    | Titen HD®<br>Rod Hanger<br>(THD-RH)      | (Thursday)                             | 174                                     | ESR-2713,<br>FL-15 | , RR25741,<br>730.6              | ESR-2713<br>RR25741               | _                                   | _            | _                     | _              | FM             |
|                    | Steel<br>Rod Hanger<br>(RSH, RSV)        |                                        | 178                                     | _                  | _                                | _                                 | _                                   | _            | _                     | IBC<br>(Steel) | UL, FM         |

## **Product Selection Guide**



|                    |                                        |                                         |             | Tested Base Materials and Code Listings |                                                    |                                                    |                                                    |                                                    |                            |                                                             |                   |
|--------------------|----------------------------------------|-----------------------------------------|-------------|-----------------------------------------|----------------------------------------------------|----------------------------------------------------|----------------------------------------------------|----------------------------------------------------|----------------------------|-------------------------------------------------------------|-------------------|
|                    | Proc                                   | duct                                    | Page<br>No. | Con                                     | crete                                              | Concrete                                           | CI                                                 | ИU                                                 | Unreinforced<br>Clay Brick | Other                                                       | Other<br>Listings |
|                    |                                        |                                         |             | Cracked                                 | Uncracked                                          | Metal Deck                                         | Grout-Filled                                       | Hollow                                             | Masonry                    | oulei                                                       | Ü                 |
|                    | Wood<br>Rod Hanger<br>(RWH, RWV)       | *************************************** | 180         | _                                       | _                                                  | _                                                  | _                                                  | _                                                  | _                          | IBC<br>(Wood)                                               | UL, FM            |
|                    | Drop-In<br>(DIAB)                      |                                         | 182         | _                                       | Non-IBC                                            | Non-IBC                                            | _                                                  | _                                                  | _                          | Non-IBC<br>(Hollow<br>Core Panel)                           | UL, FM            |
|                    | Stainless Steel<br>Drop-In<br>(DIA-SS) |                                         | 187         | _                                       | Non-IBC                                            | Non-IBC                                            | _                                                  | _                                                  | _                          | 1                                                           | UL, FM,<br>DOT    |
| 2                  | Hollow<br>Drop-In<br>(HDIA)            |                                         | 192         | _                                       | Non-IBC                                            | _                                                  | _                                                  | IBC                                                | _                          | _                                                           | UL,FM             |
| Mechanical Anchors | Zinc Nailon™<br>(ZN)                   |                                         | 196         | _                                       | Non-IBC                                            | _                                                  | _                                                  | _                                                  | _                          |                                                             | _                 |
| M                  | Crimp Drive® (CD)                      |                                         | 197         | _                                       | Non-IBC                                            | Non-IBC                                            | _                                                  | _                                                  | _                          | 1                                                           | FM                |
|                    | Split Drive<br>(CSD, DSD)              |                                         | 201         | _                                       | Non-IBC                                            | _                                                  | _                                                  | _                                                  | _                          | _                                                           | _                 |
|                    | FlipToggle® (FT)                       | <b>→</b>                                | 203         | _                                       | _                                                  | _                                                  | _                                                  | Non-IBC                                            | _                          | Drywall                                                     | _                 |
|                    | Sure Wall<br>(SWN, SWZ)                |                                         | 205         | _                                       | _                                                  | _                                                  | _                                                  | _                                                  | _                          | Drywall                                                     | _                 |
| stening            | Powder-<br>Actuated<br>Fasteners       |                                         | 207         | _                                       | ESR-2138,<br>RR25469,<br>FL-15730.3,<br>FL-15730.4 | ESR-2138,<br>RR25469,<br>FL-15730.3,<br>FL-15730.4 | ESR-2138,<br>RR25469,<br>FL-15730.3,<br>FL-15730.4 | ESR-2138,<br>RR25469,<br>FL-15730.3,<br>FL-15730.4 | _                          | Steel<br>ESR-2138,<br>RR25469,<br>FL-15730.3,<br>FL-15730.4 | FM                |
| Direct Fastening   | Gas-Actuated<br>Fasteners              | *************************************** | 208         | _                                       | ESR-2811,<br>RR25837,<br>FL-15730.1<br>FL-15730.2  | ESR-2811,<br>RR25837,<br>FL-15730.1<br>FL-15730.2  | ESR-2811,<br>RR25837,<br>FL-15730.1<br>FL-15730.2  | ESR-2811,<br>RR25837,<br>FL-15730.1<br>FL-15730.2  | _                          | Steel,<br>ESR-2811,<br>FL-15730.1,<br>FL-15730.2            | _                 |

 $\ensuremath{\mathsf{ESR}} - \ensuremath{\mathsf{ICC}}\xspace-\ensuremath{\mathsf{ES}}\xspace \xspace \mathsf{Source}$  code report available at  $\ensuremath{\mathsf{icc-es.org}}\xspace.$ 

 ${\sf ER-IAPMO}$  UES code report available at <code>iapmoes.org</code>.

RR — City of Los Angeles research report available.

 ${\it FL}-{\it Florida}$  building code approval available.

 $\ensuremath{\mathsf{IBC}}-\ensuremath{\mathsf{Load}}$  data is available in this catalog intended for use under IBC, but code listings are not available.

Non-IBC - Load data is available in this catalog, but it is outside the scope of the current IBC. May be permitted for non-IBC applications.

UL — Underwriters Laboratories listing available.

FM — Factory Mutual listing available.

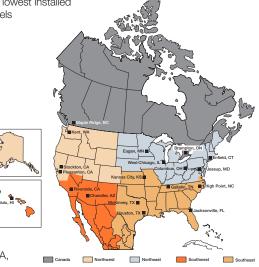
 ${\sf DOT-Various}$  departments of transportation listings available.

See strongtie.com/DOT for details.

Consult the code listings for more detailed information on which models of each product are covered by the listing.

# Simpson Strong-Tie Company Inc.




For more than 60 years, Simpson Strong-Tie has focused on creating structural products that help people build safer and stronger homes and buildings. A leader in structural systems research and technology, Simpson Strong-Tie is one of the largest suppliers of structural building products in the world. The Simpson Strong-Tie commitment to product development, engineering, testing and training is evident in the consistent quality and delivery of its products and services.

For more information, visit the company's website at strongtie.com.

The Simpson Strong-Tie Company Inc. "No Equal" pledge includes:

 Quality products value-engineered for the lowest installed cost at the highest-rated performance levels

- The most thoroughly tested and evaluated products in the industry
- Strategically located manufacturing and warehouse facilities
- National code agency listings
- The largest number of patented connectors in the industry
- Global locations with an international sales team
- In-house R&D and tool and die professionals
- In-house product testing and quality control engineers
- Support of industry groups including AISI, AITC, ASTM, ASCE, AWC, AWPA, ACI, AISC, CSI, CFSEI, ICFA, NBMDA, NLBMDA, SDI, SETMA, SFA, SFIA, STAFDA, SREA, NFBA, TPI, WDSC, WIJMA, WTCA and local engineering groups



# The Simpson Strong-Tie Quality Policy

We help people build safer structures economically. We do this by designing, engineering and manufacturing "No Equal" structural connectors and other related products that meet or exceed our customers' needs and expectations. Everyone is responsible for product quality and is committed to ensuring the effectiveness of the Quality Management System.

Karen Colonias Chief Executive Officer

# Getting Fast Technical Support

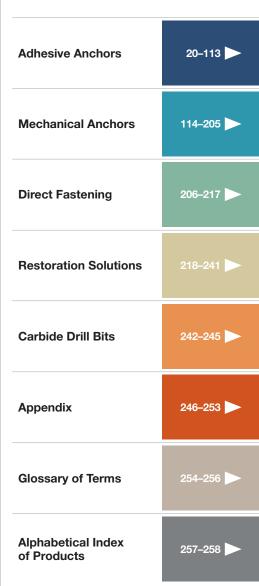
When you call for engineering technical support, we can help you quickly if you have the following information at hand. This will help us to serve you promptly and efficiently.

- Which Simpson Strong-Tie® catalog are you using? (See the front cover for the form number.)
- Which Simpson Strong-Tie product are you using?
- What are the design requirements (i.e., loads, anchor diameter, base material, edge/spacing distance, etc.)?

### We Are ISO 9001-2008 Registered

Simpson Strong-Tie is an ISO 9001-2008 registered company. ISO 9001-2008 is an internationally recognized quality assurance system that lets our domestic and international customers know they can count on the consistent quality of Simpson Strong-Tie® products and services.




800-999-5099

strongtie.com

All Rights Reserved. This catalog may not be reproduced in whole or in part without the prior written approval of Simpson Strong-Tie Company Inc.

### **Product Identification Key**

Products and additional information are divided into eight general categories, identified by tabs along the page's outer edge.



# C-A-2018 © 2018 SIMPSON STRONG-TIE COMPANY INC.

## **Table of Contents**

# SIMPSON Strong-Tie

### **Adhesive Anchors**

|   | Adhesive Accessories                                        | 106  |
|---|-------------------------------------------------------------|------|
|   | Adhesive Anchoring Installation Instructions                | 100  |
|   | Adhesive Retaining Caps                                     | 108  |
|   | Adhesive Shear Tubes                                        | 112  |
|   | AT Acrylic Adhesive                                         | 84   |
|   | AT-XP® Acrylic Adhesive                                     | 74   |
|   | ET-HP® Epoxy Adhesive                                       | . 44 |
|   | Hole-Cleaning Brushes                                       | 106  |
|   | Opti-Mesh Adhesive Anchoring Screen Tubes                   | 109  |
|   | Piston Plug Delivery System                                 | 107  |
|   | Retrofit Bolt                                               | 113  |
| Ņ | SET-3G® Epoxy Adhesive                                      | 21   |
| Ņ | - SET-3G <sup>™</sup> Wire Brushes / Extensions / T-Handles | 106  |
|   | SET Epoxy Adhesive                                          | 54   |
|   | SET-XP® Epoxy Adhesive                                      | 28   |
|   | Steel Adhesive Anchoring Screen Tubes                       | 111  |
|   |                                                             |      |

### **Mechanical Anchors**

|   | Crimp Drive® Anchor                                      | 97  |
|---|----------------------------------------------------------|-----|
|   | Drop-In Internally Threaded Anchor (DIAB)1               | 82  |
|   | Drop-In Stainless-Steel Internally Threaded Anchor (DIA) | 87  |
|   | Easy-Set Pin-Drive Anchor1                               | 64  |
| 靊 | FlipToggle® Hollow Wall Anchor2                          | 203 |
|   | Hollow Drop-In Anchor1                                   | 92  |
|   | Sleeve-All® Sleeve Anchor                                | 60  |
|   | Split-Drive Anchor                                       | 201 |
| 凾 | Steel Rod Hanger1                                        | 78  |
| 靊 | Strong-Bolt® 2 Wedge Anchor1                             | 33  |
|   | Sure Wall Drywall Anchor                                 | 205 |
|   | Tie-Wire Anchor1                                         | 65  |
| 靊 | . Titen® 2 Screw1                                        | 67  |
|   | Titen HD® Rod Coupler1                                   | 31  |
| 凾 | Titen HD® Rod Hanger1                                    | 74  |
|   | Titen HD® Screw Anchor                                   | 15  |
| 靊 | Titen HD® Stainless-Steel Screw Anchor1                  | 24  |
|   | Titen® Stainless-Steel Screw                             | 72  |
|   | Wedge-All® Wedge Anchor                                  | 47  |
|   | Wood Rod Hanger1                                         | 80  |
|   | Zinc Nailon™ Pin Drive Anchor1                           | 96  |

### **Direct Fastening**

| Fastener Load Tables                       | 209 |
|--------------------------------------------|-----|
| Gas Tool / Fastener Suitability            | 208 |
| Power Actuated Tool / Fastener Suitability | 207 |

### **Restoration Solutions**

|          | CIP-F Flexible Paste-Over Adhesive and Crack Sealant | 225 |
|----------|------------------------------------------------------|-----|
|          | CIP-LO Low Odor Paste-Over Epoxy and Crack Sealant   | 225 |
|          | Crack Injection Guide                                | 227 |
|          | Crack-Pac® Flex-H <sub>2</sub> O™                    | 223 |
|          | Crack-Pac® Injection Epoxy                           | 221 |
|          | Crack Repair Accessories                             | 226 |
| <b>郵</b> | CSS Composite Strengthening Systems™                 | 238 |
|          | Epoxy Injection Guide                                | 227 |
|          | ETI Injection Epoxy                                  | 219 |
| 凾        | FX-70® Structural Pile Repair and Protection System  | 236 |
|          | Heli-Tie <sup>™</sup> Helical Stitching Tie          | 235 |
|          | Heli-Tie™ Helical Wall Tie                           | 232 |

### **Carbide Drill Bits and Accessories**

| Opeca Oldar Dio Dasi Extraction Oyston | <b>W</b> | Speed Clean™ DXS Dust Extraction System | 244 |
|----------------------------------------|----------|-----------------------------------------|-----|
|----------------------------------------|----------|-----------------------------------------|-----|

### **Additional Information**

| General Instructions for the Designer  | 16      |
|----------------------------------------|---------|
| General Instructions for the Installer | 15      |
| Product Selection Guide                | 4–6     |
| Table Icons                            | 13      |
| Alphabetical Index of Products         | 257     |
| Corrosion Information                  | 248     |
| Glossary of Common Terms               | 254–256 |
| Supplemental Topics for Anchors        | 248–253 |



C-A-2018 @2018 SIMPSON STRONG-TIE COMPANY INC.

### **New Products**



# Speed Clean<sup>™</sup> DXS Dust Extraction System

The Speed Clean DXS dust extraction system is a drilling system that reduces the health risks from airborne silica dust exposure caused by the hole-drilling and cleaning process. This drilling method creates holes qualified for adhesive or mechanical anchor installation, while eliminating the need for the blow-brush-blow hole-cleaning process. Speed Clean drills and cleans holes to meet published bond strengths of AT-XP®, SET-XP® and SET-3G™ anchoring adhesives (code listed for these adhesive products). Simpson Strong-Tie is proud to offer Speed Clean DXS drill bits that allow dust and debris to be removed through the hollow center of the bit during drilling. When used with a suitable rotary hammer and vacuum, the system removes dust from the hole at the moment it is created.

See p. 244 for more information.



# **SET-3G**<sup>™</sup> High-Strength Anchoring Adhesive

SET-3G™, Simpson Strong-Tie premium epoxy anchoring adhesive, is formulated to provide superior performance at elevated temperature, ideal for installing anchors in cracked and uncracked concrete. Superior bond strengths allow for ductile anchorage solutions in some cases.

See p. 21 for more information.



### SET-3G Wire Brushes / Extensions / T-Handles

Specifically designed for use with SET-3G. The matched-tolerance wire brush heads, extension and T-handle components have threaded ends which may be joined together to permit hole cleaning with fewer brush strokes at embedments up to 20 times the anchor diameter.

See p. 106 for more information.



# Stainless-Steel Titen HD® Heavy-Duty Screw Anchor

The THDSS is ideal for concrete and masonry and is the ultimate choice for fast and efficient installation combined with long-lasting corrosion resistance. The THDSS is made with Type 316 and 304 stainless steel that gets its cutting ability from a proprietary bi-metal design that incorporates a carbon-steel helical-coil thread brazed onto the shank of the anchor. The serrated carbon-steel leading thread cuts a channel for the stainless-steel threads to engage into. The carbon steel helical-coil has been minimized to significantly reduce the adverse effects of steel corrosion in concrete.

See p. 124 for more information.



# Strong-Bolt® 2 Type 304 Stainless-Steel Wedge Anchor

The Strong-Bolt 2 wedge anchor is now available in Type 304 stainless steel in standard sizes. Previously available only in Type 316 and carbon steel, the additional product offering allows you to choose the best material solution for your job. The Strong-Bolt 2 wedge anchor is an optimal choice for cracked and uncracked concrete.

See p. 133 for more information.



## Titen® 2 Concrete and Masonry Screw

With patented undercutting threads that make installation easier and increase load capacity, the Titen® 2 concrete and masonry screw is ideal for attaching all types of components to concrete and masonry. The improved thread design undercuts the base material more efficiently, reducing installation torque and making it easier to drive without binding, snapping or stripping, even during installation into hard base material.

See p. 167 for more information.



# Titen HD® Threaded Rod Hanger

The Titen HD® threaded rod hanger is a high-strength screw anchor designed to suspend threaded rod from concrete slabs and beams or concrete over metal in order to hang pipes, cable trays and HVAC equipment. The anchor offers low installation torque with no secondary setting, and has been tested to offer industry-leading performance in cracked and uncracked concrete — even in seismic loading conditions.

See p. 174 for more information.



## Steel Rod Hanger Threaded Rod Anchor System

The steel rod hanger is a one-piece fastening system for suspending ½" and ½" threaded rod. Vertical rod hangers are designed to suspend threaded rod in overhead applications from steel joists and beams. Horizontal rod hangers are available for applications requiring installation into the side of joists, columns and overhead members. Both rod hangers provide attachment points for use in pipe hanging, fire protection, electrical conduit and cable-tray applications. Recommended for use in dry, interior, non-corrosive environments only.

See p. 178 for more information.



# FlipToggle® Anchor

The FlipToggle is the only single-strap design that takes the guesswork out of hollow-wall anchoring. Its unique design securely holds the toggle for easy insertion into the predrilled hole. Once inserted, the spring tab flips the toggle into the right position so that when the collar is tightened the anchor is ready for the bolt provided.

See p. 203 for more information.



# FX-70<sup>®</sup> Structural Repair and Protection System

FX-70, which has been used successfully for more than 40 years, uses high-strength fiberglass jackets and high-strength water-insensitive grouting materials to repair and protect wood, steel and concrete structural members.

See p. 236 for more information.



# **CSS** Composite Strengthening Systems<sup>™</sup>

Simpson Strong-Tie® Composite Strengthening Systems (CSS) provide efficient solutions for the structural reinforcement and retrofit of aging, damaged or overloaded concrete, masonry, steel and timber structures.

See p. 238 for more information.

# **How to Use This Catalog**

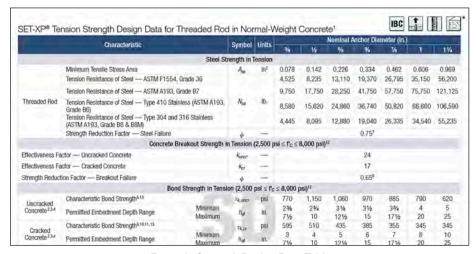


# Using Data Tables and Load Tables

This catalog contains both strength design data tables and allowable load tables. Some allowable load tables for concrete were established under old qualification standards that are no longer valid under the IBC. The following icons indicate whether or not a given table is intended to be used under the IBC (or under other building codes that use the IBC as their basis):



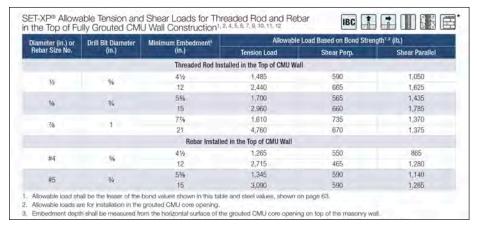
**Building Code** 




Tables that are "not valid for International Building Code" may be used where the Designer determines that other building codes or regulations permit it — for example, under AASTHO or temporary construction.

### Strength Design Data Tables

**Building Code** 


Under the IBC, strength design (see p. 256) must be used for cast-in-place and post-installed mechanical and adhesive anchors that are installed into concrete. The design data from these tables are to be used with the design provisions of ACI 318-14 Chapter 17, ACI 318-11 Appendix D, IBC Chapter 19 and the respective ICC-ES Acceptance Criteria. Strength design data tables are watermarked with the letters "SD." Given the complexity of strength design calculations, Designers may find Simpson Strong-Tie® Anchor Designer™ software (strongtie.com/software) to be a great time saver for computing anchor design strengths using the tabulated design data.



**Example Strength Design Data Table** 

### Allowable Load Tables

Under the IBC, allowable stress design (see p. 254) may be used for cast-in-place and post-installed adhesive and mechanical anchors installed into masonry or for gas/powder-actuated fasteners installed into concrete, masonry or steel.



**Example Allowable Load Table** 

## **How to Use This Catalog**



# Table Icon System

In order to facilitate easier identification of performance data, the following icon system has been incorporated into the sections of the catalog with multiple load tables. These icons will appear in the heading of the table to promote easier visual identification of the type of load, insert type and substrate addressed in the table. Icons are intended for quick identification. All specific information regarding suitability should be read from the table itself.



Threaded Rod



Rebar



Normal-Weight Concrete



Lightweight Concrete



Concrete Block (CMU)



Lightweight Concrete over Metal Deck



Unreinforced Brick (URM)



Steel



**Tension Load** 



Shear Load



**Oblique Load** 



**Edge Distance** 



Spacing



Valid for International Building Code



Not Valid for International Building Code

# **Important Information and General Notes**



# General Notes

These general notes are provided to ensure proper installation of Simpson Strong-Tie Company Inc. products and must be followed fully.

- a. Simpson Strong-Tie Company Inc. reserves the right to change specifications, designs, and models without notice or liability for such changes. Please refer to **strongtie.com** for the latest product updates, availability and load tables.
- Unless otherwise noted, dimensions are in inches and loads are in pounds.
- Do not overload, which will jeopardize the anchorage. Service loads shall not exceed published allowable loads. Factored loads
- shall not exceed design strengths calculated in accordance with published design data.
- d. Some hardened fasteners may experience premature failure if exposed to moisture. These fasteners are recommended to be used in dry interior applications.
- e. Do not weld products listed in this catalog. Some steel types have poor weldability and a tendency to crack when welded.

# Warning

Simpson Strong-Tie Company Inc. anchors, fasteners and connectors are designed and tested to provide specified design loads. To obtain optimal performance from Simpson Strong-Tie products and to achieve maximum allowable design load, the products must be properly installed and used in accordance with the installation instructions and design limits provided by Simpson Strong-Tie. To ensure proper installation and use, Designers and installers must carefully read the General Notes, General Instructions to the Installer and General Instructions to the Designer contained in this catalog, as well as consult the applicable catalog pages for specific product installation instructions and notes. Please always consult the Simpson Strong-Tie website at strongtie.com for updates regarding all Simpson Strong-Tie products.

Proper product installation requires careful attention to all notes and instructions, including the following basic rules:

- Be familiar with the application and correct use of the anchor, connector or fastener.
- Follow all installation instructions provided in the catalog, website, *Installer's Pocket Guide* or any other Simpson Strong-Tie publication.
- Follow all product-related warnings provided in the catalog, website or any other Simpson Strong-Tie publication.
- 4. Install anchors, connectors and fasteners in accordance with their intended use.
- Install all anchors, connectors and fasteners per installation instructions provided by Simpson Strong-Tie.
- 6. When using power tools to install fasteners: (a) use proper fastener type for direct fastening tool; (b) use proper powder or gas loads; and (c) follow appropriate safety precautions as outlined in this catalog, on the website or in the tool Operator's Manual.

In addition to following the basic rules provided above as well as all notes, warnings and instructions provided in the catalog, installers, Designers, engineers and consumers should consult the Simpson Strong-Tie website at strongtie.com to obtain additional design and installation information, including:

- Instructional builder/contractor training kits containing an instructional video, an instructor guide and a student guide in both English and Spanish;
- Installer's Pocket Guide (form S-INSTALL; contact Simpson Strong-Tie for more information), which is designed specifically for installers and uses detailed graphics and minimal text in both English and Spanish to explain visually how to install many key products;

- Information on workshops Simpson Strong-Tie conducts at various training centers throughout the United States;
- Product-specific installation videos;
- · Specialty catalogs;
- Code reports Simpson Strong-Tie® Code Report Finder software;
- Technical fliers, bulletins and engineering letters;
- Master format specifications;
- Material safety data sheets;
- · Corrosion information;
- Adhesive cartridge estimator;
- $\bullet~$  Simpson Strong-Tie Anchor Designer  $^{\text{TM}}$  software;
- Simpson Strong-Tie AutoCAD® menu;
- Simpson Strong-Tie CFS Designer<sup>™</sup> software;
- Simpson Strong-Tie Connector Selector<sup>™</sup> software;
- Connector selection guides for engineered wood products (by manufacturer);
- Simpson Strong-Tie Strong-Wall® Selector software;
- Simpson Strong-Tie Strong Frame® Selector;
- Simpson Strong-Tie Fastener Finder; and
- Answers to frequently asked questions and technical topics.

Failure to fully follow all of the notes and instructions provided by Simpson Strong-Tie may result in improper installation of products. Improperly installed products may not perform to the specifications set forth in this catalog and may reduce a structure's ability to resist the movement, stress and loading that occur from gravity loads as well as impact events such as earthquakes and high-velocity winds.

Simpson Strong-Tie Company Inc. does not guarantee the performance or safety of products that are modified, improperly installed or not used in accordance with the design and load limits set forth in this catalog.

# **Important Information and General Notes**



# General Instructions for the Installer

These general instructions for the installer are provided to ensure the proper selection and installation of Simpson Strong-Tie products and must be followed carefully. They are in addition to the specific design and installation instructions and notes provided for each particular product, all of which should be consulted prior to and during the installation of Simpson Strong-Tie products.

- a. Do not modify Simpson Strong-Tie products as the performance of modified products may be substantially weakened. Simpson Strong-Tie will not warrant or guarantee the performance of such modified products.
- b. Do not alter installation procedures from those set forth in this catalog.
- c. Drill holes for post-installed anchors with carbide-tipped drills meeting the diameter requirements of ANSI B212.15 (shown in the table to the right). A properly sized hole is critical to the performance of post-installed anchors. Rotary-hammered drills with light, high-frequency impact are recommended for drilling holes. When holes are to be drilled in archaic or hollow base materials, the drill should be set to "rotation only" mode.
- d. Failure to apply the recommended installation torque can result in excessive displacement of the anchor under load or premature failure of the anchor. These anchors will lose pre-tension after setting due to pre-load relaxation. See p. 250 for more information.
- e. Do not disturb, make attachments, or apply load to adhesive anchors prior to the full cure of the adhesive.
- f. Use proper safety equipment.

Finished Diameters for Rotary and Rotary-Hammer Carbide-Tipped Concrete Drills per ANSI B212.15

| Nominal Drill Bit<br>Diameter<br>(in.) | Tolerance Range<br>Minimum<br>(in.) | Tolerance Range<br>Maximum<br>(in.) |
|----------------------------------------|-------------------------------------|-------------------------------------|
| 1/8                                    | 0.134                               | 0.140                               |
| 5/32                                   | 0.165                               | 0.171                               |
| 3/16                                   | 0.198                               | 0.206                               |
| 7/32                                   | 0.229                               | 0.237                               |
| 1/4                                    | 0.260                               | 0.268                               |
| 5/16                                   | 0.327                               | 0.335                               |
| 3/8                                    | 0.390                               | 0.398                               |
| 7/16                                   | 0.458                               | 0.468                               |
| 1/2                                    | 0.520                               | 0.530                               |
| 9/16                                   | 0.582                               | 0.592                               |
| 5/8                                    | 0.650                               | 0.660                               |
| 11/16                                  | 0.713                               | 0.723                               |
| 3/4                                    | 0.775                               | 0.787                               |
| 13/16                                  | 0.837                               | 0.849                               |
| 27/32                                  | 0.869                               | 0.881                               |
| 7/8                                    | 0.905                               | 0.917                               |
| 15/16                                  | 0.968                               | 0.980                               |
| 1                                      | 1.030                               | 1.042                               |
| 1 1/8                                  | 1.160                               | 1.175                               |
| 13/16                                  | 1.223                               | 1.238                               |
| 1 1/4                                  | 1.285                               | 1.300                               |
| 1 5/16                                 | 1.352                               | 1.367                               |
| 1 3/8                                  | 1.410                               | 1.425                               |
| 17/16                                  | 1.472                               | 1.487                               |
| 1 ½                                    | 1.535                               | 1.550                               |
| 1 %16                                  | 1.588                               | 1.608                               |
| 1 %                                    | 1.655                               | 1.675                               |
| 13/4                                   | 1.772                               | 1.792                               |
| 2                                      | 2.008                               | 2.028                               |

# Additional Instructions for the Installer for Gas- and Powder-Actuated Fastening

Before operating any Simpson Strong-Tie gas- or powder-actuated tool, you must read and understand the Operator's Manual and be trained by an authorized instructor in the operation of the tool. Simpson Strong-Tie recommends you read and fully understand the safety guidelines of the tool you use. To become a Certified Operator of Simpson Strong-Tie gas- and powder-actuated tools, you must pass a test and receive a certified operator card. Test and Operator's Manual are included with each tool kit. Extra copies may be obtained by contacting Simpson Strong-Tie at (800) 999-5099.

To avoid serious injury or death:

- Always make sure that the operators and bystanders wear safety glasses. Hearing and head protection is also recommended.
- b. Always post warning signs within the area when gas- or powder-actuated tools are in use. Signs should state "Tool in Use."
- Always store gas- and powder-actuated tools unloaded.
   Store tools and powder loads in a locked container out of reach of children.
- d. Never place any part of your body over the front muzzle of the tool, even if no fastener is present. The fastener, pin or

- tool piston can cause serious injury or death in the event of accidental discharge.
- Never attempt to bypass or circumvent any of the safety features on a gas- or powder-actuated tool.
- f. Always keep the tool pointed in a safe direction.
- g. Always keep your finger off the trigger.
- h. Always keep the tool unloaded until ready to use.
- Always hold the tool perpendicular (90°) to the fastening surface to prevent ricocheting fasteners. Use the spall guard whenever possible.
- j. Never attempt to fasten into thin, brittle or very hard materials such as glass, tile or cast iron as these materials are inappropriate. Conduct a pre-punch test to determine base material adequacy.
- k. Never attempt to fasten into soft material such as drywall or wood. Fastening through soft materials into appropriate base material may be allowed if the application is appropriate.
- I. Never attempt to fasten to a spalled, cracked or uneven surface.
- m. Re-driving of pins is not recommended.

# C-A-2018 @ 2018 SIMPSON STRONG-TIE COMPANY INC.

## **Important Information and General Notes**



# General Instructions for the Designer

These general instructions for the Designer are provided to ensure the proper selection and installation of Simpson Strong-Tie® products and must be followed carefully. They are in addition to the specific design and installation instructions and notes provided for each particular product, all of which should be consulted prior to and during the design process.

- a. The term "Designer" used throughout this catalog is intended to mean a licensed/certified building design professional, a licensed professional engineer or a licensed architect.
- All connected members and related elements shall be designed by the Designer and must have sufficient strength (bending, shear, etc.) to resist the design loads.
- c. When the allowable stress design method is used, the design service load shall not exceed the published allowable loads reduced by load-adjustment factors for temperature, spacing and edge distance.
- d. When the strength design method is used, the factored loads shall not exceed the design strengths calculated in accordance with the published design data.
- e. Simpson Strong-Tie strongly recommends the following addition to construction drawings and specifications: "Simpson Strong-Tie products are specifically required to meet the structural calculations. Before substituting another brand, confirm load capacity based on reliable published testing data or calculations. The Designer should evaluate and give written approval for substitution prior to installation."
- f. Where used in this catalog, "IBC" refers to the 2015 International Building Code, and "ACI 318" refers to ACI 318-14 Building Code Requirements for Structural Concrete. Local and/or regional building codes may require meeting special conditions. Building codes often require special inspection of anchors. For compliance with these requirements, contact the local building authority. Except where mandated by code, Simpson Strong-Tie products do not require special inspection.
- g. Allowable loads and design strengths are determined from test results, calculations and experience. These are guide values for sound base materials with known properties. Due to variation in base materials and site conditions, site-specific testing should be conducted if exact performance in a specific base material at a specific site must be known.
- Unless stated otherwise, tests conducted to derive performance information were performed in members with thickness at least 1.5 times the anchor embedment depth. Anchoring into thinner members requires the evaluation and judgment of a qualified Designer.
- i. Tests are conducted with anchors installed perpendicular (±6° from a vertical reference) from a vertical reference to the surface of the base material. Deviations can result in anchor bending stresses and reduce the load-carrying capacity of the anchor.

- Allowable loads and design strengths do not consider bending stresses due to shear loads applied with large eccentricities.
- k. Metal anchors and fasteners will corrode and may lose loadcarrying capacity when installed in corrosive environments or exposed to corrosive materials. See p. 248.
- Mechanical anchors should not be installed into concrete that is less than 7 days old. The allowable loads and design strengths of mechanical anchors that are installed into concrete less than 28 days old should be based on the actual compressive strength of the concrete at the time of installation.
- m. Nominal embedment depth ("embedment depth") is the distance from the surface of the base material to the installed end of the anchor and is measured prior to application of an installation torque (if applicable). Effective embedment depth is the distance from the surface of the base material to the deepest point at which the load is transferred to the base material.
- n. Drill bits shall meet the diameter requirements of ANSI B212.15. For adhesive anchor installations in oversized holes, see p. 250. For adhesive anchor installations into core-drilled holes, see p. 251.
- Threaded-rod inserts for adhesive anchors shall be oil-free UNC fully threaded steel. Bare steel, zinc plating, mechanical galvanizing or hot-dip galvanizing coatings are acceptable.
- p. Allowable loads and design strengths are generally based on testing of adhesive anchors installed into dry holes. For installations into damp, wet and submerged environments, see p. 251.
- q. ACI 318 states that adhesive anchors should not be installed into concrete that is less than 21 days old. For information on adhesive anchors installed into concrete less than 21 days old, see p. 250.
- Adhesive anchors can be affected by elevated base material temperature. See p. 251.
- s. Anchors are permitted to support fire-resistant construction provided at least one of the following conditions is fulfilled: (a) anchors are used to resist wind or seismic forces only; (b) anchors that support gravity-load-bearing structural elements are within a fire-resistive envelope or a fire-resistive membrane, are protected by approved fire-resistive materials, or have been evaluated for resistance to fire exposure in accordance with recognized standards; or (c) anchors are used to support non-structural elements.
- t. Exposure to some chemicals may degrade the bond strength of adhesive anchors. Refer to the product description for chemical resistance information or refer to see p. 252.

# **Important Information and General Notes**



# Limited Warranty

Simpson Strong-Tie Company Inc. warrants catalog products to be free from defects in material or manufacturing. Simpson Strong-Tie Company Inc. products are further warranted for adequacy of design when used in accordance with design limits in this catalog and when properly specified, installed and maintained. This warranty does not apply to uses not in compliance with specific applications and installations set forth in this catalog, or to non-catalog or modified products, or to deterioration due to environmental conditions.

Simpson Strong-Tie® anchors, fasteners and connectors are designed to enable structures to resist the movement, stress and loading that results from impact events such as earthquakes and high-velocity winds. Other Simpson Strong-Tie products are designed to the load capacities and uses listed in this catalog. Properly installed Simpson Strong-Tie products will perform in accordance with the specifications set forth in the applicable Simpson Strong-Tie catalog. Additional performance limitations for specific products may be listed on the applicable catalog pages.

Due to the particular characteristics of potential impact events, the specific design and location of the structure, the building materials

used, the quality of construction, and the condition of the soils involved, damage may nonetheless result to a structure and its contents even if the loads resulting from the impact event do not exceed Simpson Strong-Tie catalog specifications and Simpson Strong-Tie connectors are properly installed in accordance with applicable building codes.

All warranty obligations of Simpson Strong-Tie Company Inc. shall be limited, at the discretion of Simpson Strong-Tie Company Inc., to repair or replacement of the defective part. These remedies shall constitute the sole obligation of Simpson Strong-Tie Company Inc. and the sole remedy of purchaser under this warranty. In no event will Simpson Strong-Tie Company Inc. be responsible for incidental, consequential, or special loss or damage, however caused.

This warranty is expressly in lieu of all other warranties, expressed or implied, including warranties of merchantability or fitness for a particular purpose, all such other warranties being hereby expressly excluded. This warranty may change periodically – consult our website **strongtie.com** for current information.

# Terms and Conditions of Sale

### **Product Use**

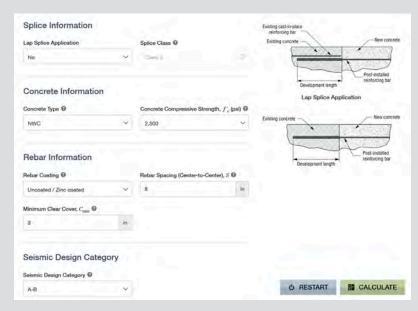
Products in this catalog are designed and manufactured for the specific purposes shown, and should not be used with other connectors not approved by a qualified Designer. Modifications to products or changes in installations should only be made by a qualified Designer. The performance of such modified products or altered installations is the sole responsibility of the Designer.

### Indemnity

Customers or Designers modifying products or installations, or designing non-catalog products for fabrication by Simpson Strong-Tie Company Inc. shall, regardless of specific instructions to the user, indemnify, defend and hold harmless Simpson Strong-Tie Company Inc. for any and all claimed loss or damage occasioned in whole or in part by non-catalog or modified products.

### Non-Catalog And Modified Products

Consult Simpson Strong-Tie Company Inc. for applications for which there is no catalog product, or for connectors for use in hostile environments, with excessive wood shrinkage, or with abnormal loading or erection requirements.


Non-catalog products must be designed by the customer and will be fabricated by Simpson Strong-Tie in accordance with customer specifications.

Simpson Strong-Tie cannot and does not make any representations regarding the suitability of use or load-carrying capacities of non-catalog products. Simpson Strong-Tie provides no warranty, express or implied, on non-catalog products. F.O.B. Shipping Point unless otherwise specified.

# **Anchor Software and Web Apps**

# Rebar Development Length Calculator

Rebar Development Length Calculator is a web application that supports the design of post-installed rebar in concrete applications by calculating the necessary tension and compression development lengths required in accordance with ACI 318-14 / ACI 318-11.



Visit: strongtie.com/softwareandwebapplications/category.

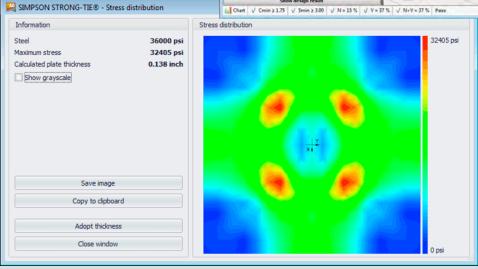
# Adhesive Cartridge Estimator

If you need to know how much adhesive to use for your next project, the Adhesive Cartridge Estimator makes it easy to estimate just how much is required. All you have to do is input the size and number of adhesive anchors to get the number of adhesive cartridges necessary for the job. And you can print the results for future reference.



Visit: strongtie.com/softwareandwebapplications/category.

# Anchor Designer™ Software for ACI 318, ETAG and CSA


Simpson Strong-Tie® Anchor Designer Software is the latest anchorage design tool for structural engineers to satisfy the strength design provisions of ACI 318-14 Chapter 17 / ACI 318-11 Appendix D, CAN / CSA A23.3 Annex D, ETAG 001 Annex C or EOTA TR029 design methodologies. Anchor Designer will quickly and accurately analyze an existing design or suggest anchorage solutions based upon user-defined design elements in cracked and uncracked concrete conditions.

The real-time design is visually represented in a fully-interactive 3D graphic user interface, supports Imperial and Metric-sized Simpson Strong-Tie mechanical and adhesive anchors, and offers cast-in-place anchor solutions. Anchor Designer can calculate single anchor solutions or up to 16 anchors in a single plate.

Additional features include:

- Easy-to-use menus.
- Ability to calculate single anchor model or to calculate multiple anchor models at once.
- Multi-lingual options include English, German, French, Spanish, Polish and Danish languages.
- Rectangular and circular base plate geometries with the option to include slotted holes.
- And much more!





Visit: strongtie.com/softwareandwebapplications/category.



# SET-3G™ High-Strength Epoxy Adhesive



SET-3G is the latest innovation in epoxy anchoring adhesives from Simpson Strong-Tie. Formulated to provide superior performance in cracked and uncracked concrete at elevated temperatures, SET-3G installs and performs in a variety of environmental conditions and temperature extremes. The exceptional bond strength of SET-3G results in high design strengths.

### **Features**

- Exceptional performance superior bond-strength values at even long-term elevated temperature of 110°F (43°C) using optimized drill bit diameters
- Tested in accordance with ICC-ES AC308 and ACI 355.4 for use in cracked and uncracked normal-weight and lightweight concrete
- Design flexibility can be specified for dry or water-saturated conditions when in-service temperatures range from -40°F (-40°C) to 176°F (80°C)
- Jobsite versatility can be installed in dry, water-saturated or water-filled holes in base materials with temperatures between 40°F (4°C) and 100°F (38°C)
- Maximized production and safety qualified for installation using the Speed Clean™ DXS dust extraction drilling system as an alternative to the conventional blow-brush-blow hole-cleaning method
- Wire brush hole-cleaning system for conventional blow-brush-blow cleaning method
- Available in two cartridge configurations for maximum versatility

   8.5 oz. coaxial or 22 oz. side-by-side cartridges dispensed
   using manual, battery or pneumatic dispensing tools
- With higher bond strengths, ductile solutions can often be achieved with SET-3G in high seismic areas
- 1:1 ratio, two-component, high-strength, epoxy-based anchoring adhesive formula
- Two-year shelf life for unopened cartridges stored between 45°F (7°C) and 90°F (32°C)
- Low-odor formulation
- · When properly mixed, SET-3G will be a uniform gray color
- Volatile organic compound (VOC) 1.9 g/L
- · Manufactured in the USA using global materials
- Tested per ACI355.4
- SET-3G code listed for installation with the Speed Clean™ DXS drill bits without any further cleaning (ICC-ES ESR-4057)

### Applications

- Threaded rod anchor and rebar dowel installations in cracked and uncracked concrete under a wide variety of environmental installation and use conditions
- Installation in downward, horizontal and upwardly inclined (including overhead) orientations
- Qualified for use in structures assigned to Seismic Design Categories A through F

### Codes

ICC-ES ESR-4057 (concrete); City of Los Angeles (see ICC-ES ESR-4057); AASHTO M235 and ASTM C881, Types I and IV, Grade 3, Class C; NSF/ANSI Standard 61 (300 in.<sup>2</sup> / 1,000 gal.)

### Chemical Resistance

Contact Simpson Strong-Tie for information.



SET-3G Adhesive

### Installation and Application Instructions

(See also pp. 100-102)

- Surfaces to receive epoxy must be clean per approved hole cleaning method.
- Base-material temperatures must be 40°F (4°C) or above at the time of installation. For best results, adhesive should be conditioned to a temperature between 70°F (21°C) and 80°F (37°C) at the time of installation.
- To warm cold adhesive, store cartridges in a warm, uniformly heated area or storage container. Do not immerse cartridges in water or use microwave to facilitate warming.
- Mixed material can harden in the dispensing nozzle within 30 minutes at 70°F (21°C).

**Note:** For full installation instructions, see product packaging or visit **strongtie.com/set3g**.

# SET-3G™ High-Strength Epoxy Adhesive



### SET-3G Adhesive Cartridge System

| Model No.              | Capacity<br>(ounces) | Cartridge<br>Type | Carton<br>Quantity | Dispensing<br>Tool(s)         | Mixing<br>Nozzle |
|------------------------|----------------------|-------------------|--------------------|-------------------------------|------------------|
| SET3G10 <sup>2</sup>   | 8.5                  | Coaxial           | 12                 | CDT10S                        | EMN22I           |
| SET3G22-N <sup>1</sup> | 22                   | Side-by-side      | 10                 | EDT22S, EDTA22P,<br>EDTA22CKT | EMN22I           |

- 1. One EMN21I mixing nozzle and one extension are supplied with each cartridge.
- 2. Two EMN22I mixing nozzles and two nozzle extensions are supplied with each cartridge.
- 3. Cartridge estimation guidelines are available at strongtie.com/apps.
- 4. Use only Simpson Strong-Tie® mixing nozzles in accordance with Simpson Strong-Tie instructions. Modification or improper use of mixing nozzle may impair SET-3G adhesive performance.

### SET-3G Cure Schedule<sup>1,2</sup>

| Concrete Te | emperature | Gel Time | Cure Time |
|-------------|------------|----------|-----------|
| (°F)        | (°C)       | (min.)   | (hr.)     |
| 40          | 4          | 120      | 192       |
| 50          | 10         | 75       | 72        |
| 60          | 16         | 50       | 48        |
| 70          | 21         | 35       | 24        |
| 90          | 32         | 25       | 24        |
| 100         | 38         | 15       | 24        |

For SI:  $1^{\circ}F = (^{\circ}C \times \%) + 32$ .

### **Test Criteria**

Anchors installed with SET-3G adhesive have been tested in accordance with ICC-ES *Acceptance Criteria for Adhesive Anchors in Concrete Elements* (AC308).

| Property                        | Test Method | Result*             |
|---------------------------------|-------------|---------------------|
| Consistency                     | ASTM C881   | Passed, non-sag     |
| Heat deflection                 | ASTM D648   | 147°F               |
| Bond strength (moist cure)      | ASTM C882   | 3,306 psi at 2 days |
| Water absorption                | ASTM D570   | 0.13%               |
| Compressive yield strength      | ASTM D695   | 15,390 psi          |
| Compressive modulus             | ASTM D695   | 991,830 psi         |
| Shore D durometer               | ASTM D2240  | 84                  |
| Gel time                        | ASTM C881   | 52 minutes          |
| Volatile Organic Compound (VOC) | _           | 1.9 g/L             |

<sup>\*</sup>Material and curing conditions:  $73 \pm 2$ °F, unless otherwise noted.

<sup>1.</sup> For water-saturated concrete and water-filled holes, the cure times should be doubled.

<sup>2.</sup> For installation of anchors in concrete where the temperature is below 70°F (21°C), the adhesive must be conditioned to a minimum temperature of 70°F (21°C).

# SET-3G™ High-Strength Epoxy Adhesive



SET-3G Installation Information and Additional Data for Threaded Rod and Rebar in Normal-Weight Concrete<sup>1</sup>

| 3C | Hallester |  |
|----|-----------|--|



| Ohawastawiatia                      | Symbol               | Units    | Nominal Anchor Diameter d <sub>a</sub> (in.) / Rebar Size |          |        |              |                      |        |            |  |
|-------------------------------------|----------------------|----------|-----------------------------------------------------------|----------|--------|--------------|----------------------|--------|------------|--|
| Characteristic                      |                      |          | % / #3                                                    | 1/2 / #4 | % / #5 | 3/4 / #6     | ½ / #7               | 1 / #8 | 11/4 / #10 |  |
|                                     |                      | Installa | tion Informa                                              | ation    |        |              |                      |        |            |  |
| Drill Bit Diameter for Threaded Rod | d <sub>hole</sub>    | in.      | 7/16                                                      | 9/16     | 11/16  | 7/8          | 1                    | 1 1/8  | 1%         |  |
| Drill Bit Diameter for Rebar        | d <sub>hole</sub>    | in.      | 1/2                                                       | 5/8      | 3/4    | 7/8          | 1                    | 1 1/8  | 1%         |  |
| Maximum Tightening Torque           | T <sub>inst</sub>    | ftlb.    | 15                                                        | 30       | 60     | 100          | 125                  | 150    | 200        |  |
| Minimum Embedment Depth             | h <sub>ef, min</sub> | in.      | 23/8                                                      | 23/4     | 31/8   | 31/2         | 3¾                   | 4      | 5          |  |
| Maximum Embedment Depth             | h <sub>ef, max</sub> | in.      | 71/2                                                      | 10       | 12½    | 15           | 17½                  | 20     | 25         |  |
| Minimum Concrete Thickness          | h <sub>min</sub>     | in.      | h <sub>ef</sub> +                                         | - 11/4   |        |              | $h_{ef} + 2d_{hole}$ |        |            |  |
| Critical Edge Distance              | Cac                  | in.      |                                                           |          |        | See footnote | 2                    |        |            |  |
| Minimum Edge Distance               | C <sub>min</sub>     | in.      | 1%                                                        |          |        |              |                      |        |            |  |
| Minimum Anchor Spacing              | S <sub>min</sub>     | in.      |                                                           |          | ;      | 3            |                      |        | 6          |  |

<sup>1.</sup> The information presented in this table is to be used in conjunction with the design criteria of ACI 318-14 and ACI 318-11.

 $[h/h_{ef}] \le 2.4$ 

C-A-2018 @2018 SIMPSON STRONG-TIE COMPANY INC.

 $au_{k,uncr}$  = the characteristic bond strength in uncracked concrete, given in the tables that follow  $\leq k_{uncr} ((h_{ef} \times f_c')^{0.5}/(\pi \times d_e))$ 

h =the member thickness (inches)

 $h_{ef}$  = the embedment depth (inches)

 $<sup>2.</sup>c_{ac} = h_{ef}(\tau_{k,uncr}/1,160)^{0.4} \times [3.1 - 0.7(h/h_{ef})], \text{ where:}$ 

# C-A-2018 @ 2018 SIMPSON STRONG-TIE COMPANY INC.

# **SET-3G**<sup>™</sup> Design Information — Concrete



# SET-3G Tension Strength Design Data for Threaded Rod in Normal-Weight Concrete $^{\rm 1,\,8}$









|                                        | Chavastavi                                                 | alia                                                               | Compleal             | I laite                     |                     |                 | Nominal | Rod Diam    | eter (in.) |        |         |
|----------------------------------------|------------------------------------------------------------|--------------------------------------------------------------------|----------------------|-----------------------------|---------------------|-----------------|---------|-------------|------------|--------|---------|
|                                        | Characteri                                                 | Suc                                                                | Symbol               | Units                       | 3/8                 | 1/2             | 5/8     | 3/4         | 7/8        | 1      | 11/4    |
|                                        |                                                            | Steel Stre                                                         | ength in Ter         | sion                        |                     |                 |         |             |            |        |         |
|                                        | Minimum Tensile                                            | Stress Area                                                        | A <sub>se</sub>      | in.2                        | 0.078               | 0.142           | 0.226   | 0.334       | 0.462      | 0.606  | 0.969   |
|                                        | Tension Resistance of Steel —                              |                                                                    |                      |                             | 4,525               | 8,235           | 13,110  | 19,370      | 26,795     | 35,150 | 56,200  |
|                                        | Tension Resistance of Steel —                              |                                                                    |                      |                             | 5,850               | 10,650          | 16,950  | 25,050      | 34,650     | 45,450 | 72,675  |
|                                        | Tension Resistance of Steel —                              | -                                                                  |                      |                             | 9,750               | 17,750          | 28,250  | 41,750      | 57,750     | 75,750 | 121,125 |
|                                        | ension Resistance of Steel — Stainless St<br>(Types 304 an | d 316)                                                             | N <sub>sa</sub>      | lb.                         | 4,445               | 8,095           | 12,880  | 19,040      | 26,335     | 34,540 | 55,235  |
|                                        | on Resistance of Steel — Stainless Stee                    |                                                                    |                      |                             | 7,800               | 14,200          | 22,600  | 28,390      | 39,270     | 51,510 | 82,365  |
| Ten                                    | sion Resistance of Steel — Stainless Ste                   |                                                                    |                      |                             | 8,580               | 15,620          | 24,860  | 36,740      | 50,820     | 66,660 | 106,590 |
|                                        | Strength Reduction Factor for                              | Tension — Steel Failure                                            | φ                    |                             |                     |                 |         | 0.755       |            |        |         |
|                                        |                                                            | Concrete Breakout Strength in                                      | Tension (2           | ,500 ps                     | $si \le f'_C \le 8$ | ,000 psi)       |         |             |            |        |         |
|                                        | Effectiveness Factor for                                   | Cracked Concrete                                                   | k <sub>c,cr</sub>    | _                           |                     |                 |         | 17          |            |        |         |
|                                        | Effectiveness Factor for U                                 | ncracked Concrete                                                  | k <sub>c,uncr</sub>  | _                           |                     |                 |         | 24          |            |        |         |
|                                        | Strength Reduction Factor — Concre                         | ete Breakout Failure in Tension                                    | φ                    | _                           |                     |                 |         | 0.656       |            |        |         |
|                                        |                                                            | Bond Strength in Tension                                           | ı (2,500 psi         | ≤ <b>f</b> ' <sub>C</sub> ≤ | 8,000 ps            | i) <sup>7</sup> |         |             |            |        |         |
| Minimum Embedment                      |                                                            |                                                                    |                      | in.                         | 2%                  | 23/4            | 31/8    | 31/2        | 3¾         | 4      | 5       |
|                                        | Maximum Emb                                                |                                                                    | h <sub>ef,max</sub>  | in.                         | 71/2                | 10              | 12½     | 15          | 17½        | 20     | 25      |
|                                        | Temperature Range A <sup>2,4</sup>                         | Characteristic Bond Strength<br>in Cracked Concrete <sup>9</sup>   | $	au_{k,cr}$         | psi                         | 1,448               | 1,402           | 1,356   | 1,310       | 1,265      | 1,219  | 1,128   |
| uo                                     |                                                            | Characteristic Bond Strength<br>in Uncracked Concrete <sup>9</sup> | $	au_{k,uncr}$       | psi                         | 2,357               | 2,260           | 2,162   | 2,064       | 1,967      | 1,868  | 1,672   |
| ecti                                   | T                                                          | Characteristic Bond Strength in Cracked Concrete <sup>9</sup>      | $	au_{k,cr}$         | psi                         | 1,201               | 1,163           | 1,125   | 1,087       | 1,050      | 1,012  | 936     |
| Continuous Inspection                  | Temperature Range B <sup>3,4</sup>                         | Characteristic Bond Strength in Uncracked Concrete9                | $	au_{k,uncr}$       | psi                         | 1,957               | 1,876           | 1,795   | 1,713       | 1,632      | 1,551  | 1,388   |
| Inor                                   | Anchor Category                                            | Dry Concrete                                                       |                      |                             |                     |                 |         | 1           |            |        |         |
| nţi                                    | Strength Reduction Factor                                  | Dry Concrete                                                       | $\phi_{dry,ci}$      |                             |                     |                 |         | $0.65^{10}$ |            |        |         |
| පි                                     | Anchor Category                                            | Water-Saturated Concrete,<br>or Water-Filled Hole                  | _                    | _                           | (                   | 3               |         |             | 2          |        |         |
|                                        | Strength Reduction Factor                                  | Water-Saturated Concrete,<br>or Water-Filled Hole                  | $\phi_{wet,ci}$      | _                           | 0.4                 | 5 <sup>10</sup> |         |             | 0.5510     |        |         |
|                                        | T 1 D 424                                                  | Characteristic Bond Strength<br>in Cracked Concrete <sup>9</sup>   | $	au_{k,cr}$         | psi                         | 1,346               | 1,304           | 1,356   | 1,310       | 1,265      | 1,219  | 1,128   |
| _                                      | Temperature Range A <sup>2,4</sup>                         | Characteristic Bond Strength<br>in Uncracked Concrete <sup>9</sup> | $	au_{k,uncr}$       | psi                         | 2,192               | 2,102           | 2,162   | 2,064       | 1,967      | 1,868  | 1,672   |
| ection                                 | Temperature Range B <sup>3,4</sup>                         | Characteristic Bond Strength in Cracked Concrete9                  | τ <sub>k,cr</sub>    | psi                         | 1,117               | 1,082           | 1,125   | 1087        | 1,050      | 1,012  | 936     |
| Periodic Inspection                    |                                                            | Characteristic Bond Strength<br>in Uncracked Concrete <sup>9</sup> | $	au_{k,uncr}$       | psi                         | 1,820               | 1,744           | 1,795   | 1,713       | 1,632      | 1,551  | 1,388   |
| odic                                   | Anchor Category Dry Concrete                               |                                                                    | ļ.,                  | _                           |                     | 2               |         |             | 11         |        |         |
| Strength Reduction Factor Dry Concrete |                                                            | ф <sub>dry,pi</sub>                                                |                      | 0.5                         | 55 <sup>10</sup>    |                 |         | 0.6510      |            |        |         |
| _                                      | Anchor Category                                            | Water-Saturated Concrete,<br>or Water-Filled Hole                  |                      | _                           |                     |                 |         | 3           |            |        |         |
|                                        | Strength Reduction Factor                                  | Water-Saturated Concrete,<br>or Water-Filled Hole                  | $\phi_{wet,pi}$      | _                           |                     | 0.4510          |         |             |            |        |         |
|                                        | Reduction Factor for S                                     | Seismic Tension                                                    | $lpha_{N,seis^{11}}$ | —                           | 1.0                 | 0.9             | 1.0     | 1.0         | 1.0        | 1.0    | 1.0     |

- The information presented in this table is to be used in conjunction with the design criteria of ACI 318-14 and ACI 318-11.
- 2. Temperature Range A: Maximum short-term temperature = 160°F, maximum long-term temperature = 110°F.
- Temperature Range B: Maximum short-term temperature = 176°F, maximum long-term temperature = 110°F.
- Short-term concrete temperatures are those that occur over short intervals (diurnal cycling). Long-term temperatures are roughly constant over significant periods of time.
- 5. The tabulated value of  $\phi$  applies when the load combinations of ACI 318-14 5.3 or ACI 318-11 9.2 are used. If the load combinations of ACI 318-11 Appendix C are used, refer to ACI 318-11 D.4.4 to determine the appropriate value of  $\phi$ .
- 6. The tabulated value of φ applies when both the load combinations of ACI 318-14 5.3, or ACI 318-11 9.2 are used and the requirements of ACI 318-14 17.3.3 (c) or ACI 318-11 D.4.3 (c), as applicable, for Condition B are met. If the load combinations of ACI 318-11 Appendix C are used, refer to ACI 318 D.4.4 (c) for Condition B to determine the appropriate value of φ.
- 7. Bond strength values shown are for normal-weight concrete having a compressive strength of  $f'_{\rm C}=2,500$  psi. For higher compressive strengths up to 8,000 psi, the tabulated characteristic bond strength may be increased by a factor of  $(f'_{\rm C}/2,500)^{0.36}$  for uncracked concrete and a factor of  $(f'_{\rm C}/2,500)^{0.24}$  for cracked concrete.
- For lightweight concrete, the modification factor for bond strength shall be as given in ACI 318-14 17.2.6 or ACI 318-11 D.3.6, as applicable, where applicable.
- Characteristic bond strength values are for sustained loads, including dead and live loads.
- 10. The tabulated value of  $\phi$  applies when both the load combinations of ACI 318-14 5.3, or ACI 318-11 9.2 are used and the requirements of ACI 318-14 17.3.3 (c) or ACI 318-11 D.4.3 (c), as applicable, for Condition B are met. If the load combinations of ACI 318-11 Appendix C are used, refer to ACI 318 D.4.4(c) for Condition B to determine the appropriate value of  $\phi$ .
- 11. For anchors installed in regions assigned to Seismic Design Category C, D, E or F, the bond strength values must be multiplied by  $\alpha_{N,seis}$ .

<sup>\*</sup> See p. 13 for an explanation of the load table icons.

# SET-3G™ Design Information — Concrete



# SET-3G Tension Strength Design Data for Rebar in Normal-Weight Concrete<sup>1,8</sup>





|                       |                                    | Observatoristis                                                    | Oh.al                             | 11-24-           |                          |                    |        | Rebar Size | )           |         |         |
|-----------------------|------------------------------------|--------------------------------------------------------------------|-----------------------------------|------------------|--------------------------|--------------------|--------|------------|-------------|---------|---------|
|                       |                                    | Characteristic                                                     | Symbol                            | Units            | #3                       | #4                 | #5     | #6         | #7          | #8      | #10     |
|                       |                                    | Stee                                                               | el Strength                       | in Tensio        | on                       |                    | 1      |            |             | ·       |         |
|                       | Minim                              | num Tensile Stress Area                                            | Ase                               | in. <sup>2</sup> | 0.11                     | 0.20               | 0.31   | 0.44       | 0.60        | 0.79    | 1.27    |
|                       | Tension Resistance of              | N <sub>sa</sub>                                                    | lb.                               | 9,900            | 18,000                   | 27,900             | 39,600 | 54,000     | 71,100      | 114,300 |         |
| L                     | Tension Resistance of              | Steel — Rebar (ASTM A706 Grade 60)                                 | , vsa                             | 110.             | 8,800                    | 16,000             | 24,800 | 35,200     | 48,000      | 63,200  | 101,600 |
|                       | Strength Reduction                 | n Factor for Tension — Steel Failure                               | φ                                 | _                |                          |                    |        | 0.755      |             |         |         |
|                       |                                    | Concrete Breakout Stren                                            | gth in Tens                       | ion (2,50        | 00 psi ≤ f' <sub>C</sub> | s ≤ 8,000 p        | si)    |            |             |         |         |
|                       | Effectivenes                       | s Factor for Cracked Concrete                                      | k <sub>c,cr</sub>                 | _                |                          |                    |        | 17         |             |         |         |
|                       | Effectiveness                      | Factor for Uncracked Concrete                                      | K <sub>c,uncr</sub>               | _                |                          |                    |        | 24         |             |         |         |
|                       | Strength Reduction Factor          | or — Concrete Breakout Failure in Tension                          | φ                                 |                  |                          |                    |        | 0.656      |             |         |         |
|                       |                                    | Bond Strength in 1                                                 |                                   |                  |                          | T                  | 1      | 1          | T           |         |         |
|                       |                                    | inimum Embedment                                                   | h <sub>ef,min</sub>               | in.              | 2%                       | 2¾                 | 31/8   | 3½         | 3¾          | 4       | 5       |
|                       | Ma                                 | aximum Embedment                                                   | h <sub>ef,max</sub>               | in.              | 7½                       | 10                 | 12½    | 15         | 17½         | 20      | 25      |
|                       | Temperature Range A <sup>2,4</sup> | Characteristic Bond Strength in Cracked Concrete <sup>9</sup>      | $	au_{k,cr}$                      | psi              | 1,448                    | 1,402              | 1,356  | 1,310      | 1,265       | 1,219   | 1,128   |
| <br>=                 | Tomporature Hange A                | Characteristic Bond Strength<br>in Uncracked Concrete <sup>9</sup> | $	au_{k,uncr}$                    | psi              | 2,269                    | 2,145              | 2,022  | 1,898      | 1,774       | 1,651   | 1,403   |
| pectic                | Temperature Dange D34              | Characteristic Bond Strength<br>in Cracked Concrete <sup>9</sup>   | $	au_{k,cr}$                      | psi              | 1,201                    | 1,163              | 1,125  | 1,087      | 1,050       | 1,012   | 936     |
| Continuous Inspection | Temperature Range B <sup>3,4</sup> | Characteristic Bond Strength<br>in Uncracked Concrete <sup>9</sup> | $	au_{k,uncr}$                    | psi              | 1,883                    | 1,781              | 1,678  | 1,575      | 1,473       | 1,370   | 1,165   |
| tinuc                 | Anchor Category                    | Dry Concrete                                                       |                                   | _                |                          | 1                  |        |            |             |         |         |
| Son                   | Strength Reduction Factor          | Dry Concrete                                                       | Фdry,ci                           | -                |                          |                    |        | 0.6510     |             |         |         |
|                       | Anchor Category                    | Water-Saturated Concrete, or Water-Filled Hole                     |                                   | _                |                          | 3                  |        |            | 2           |         |         |
|                       | Strength Reduction Factor          | Water-Saturated Concrete, or Water-Filled Hole                     | $\phi_{\mathit{wet},\mathit{ci}}$ | _                | 0.4                      | 15 <sup>10</sup>   |        |            | $0.55^{10}$ |         |         |
|                       | Temperature Range A <sup>2,4</sup> | Characteristic Bond Strength in Cracked Concrete <sup>9</sup>      | $	au_{k,cr}$                      | psi              | 1,346                    | 1,304              | 1,356  | 1,310      | 1,265       | 1,219   | 1,128   |
|                       | Temperature mange A                | Characteristic Bond Strength<br>in Uncracked Concrete <sup>9</sup> | $	au_{k,uncr}$                    | psi              | 2,110                    | 1,995              | 2,022  | 1,898      | 1,774       | 1,651   | 1,403   |
| ection                | Temperature Range B <sup>3,4</sup> | Characteristic Bond Strength<br>in Cracked Concrete <sup>9</sup>   | $	au_{k,cr}$                      | psi              | 1,117                    | 1,082              | 1,125  | 1,087      | 1,050       | 1,012   | 936     |
| Periodic Inspection   | Temperature hange b                | Characteristic Bond Strength in Uncracked Concrete <sup>9</sup>    | $	au_{k,uncr}$                    | psi              | 1,751                    | 1,656              | 1,678  | 1,575      | 1,473       | 1,370   | 1,165   |
| riodi                 | Anchor Category                    | Dry Concrete                                                       |                                   | _                | :                        | 2                  |        |            | 1           |         |         |
| Pe                    | Strength Reduction Factor          | Dry Concrete                                                       | $\phi_{dry,pi}$                   | _                | 0.5                      | 55 <sup>10</sup>   |        |            | 0.6510      |         |         |
|                       | Anchor Category                    | Water-Saturated Concrete, or Water-Filled Hole                     | _                                 | _                |                          |                    |        | 3          |             |         |         |
|                       | Strength Reduction Factor          | Water-Saturated Concrete, or Water-Filled Hole                     | $\phi_{wet,pi}$                   | _                |                          | 0.45 <sup>10</sup> |        |            |             |         |         |
|                       | Reduction                          | Factor for Seismic Tension                                         | $\alpha_{N,seis}$ 11              | _                | 1.0                      | 1.0                | 1.0    | 1.0        | 1.0         | 1.0     | 1.0     |

- 1. The information presented in this table is to be used in conjunction with the design criteria of ACI 318-14 and ACI 318-11.
- Temperature Range A: Maximum short-term temperature = 160°F, maximum long-term temperature = 110°F.
- 3. Temperature Range B: Maximum short-term temperature = 176°F, maximum long-term temperature = 110°F.
- Short-term concrete temperatures are those that occur over short intervals (diurnal cycling). Long-term temperatures are roughly constant over significant periods of time.
- 5. The tabulated value of  $\phi$  applies when the load combinations of ACI 318-14 5.3 or ACI 318-11 9.2 are used. If the load combinations of ACI 318-11 Appendix C are used, refer to ACI 318-11 D.4.4 to determine the appropriate value of  $\phi$ .
- 6. The tabulated value of  $\phi$  applies when both the load combinations of ACI 318-14 5.3, or ACI 318-11 9.2 are used and the requirements of ACI 318-14 17.3.3 (c) or ACI 318-11 D.4.3 (c), as applicable, for Condition B are met. If the load combinations of ACI 318-11 Appendix C are used, refer to ACI 318 D.4.4(c) for Condition B to determine the appropriate value of  $\phi$ .
- 7. Bond strength values shown are for normal-weight concrete having a compressive strength of f<sub>c</sub> = 2,500 psi. For higher compressive strengths up to 8,000 psi, the tabulated characteristic bond strength may be increased by a factor of (f<sub>c</sub>/2,500)<sup>0.36</sup> for uncracked concrete and a factor of (f<sup>1</sup><sub>c</sub>/2,500)<sup>0.25</sup> for cracked concrete.
- For lightweight concrete, the modification factor for bond strength shall be as given in ACI 318-14 17.2.6 or ACI 318-11 D.3.6, as applicable, where applicable.
- Characteristic bond strength values are for sustained loads, including dead and live loads.
- 10. The tabulated value of  $\phi$  applies when both the load combinations of ACI 318-14 5.3, or ACI 318-11 9.2 are used and the requirements of ACI 318-14 17.3.3 (c) or ACI 318-11 D.4.3 (c), as applicable, for Condition B are met. If the load combinations of ACI 318-11 Appendix C are used, refer to ACI 318 D.4.4(c) for Condition B to determine the appropriate value of  $\phi$ .
- 11. For anchors installed in regions assigned to Seismic Design Category C, D, E or F, the bond strength values must be multiplied by  $\alpha_{N,seis}$ .

C-A-2018 @2018 SIMPSON STRONG-TIE COMPANY INC.

<sup>\*</sup> See p. 13 for an explanation of the load table icons.

# **SET-3G**<sup>™</sup> Design Information — Concrete



# SET-3G Shear Strength Design Data for Threaded Rod in Normal-Weight Concrete<sup>1</sup>



| Characteristic                                                                                 | Symbol                    | Units            | Nominal Rod Diameter (in.) |        |                    |                   |                     |        |        |  |
|------------------------------------------------------------------------------------------------|---------------------------|------------------|----------------------------|--------|--------------------|-------------------|---------------------|--------|--------|--|
| Gildi deleti suc                                                                               | Syllibol                  | UIIIIS           | 3/8                        | 1/2    | 5/8                | 3/4               | 7/8                 | 1      | 11/4   |  |
|                                                                                                | Steel St                  | rength in Sh     | ear                        |        |                    |                   |                     |        |        |  |
| Minimum Shear Stress Area                                                                      | Ase                       | in. <sup>2</sup> | 0.078                      | 0.142  | 0.226              | 0.334             | 0.462               | 0.606  | 0.969  |  |
| Shear Resistance of Steel — ASTM F1554, Grade 36                                               |                           |                  | 2,715                      | 4,940  | 7,865              | 11,625            | 16,080              | 21,090 | 33,720 |  |
| Shear Resistance of Steel — ASTM F1554, Grade 55                                               | V <sub>sa</sub>           | lb.              | 3,510                      | 6,390  | 10,170             | 15,030            | 20,790              | 27,270 | 43,605 |  |
| Shear Resistance of Steel — ASTM A193, Grade B7                                                |                           |                  | 5,850                      | 10,650 | 16,950             | 25,050            | 34,650              | 45,450 | 72,675 |  |
| Reduction factor for Seismic Shear — Carbon Streel                                             | $lpha_{V\!,{\it Seis}^4}$ | +                |                            | 0.75   |                    |                   |                     | 1.     | .0     |  |
| Shear Resistance of Steel — Stainless Steel ASTM A193,<br>Grade B8 and B8M (Types 304 and 316) |                           |                  | 2,665                      | 4,855  | 7,730              | 11,425            | 15,800              | 20,725 | 33,140 |  |
| Shear Resistance of Steel — Stainless Steel ASTM F593 CW (Types 304 and 316)                   | V <sub>sa</sub>           | lb.              | 4,680                      | 8,520  | 13,560             | 17,035            | 23,560              | 30,905 | 49,420 |  |
| Shear Resistance of Steel — Stainless Steel ASTM A193,<br>Grade B6 (Type 410)                  |                           |                  | 5,150                      | 9,370  | 14,915             | 22,040            | 30,490              | 40,000 | 63,955 |  |
| Reduction factor for Seismic Shear — Stainless Steel                                           | $\alpha_{V,seis}$         | _                | 0.                         | 80     |                    | 0.75              |                     | 1.0    |        |  |
| Strength Reduction Factor for Shear — Steel Failure                                            | φ                         | _                |                            |        |                    | 0.65 <sup>2</sup> |                     |        |        |  |
| Co                                                                                             | ncrete Brea               | kout Strengt     | h in Shear                 |        |                    |                   |                     |        |        |  |
| Outside Diameter of Anchor                                                                     | d <sub>a</sub>            | in.              | 0.375                      | 0.5    | 0.625              | 0.75              | 0.875               | 1      | 1.25   |  |
| Load-Bearing Length of Anchor in Shear                                                         | l <sub>e</sub>            | in.              |                            |        |                    | h <sub>ef</sub>   |                     |        |        |  |
| Strength Reduction Factor for Shear — Breakout Failure                                         | φ                         | _                | - 0.70 <sup>3</sup>        |        |                    |                   |                     |        |        |  |
| C                                                                                              | oncrete Pryd              | out Strength     | in Shear/                  |        |                    |                   |                     |        |        |  |
| Load-Bearing Length of Anchor in Shear                                                         | k <sub>cp</sub>           | in.              |                            | 1.     | 0 for $h_{ef} < 2$ | 2.50"; 2.0 f      | or $h_{ef} \ge 2.5$ | 0"     |        |  |
| Strength Reduction Factor for Shear — Breakout Failure                                         | φ                         | _                |                            |        |                    | 0.703             |                     |        |        |  |

<sup>1.</sup> The information presented in this table is to be used in conjunction with the design criteria of ACI 318-14 and ACI 318-11.

<sup>2.</sup> The tabulated value of  $\phi$  applies when the load combinations of ACI 318-14 5.3 or ACI 318-11 9.2 are used. If the load combinations of ACI 318-11 Appendix C are used, refer to ACI 318-11 D.4.4 to determine the appropriate value of  $\phi$ .

<sup>3.</sup> The tabulated value of  $\phi$  applies when both the load combinations of ACI 318-14 5.3, or ACI 318-11 9.2 are used and the requirements

of ACI 318-14 17.3.3 (c) or ACI 318-11 D.4.3 (c), as applicable, for Condition B are met. If the load combinations of ACI 318-11 Appendix C are used, refer to ACI 318 D.4.4 (c) for Condition B to determine the appropriate value of  $\phi$ .

<sup>4.</sup> The values of  $V_{sa}$  are applicable for both cracked concrete and uncracked concrete. For anchors installed in regions assigned to Seismic Design Category C, D, E or F,  $V_{sa}$  must be multiplied by  $\alpha_{Vseis}$  for the corresponding anchor steel type.

### **SET-3G**<sup>™</sup> Design Information -- Concrete



### SET-3G Shear Strength Design Data for Rebar in Normal-Weight Concrete<sup>1</sup>







| Characteristic                                                  | Cumbol                | Units            | Nominal Rod Diameter (in.) |        |                    |                   |                      |        |        |  |
|-----------------------------------------------------------------|-----------------------|------------------|----------------------------|--------|--------------------|-------------------|----------------------|--------|--------|--|
| Gliaracteristic                                                 | Symbol                | UIIILS           | #3                         | #4     | #5                 | #6                | #7                   | #8     | #10    |  |
| Steel Strength in Shear                                         |                       |                  |                            |        |                    |                   |                      |        |        |  |
| Minimum Shear Stress Area                                       | A <sub>se</sub>       | in. <sup>2</sup> | 0.110                      | 0.200  | 0.310              | 0.440             | 0.600                | 0.790  | 1.270  |  |
| Shear Resistance of Steel — Rebar (ASTM A615 Grade 60)          | V                     | lh               | 5,940                      | 10,800 | 16,740             | 23,760            | 32,400               | 42,660 | 68,580 |  |
| Shear Resistance of Steel — Rebar (ASTM A706 Grade 60)          | V <sub>sa</sub>       | lb.              | 5,280                      | 9,600  | 14,880             | 21,120            | 28,800               | 37,920 | 60,960 |  |
| Reduction Factor for Seismic Shear — Rebar (ASTM A615 Grade 60) |                       | 4                |                            | 0.60   |                    |                   |                      |        | .8     |  |
| Reduction Factor for Seismic Shear — Rebar (ASTM A706 Grade 60) | $\alpha_{V,seis}^{4}$ |                  |                            |        | 0.60               |                   |                      | 0      | .8     |  |
| Strength Reduction Factor for Shear — Steel Failure             | φ                     | _                |                            |        |                    | 0.65 <sup>2</sup> |                      |        |        |  |
| Concrete B                                                      | Breakout St           | rength ir        | Shear                      |        |                    |                   |                      |        |        |  |
| Outside Diameter of Anchor                                      | d <sub>a</sub>        | in.              | 0.375                      | 0.5    | 0.625              | 0.75              | 0.875                | 1      | 1.25   |  |
| Load-Bearing Length of Anchor in Shear                          | I <sub>e</sub>        | in.              |                            |        |                    | h <sub>ef</sub>   |                      |        |        |  |
| Strength Reduction Factor for Shear — Breakout Failure          | φ                     | _                |                            |        |                    | 0.703             |                      |        |        |  |
| Concrete                                                        | Pryout Str            | ength in         | Shear                      |        |                    |                   |                      |        |        |  |
| Load-Bearing Length of Anchor in Shear                          | k <sub>cp</sub>       | in.              |                            | 1.0    | ) for $h_{ef} < 2$ | 2.50"; 2.0 1      | for $h_{ef} \ge 2.5$ | 50"    |        |  |
| Strength Reduction Factor for Shear — Breakout Failure          | φ                     | _                |                            |        |                    | 0.703             |                      |        |        |  |

- 1. The information presented in this table is to be used in conjunction with the design criteria of ACI 318-14 and ACI 318-11.
- 2. The tabulated value of  $\phi$  applies when the load combinations of ACI 318-14 5.3 or ACI 318-11 9.2 are used. If the load combinations of ACI 318-11 Appendix C are used, refer to ACI 318-11 D.4.4 to determine the appropriate value of  $\phi$ .
- 3. The tabulated value of  $\phi$  applies when both the load combinations of ACI 318-14 5.3 or ACI 318-11 9.2 are used and the requirements of
- ACI 318-14 17.3.3 (c) or ACI 318-11 D.4.3 (c), as applicable, for Condition B are met. If the load combinations of ACI 318-11 Appendix C are used, refer to ACI 318 D.4.4 (c) for Condition B to determine the appropriate value of  $\phi$ .
- 4. The values of  $V_{sa}$  are applicable for both cracked concrete and uncracked concrete. For anchors installed in regions assigned to Seismic Design Category C, D, E or F,  $V_{sa}$  must be multiplied by  $\alpha_{Vseis}$  for the corresponding anchor steel type.

For additional load tables, visit strongtie.com/set3g.



C-A-2018 @2018 SIMPSON STRONG-TIE COMPANY INC.

# **Anchor Designer™ Software** for ACI 318, ETAG and CSA

Simpson Strong-Tie® Anchor Designer software accurately analyzes existing design or suggests anchor solutions based on user-defined design elements in cracked and uncracked concrete conditions.

<sup>\*</sup> See p. 13 for an explanation of the load table icons.

# C-A-2018 @ 2018 SIMPSON STRONG-TIE COMPANY INC.

# SET-XP® High-Strength Epoxy Adhesive



SET-XP epoxy anchoring adhesive is a high-strength formula for anchoring and doweling in cracked and uncracked concrete and masonry applications. It is a two-part system with the resin and hardener being simultaneously dispensed and mixed through the mixing nozzle. When properly mixed, adhesive will be a uniform teal color for easy post-installation identification.

### **Features**

- 1:1 two-component, high-solids, epoxy-based anchoring adhesive formula
- Passed the demanding ICC-ES AC308 adverse-condition tests pertaining to elevated temperatures and long-term sustained loads
- Code listed under the IBC/IRC for cracked and uncracked concrete per ICC-ES ESR-2508
- Code listed under the IBC/IRC for masonry per IAPMO UES ER-265
- Code-listed equivalent to cast-in-place reinforcing bars governed by ACI 318 and IBC Chapter 19
- Suitable for use under static and seismic loading conditions in cracked and uncracked concrete and masonry
- Cure times: 24 hours at 70°F (21°C), 72 hours at 50°F (10°C)
- Easy hole-cleaning no power-brushing required
- Suitable for use in dry or water-saturated concrete
- For best results, store between 45°F (7°C) and 90°F (32°C)
- Available in 8.5 oz., 22 oz. and 56 oz. cartridges for application versatility
- · Manufactured in the USA using global materials
- SET-XP is code listed for installation with the Speed Clean™ DXS drill bits without any further cleaning (ICC-ES ESR-2508)
- Tested per ACI 355.4 and AC308

### Applications

- Threaded rod anchoring and rebar doweling into concrete and masonry
- Recognized per AC308 to be used for rebar development and splice length design provisions of ACI 318
- Suitable for horizontal, vertical and overhead applications
- Multiple DOT listings refer to strongtie.com/DOT for current approvals

### Codes

ICC-ES ESR-2508 (concrete); IAPMO UES ER-265 (masonry); City of L.A. RR25744 (concrete), RR25965 (masonry); Florida FL-17449.2 (concrete), FL-16230.3 (masonry); AASHTO M-235 and ASTM C881 (Type I and IV, Grade 3, Class C); NSF/ANSI Standard 61 (216 in.²/1,000 gal.)

### Chemical Resistance

See pp. 252-253

### Installation and Application Instructions

(See also pp. 100-102)

- Surfaces to receive epoxy must be clean.
- Base material temperature must be 50°F (10°C) or above at the time of installation. For best results, material should be between 70°F (21°C) and 80°F (27°C) at time of application.
- To warm cold material, store cartridges in a warm, uniformly heated area or storage container. Do not immerse cartridges in water or use microwave to facilitate warming.
- Mixed material in nozzle can harden in 30 minutes at temperatures of 70°F (21°C) and above.



SET-XP Adhesive

### **Suggested Specifications**

See strongtie.com for more information.

# SET-XP® High-Strength Epoxy Adhesive



### **Test Criteria**

Anchors installed with SET-XP adhesive have been tested in accordance with ICC-ES Acceptance Criteria for Post-Installed Adhesive Anchors in Masonry Elements (AC58) and Adhesive Anchors in Concrete Elements (AC308).

| Property                        | Test Method | Result*             |
|---------------------------------|-------------|---------------------|
| Consistency                     | ASTM C881   | Passed, non-sag     |
| Glass transition temperature    | ASTM E1356  | 155°F               |
| Bond strength (moist cure)      | ASTM C882   | 2,916 psi at 2 days |
| Water absorption                | ASTM D570   | 0.10%               |
| Compressive yield strength      | ASTM D695   | 14,110 psi          |
| Compressive modulus             | ASTM D695   | 612,970 psi         |
| Shore D Durometer               | ASTM D2240  | 84                  |
| Gel time                        | ASTM C881   | 60 minutes          |
| Volatile Organic Compound (VOC) | _           | 3 g/L               |
|                                 |             |                     |

<sup>\*</sup>Material and curing conditions: 73 ± 2°F, unless otherwise noted.

### SET-XP Cartridge System

| Model<br>No.            | Capacity<br>(ounces) |              |    | Dispensing Tool(s)         | Mixing Nozzle |  |  |  |
|-------------------------|----------------------|--------------|----|----------------------------|---------------|--|--|--|
| SET-XP10⁴               | 8.5                  | Single       | 12 | CDT10S                     |               |  |  |  |
| SET-XP22                | 22                   | Side-by-Side | 10 | EDT22S, EDTA22P, EDTA22CKT | EMN22I        |  |  |  |
| SET-XP22-N <sup>5</sup> | 22                   | Side-by-Side | 10 | EDT22S, EDTA22P, EDTA22CKT | EIVIINZZI     |  |  |  |
| SET-XP56                | 56                   | Side-by-Side | 6  | EDTA56P                    |               |  |  |  |

- 1. Cartridge estimation guidelines are available at **strongtie.com/apps**.
- Detailed information on dispensing tools, mixing nozzles and other adhesive accessories is available at strongtie.com.
- 3. Use only Simpson Strong-Tie mixing nozzles in accordance with Simpson Strong-Tie instructions. Modification or improper use of mixing nozzle may impair SET-XP adhesive performance.
- 4. Two EMN22I mixing nozzles and two nozzle extensions are supplied with each cartridge.
- 5. One EMN22I mixing nozzle and one nozzle extension are supplied with each cartridge.

### Cure Schedule

| Base Materia | l Temperature | Gel Time  | Cure Time |
|--------------|---------------|-----------|-----------|
| °F           | °C            | (minutes) | (hrs.)    |
| 50           | 10            | 75        | 72        |
| 60           | 16            | 60        | 48        |
| 70           | 21            | 45        | 24        |
| 90           | 32            | 35        | 24        |
| 110          | 43            | 20        | 24        |

For water-saturated concrete, the cure times must be doubled.

### **SET-XP®** Design Information -Concrete



SET-XP Installation Information and Additional Data for Threaded Rod and Rebar in Normal-Weight Concrete<sup>1</sup>







| $\overline{}$ | _ |
|---------------|---|
|               | ^ |
|               |   |
|               |   |

| Characteristic                            |         | Cumbal            | Units |        | No       | ominal Ancho | r Diameter (i        | n.) / Rebar Si   | ize    |            |  |
|-------------------------------------------|---------|-------------------|-------|--------|----------|--------------|----------------------|------------------|--------|------------|--|
| Gliaracteristic                           |         | Symbol            | Units | % / #3 | 1/2 / #4 | % / #5       | 3/4 / #6             | 7⁄8 / # <b>7</b> | 1 / #8 | 11/4 / #10 |  |
| Installation Information                  |         |                   |       |        |          |              |                      |                  |        |            |  |
| Drill Bit Diameter                        |         | d <sub>hole</sub> | in.   | 1/2    | 5/8      | 3/4          | 7/8                  | 1                | 11/8   | 13/8       |  |
| Maximum Tightening Torque                 |         | T <sub>inst</sub> | ftlb. | 10     | 20       | 30           | 45                   | 60               | 80     | 125        |  |
| D 33 15 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | Minimum | h <sub>ef</sub>   | in.   | 23/8   | 23/4     | 31/8         | 3½                   | 3¾               | 4      | 5          |  |
| Permitted Embedment Depth Range           | Maximum | h <sub>ef</sub>   | in.   | 71/2   | 10       | 12½          | 15                   | 17½              | 20     | 25         |  |
| Minimum Concrete Thickness                |         | h <sub>min</sub>  | in.   |        |          |              | $h_{ef} + 5d_{hole}$ |                  |        |            |  |
| Critical Edge Distance <sup>2</sup>       |         | Cac               | in.   |        |          |              | See footnote 2       | 2                |        |            |  |
| Minimum Edge Distance                     |         | C <sub>min</sub>  | in.   |        |          | 1            | 3/4                  |                  |        | 23/4       |  |
| Minimum Anchor Spacing                    |         | S <sub>min</sub>  | in.   |        |          | ;            | 3                    |                  |        | 6          |  |

<sup>1.</sup> The information presented in this table is to be used in conjunction with the design criteria of ACI 318-14 and ACI 318-11.

 $[h/h_{ef}] \le 2.4$ 

 $\tau_{\textit{K,uncr}}$  = the characteristic bond strength in uncracked concrete, given in the tables that follow  $\leq k_{\textit{uncr}} \left( \left( h_{\textit{ef}} \times f'_{\textit{c}} \right)^{0.5} / (\pi \times d_{\textit{hole}}) \right)$ 

h = the member thickness (inches)

 $h_{ef}$  = the embedment depth (inches)

<sup>2.</sup>  $c_{ac} = h_{ef} (\tau_{k,uncr}/1,160)^{0.4} \times [3.1 - 0.7(h/h_{ef})]$ , where:

# SET-XP® Design Information — Concrete



### SET-XP Tension Strength Design Data for Threaded Rod in Normal-Weight Concrete<sup>1</sup>

| SET 74 TOTAL OF STORING AT BOOKING TO THE COURSE THE                                |                                                                            |                       |                          |                      | Nominal Anchor Diameter (in.) |                   |             |                   |        |        |        |
|-------------------------------------------------------------------------------------|----------------------------------------------------------------------------|-----------------------|--------------------------|----------------------|-------------------------------|-------------------|-------------|-------------------|--------|--------|--------|
|                                                                                     | Characteristic                                                             |                       |                          | Units                |                               |                   |             |                   |        |        |        |
|                                                                                     |                                                                            | Steel Stren           | ength in Tension         |                      |                               |                   |             |                   |        |        | 11/4   |
|                                                                                     | Minimum Tensile Stress Area                                                | Steel Strell          | $A_{\rm se}$             | in <sup>2</sup>      | 0.078                         | 0.142             | 0.226       | 0.334             | 0.462  | 0.606  | 0.969  |
|                                                                                     | Tension Resistance of Steel — ASTM F1554, I                                | Grade 36              | 7 '56                    |                      | 4,525                         | 8,235             | 13,110      | 19,370            | 26,795 | 35,150 | 56,200 |
|                                                                                     | Tension Resistance of Steel — ASTM A193, G                                 |                       |                          |                      | 9,750                         | 17,750            | 28,250      | 41,750            | 57,750 | 75,750 | 121,12 |
| Threaded Rod                                                                        | Tension Resistance of Steel — Type 410 Stain (ASTM A193, Grade B6)         |                       | N <sub>sa</sub>          | lb.                  | 8,580                         | 15,620            | 24,860      | 36,740            | 50,820 | 66,660 | 106,59 |
|                                                                                     | Tension Resistance of Steel — Type 304 and 3 (ASTM A193, Grade B8 and B8M) | 316 Stainless         |                          |                      | 4,445                         | 8,095             | 12,880      | 19,040            | 26,335 | 34,540 | 55,235 |
|                                                                                     | Strength Reduction Factor — Steel Failure                                  |                       | φ                        | _                    |                               |                   |             | 0.757             |        |        |        |
|                                                                                     | Concrete Brea                                                              | kout Strength in Te   | ension (2                | 2,500 p              | si ≤ f' <sub>C</sub> ≤ 8      | 3,000 psi)        | 12          |                   |        |        |        |
| Effectiveness Fa                                                                    | actor — Uncracked Concrete                                                 |                       | <i>k</i> <sub>uncr</sub> | _                    |                               |                   |             | 24                |        |        |        |
| Effectiveness Fa                                                                    | actor — Cracked Concrete                                                   |                       | k <sub>cr</sub>          | _                    |                               |                   |             | 17                |        |        |        |
| Strength Reduc                                                                      | tion Factor — Breakout Failure                                             |                       | φ                        | _                    |                               |                   |             | 0.65 <sup>9</sup> |        |        |        |
|                                                                                     | Bond S                                                                     | trength in Tension    | (2,500 p                 | si ≤ f' <sub>C</sub> | ≤ 8,000 p                     | si) <sup>12</sup> |             |                   |        |        |        |
|                                                                                     | Characteristic Bond Strength <sup>5,13</sup>                               |                       | $	au_{k,uncr}$           | psi                  | 770                           | 1,150             | 1,060       | 970               | 885    | 790    | 620    |
| Uncracked<br>Concrete <sup>2,3,4</sup>                                              | Permitted Embedment Depth Range                                            | Minimum               | h                        | in.                  | 2%                            | 23/4              | 31/8        | 3½                | 3¾     | 4      | 5      |
| 001101010                                                                           | Permitted Embedment Deptil Nange                                           | Maximum               | h <sub>ef</sub>          | 111.                 | 71/2                          | 10                | 12½         | 15                | 171/2  | 20     | 25     |
|                                                                                     | Characteristic Bond Strength <sup>5,10,11,13</sup>                         |                       | $	au_{k,cr}$             | psi                  | 595                           | 510               | 435         | 385               | 355    | 345    | 345    |
| Cracked<br>Concrete <sup>2,3,4</sup>                                                | Permitted Embedment Depth Range Minimum                                    |                       | h .                      | in.                  | 3                             | 4                 | 5           | 6                 | 7      | 8      | 10     |
|                                                                                     | remitted Embedment Depth Nange                                             | Maximum               | h <sub>ef</sub> in.      | 111.                 | 7½                            | 10                | 12½         | 15                | 17½    | 20     | 25     |
|                                                                                     | Bond Strength in Tension —                                                 | Bond Strength Rec     | duction                  | Factors              | for Conti                     | nuous Sp          | ecial Inspe | ection            |        |        |        |
| Strength Reduc                                                                      | tion Factor — Dry Concrete                                                 |                       | φ <sub>dry, ci</sub>     | _                    | 0.65 <sup>8</sup>             |                   |             |                   |        |        |        |
| Strength Reduc                                                                      | tion Factor — Water-Saturated Concrete — $h_{\rm ef}$ s                    | ≤ 12d <sub>a</sub>    | $\phi_{sat,ci}$          | _                    | 0.5                           | 55 <sup>8</sup>   |             |                   | 0.458  |        |        |
| Additional Factor                                                                   | or for Water-Saturated Concrete — $h_{ef} \le 12d_a$                       |                       | K <sub>sat,ci</sub> 6    | _                    | N                             | /A                |             | 1                 |        | 0.     | 84     |
| Strength Reduc                                                                      | tion Factor — Water-Saturated Concrete — h <sub>ef</sub> >                 | > 12d <sub>a</sub>    | $\phi_{sat,ci}$          | _                    | 0.45 <sup>8</sup>             |                   |             |                   |        |        |        |
| Additional Factor                                                                   |                                                                            | k <sub>sat,ci</sub> 6 | _                        |                      |                               |                   | 0.57        |                   |        |        |        |
|                                                                                     | Bond Strength in Tension -                                                 | — Bond Strength R     | Reduction                | n Facto              | rs for Per                    | iodic Spec        | cial Inspec | tion              |        |        |        |
| Strength Reduction Factor — Dry Concrete                                            |                                                                            |                       |                          | _                    | 0.558                         |                   |             |                   |        |        |        |
| Strength Reduction Factor — Water-Saturated Concrete — $h_{ef} \le 12d_a$           |                                                                            |                       |                          | _                    |                               |                   |             | 0.458             |        |        |        |
| Additional Factor for Water-Saturated Concrete — h <sub>ef</sub> ≤ 12d <sub>a</sub> |                                                                            |                       |                          | _                    |                               | 1                 |             | 0.93              |        | 0.     | 71     |
| Strength Reduc                                                                      | ction Factor — Water-Saturated Concrete — h <sub>ef</sub> :                | > 12da                | φ <sub>sat,pi</sub>      | _                    |                               |                   |             | 0.458             |        |        |        |
| Additional Factor for Water-Saturated Concrete — h <sub>ef</sub> > 12d <sub>a</sub> |                                                                            |                       |                          | _                    | 0.48                          |                   |             |                   |        |        |        |

- 1. The information presented in this table is to be used in conjunction with the design criteria of ACI 318-14 or ACI 318-11.
- 2. Temperature Range: Maximum short-term temperature of 150°F. Maximum long-term temperature of 110°F.
- 3. Short-term concrete temperatures are those that occur over short intervals (diurnal cycling).
- 4. Long-term concrete temperatures are constant temperatures over a significant time period.
- 5. For anchors that only resist wind or seismic loads, bond strengths may be increased by 72%.
- 6. In water-saturated concrete, multiply  $\tau_{k,uncr}$  and  $\tau_{k,cr}$  by K<sub>sat</sub>.

C-A-2018 @ 2018 SIMPSON STRONG-TIE COMPANY INC.

- 7. The value of  $\phi$  applies when the load combinations of ACI 318-14 5.3 or ACI 318-11 Section 9.2 are used. If the load combinations of ACI 318 Appendix C are used, refer to ACI 318-11 D.4.4 to determine the appropriate value of  $\phi$ .
- 8. The value of  $\phi$  applies when both the load combinations of ACI 318-14 5.3 or ACI 318-11 Section 9.2 are used and the requirements of ACI 318-14 17.3.3 or ACI 318-11 D.4.4 (c) for Condition B are met. If the load combinations of ACI 318 Appendix C are used, refer to ACI 318-11 D.4.4 to determine the appropriate value of  $\phi$ .
- 9. The value of φ applies when both the load combinations of ACI 318-14 5.3 or ACI 318-11 Section 9.2 are used and the requirements of ACI 318-14 17.3.3 or ACI 318-11 D.4.4 (c) for Condition B are met. If the load combinations of ACI 318-11 Section 9.2 are used and the requirements of ACI 318-11 D.4.4 (c) for Condition A are met, refer to ACI 318-11 D.4.4 to determine the appropriate value of φ. If the load combinations of ACI 318 Appendix C are used, refer to ACI 318-11 D.4.5 to determine the appropriate value of φ.
- 10. For anchors installed in regions assigned to Seismic Design Category C, D, E or F, the bond strength values for 1/8" anchors must be multiplied by  $\alpha_{N,seis} = 0.80$ .
- 11. For anchors installed in regions assigned to Seismic Design Category C, D, E or F, the bond strength values for 1" anchors must be multiplied by  $\alpha_{N.Seis} = 0.92$ .
- 12. The values of  $f'_{C}$  used for calculation purposes must not exceed 8,000 psi (55.1 MPa) for uncracked concrete. The value of  $f'_{C}$  used for calculation purposes must not exceed 2,500 psi (17.2 MPa) for tension resistance in cracked concrete.
- 13. For applications where maximum short-term temperature is 110°F (43°C) and the maximum long-term temperature is 75°F (24°C), bond strengths may be increased 93%. No additional increase is permitted for anchors that only resist wind or seismic loads.

<sup>\*</sup> See p. 13 for an explanation of the load table icons.

# C-A-2018 @ 2018 SIMPSON STRONG-TIE COMPANY INC.

# SET-XP® Design Information — Concrete











### SET-XP Tension Strength Design Data for Rebar in Normal-Weight Concrete<sup>1</sup>

|                               | ngth Design Data for Re                                       |                    |                       |                           | IOI GLG                |                         | Rebar Size  |                   |        |        |         |
|-------------------------------|---------------------------------------------------------------|--------------------|-----------------------|---------------------------|------------------------|-------------------------|-------------|-------------------|--------|--------|---------|
|                               | Characteristic                                                | Symbol             | Units                 | #3                        | #4                     | #5                      | #6          | e<br>  #7         | #8     | #10    |         |
|                               |                                                               | C+                 | eel Strength ir       | Toncion                   | #3                     | #4                      | #3          | #0                | #/     | #0     | #10     |
|                               | Minimum Tensile Stress Area                                   | - 31               |                       | in <sup>2</sup>           | 0.11                   | 0.2                     | 0.31        | 0.44              | 0.6    | 0.79   | 1.23    |
|                               | Tension Resistance of Steel — F                               | Pohor              | A <sub>se</sub>       | 1117                      | 0.11                   | 0.2                     | 0.31        | 0.44              | 0.6    | 0.79   | 1.23    |
| Rebar                         | (ASTM A615 Grade 60)                                          | 1euai<br>          | N <sub>sa</sub>       | lb.                       | 9,900                  | 18,000                  | 27,900      | 39,600            | 54,000 | 71,100 | 110,700 |
|                               | Strength Reduction Factor — St                                | eel Failure        | φ                     | _                         |                        |                         |             | 0.657             |        |        |         |
|                               | Concrete Br                                                   | eakout Stre        | ngth in Tensio        | n (2,500 ps               | $si \leq f_C^i \leq 8$ | ,000 psi) <sup>10</sup> |             |                   |        |        |         |
| Effectiveness Factor — Uncr   | racked Concrete                                               |                    | k <sub>uncr</sub>     | _                         |                        |                         |             | 24                |        |        |         |
| Effectiveness Factor — Crac   | cked Concrete                                                 |                    | k <sub>cr</sub>       | _                         |                        |                         |             | 17                |        |        |         |
| Strength Reduction Factor —   | – Breakout Failure                                            |                    | φ                     | _                         |                        |                         |             | 0.65 <sup>9</sup> |        |        |         |
|                               | Bond                                                          | Strength in        | Tension (2,50         | 0 psi ≤ f' <sub>C</sub> ≤ | ≤ 8,000 ps             | si) <sup>10</sup>       |             |                   |        |        |         |
|                               | Characteristic Bond Strength <sup>5,11</sup>                  |                    | $\tau_{k,uncr}$       | psi                       | 895                    | 870                     | 845         | 820               | 795    | 770    | 720     |
| Uncracked Concrete 2,3,4      | Permitted Embedment<br>Depth Range                            | Minimum            |                       |                           | 2%                     | 2¾                      | 31/8        | 3½                | 3¾     | 4      | 5       |
|                               |                                                               | Maximum            | h <sub>ef</sub>       | in.                       | 71/2                   | 10                      | 12½         | 15                | 17½    | 20     | 25      |
|                               | Characteristic Bond Strength <sup>5,11</sup>                  |                    | τ <sub>k,cr</sub>     | psi                       | 365                    | 735                     | 660         | 590               | 515    | 440    | 275     |
| Cracked Concrete 2,3,4        | Permitted Embedment<br>Depth Range                            | Minimum            | h                     | in.                       | 3                      | 4                       | 5           | 6                 | 7      | 8      | 10      |
|                               |                                                               | Maximum            | h <sub>ef</sub>       | 111.                      | 71/2                   | 10                      | 12½         | 15                | 17½    | 20     | 25      |
|                               | Bond Strength in Tension -                                    | — Bond Str         | ength Reduction       | n Factors                 | for Contin             | uous Spe                | cial Inspec | ction             |        |        |         |
| Strength Reduction Factor —   | – Dry Concrete                                                |                    | Φdry,ci               | _                         | 0.658                  |                         |             |                   |        |        |         |
| Strength Reduction Factor —   | <ul><li>Water-Saturated Concrete – h<sub>ef</sub> ≤</li></ul> | 12d <sub>a</sub>   | φ <sub>sat,ci</sub>   | _                         | 0.                     | 0.558 0.458             |             |                   |        |        |         |
| Additional Factor for Water-S | Saturated Concrete $-h_{ef} \le 12d_a$                        |                    | K <sub>sat,ci</sub> 6 | _                         | N                      | N/A 1 0.84              |             |                   |        | 84     |         |
| Strength Reduction Factor —   | – Water-Saturated Concrete – h <sub>ef</sub> >                | 12d <sub>a</sub>   | φ <sub>sat,ci</sub>   | _                         | 0.458                  |                         |             |                   |        |        |         |
| Additional Factor for Water-S | Saturated Concrete – h <sub>ef</sub> > 12d <sub>a</sub>       |                    | K <sub>sat,ci</sub> 6 | _                         |                        |                         |             | 0.57              |        |        |         |
|                               | Bond Strength in Tension                                      | — Bond S           | trength Reduc         | tion Factor               | s for Perio            | dic Speci               | al Inspect  | ion               |        |        |         |
| Strength Reduction Factor —   | Ф <sub>dry,pi</sub>                                           | _                  |                       |                           |                        | 0.558                   |             |                   |        |        |         |
| Strength Reduction Factor —   | Фsat,pi                                                       | _                  |                       | 0.458                     |                        |                         |             |                   |        |        |         |
| Additional Factor for Water-S | K <sub>sat,pl</sub> 6                                         | _                  |                       | 1 0.93 0.71               |                        |                         | 71          |                   |        |        |         |
| Strength Reduction Factor —   | – Water-Saturated Concrete – h <sub>ef</sub> >                | · 12d <sub>a</sub> | Ф <sub>sat,pi</sub>   | _                         |                        | 0.458                   |             |                   |        |        |         |
| Additional Factor for Water-S | Saturated Concrete – h <sub>ef</sub> > 12d <sub>a</sub>       |                    | K <sub>sat,pl</sub> 6 | _                         |                        |                         |             | 0.48              |        |        |         |
|                               |                                                               |                    |                       |                           |                        |                         |             |                   |        |        |         |

- 1. The information presented in this table is to be used in conjunction with the design criteria of ACI 318-14 or ACI 318-11.
- 2. Temperature Range: Maximum short-term temperature of 150°F. Maximum long-term temperature of 110°F.
- 3. Short-term concrete temperatures are those that occur over short intervals (diurnal cycling).
- 4. Long-term concrete temperatures are constant temperatures over a significant time period.
- 5. For anchors that only resist wind or seismic loads, bond strengths may be increased by 72%.
- 6. In water-saturated concrete, multiply  $au_{\textit{k,uncr}}$  and  $au_{\textit{k,cr}}$  by  $extit{K}_{\textit{sat}}$ .
- 7. The value of  $\phi$  applies when the load combinations of ACI 318-14 5.3 or ACI 318-11 Section 9.2 are used. If the load combinations of ACI 318 Appendix C are used, refer to ACI 318-11 D.4.4 to determine the appropriate value of  $\phi$ .
- 8. The value of  $\phi$  applies when both the load combinations of ACI 318-14 5.3 or ACI 318-11 Section 9.2 are used and the requirements of ACI 318-14 17.3.3 or ACI 318-11 D.4.4 (c) for Condition B are met. If the load combinations of ACI 318 Appendix C are used, refer to ACI 318-11 D.4.4 to determine the appropriate value of  $\phi$ .
- 9. The value of φ applies when both the load combinations of ACI 318-14 5.3 or ACI 318-11 Section 9.2 are used and the requirements of ACI 318-14 17.3.3 or ACI 318-11 D.4.4 (c) for Condition B are met. If the load combinations of ACI 318-11 Section 9.2 are used and the requirements of ACI 318-11 D.4.4 (c) for Condition A are met, refer to ACI 318-11 D.4.4 to determine the appropriate value of φ. If the load combinations of ACI 318 Appendix C are used, refer to ACI 318-11 D.4.5 to determine the appropriate value of φ.
- 10. The values of f'<sub>C</sub> used for calculation purposes must not exceed 8,000 psi (55.1 MPa) for uncracked concrete. The value of f'<sub>C</sub> used for calculation purposes must not exceed 2,500 psi (17.2 MPa) for tension resistance in cracked concrete.
- 11. For applications where maximum short-term temperature is 110°F (43°C) and the maximum long-term temperature is 75°F (24°C), bond strengths may be increased 93%. No additional increase is permitted for anchors that only resist wind or seismic loads.

<sup>\*</sup> See p. 13 for an explanation of the load table icons

# SET-XP® Design Information — Concrete



### SET-XP Shear Strength Design Data for Threaded Rod in Normal-Weight Concrete<sup>1</sup>

| * |
|---|
|   |

| Characteristic                               |                                                                                    | Symbol                | Units     | Nominal Anchor Diameter (in.)                          |        |           |        |        |        |        |
|----------------------------------------------|------------------------------------------------------------------------------------|-----------------------|-----------|--------------------------------------------------------|--------|-----------|--------|--------|--------|--------|
| Gharacteristic                               |                                                                                    |                       | UIIIIS    | 3/8                                                    | 1/2    | 5/8       | 3/4    | 7/8    | 1      | 11/4   |
|                                              | Steel                                                                              | I Strength in Shear   |           |                                                        |        |           |        |        |        |        |
|                                              | Minimum Shear Stress Area                                                          | A <sub>se</sub>       | in.²      | 0.078                                                  | 0.142  | 0.226     | 0.334  | 0.462  | 0.606  | 0.969  |
|                                              | Shear Resistance of Steel — ASTM F1554, Grade 36                                   |                       |           | 2,260                                                  | 4,940  | 7,865     | 11,625 | 16,080 | 21,090 | 33,720 |
|                                              | Shear Resistance of Steel — ASTM A193, Grade B7                                    |                       |           | 4,875                                                  | 10,650 | 16,950    | 25,050 | 34,650 | 45,450 | 72,675 |
|                                              | Shear Resistance of Steel — Type 410 Stainless (ASTM A193, Grade B6)               | V <sub>sa</sub>       | lb.       | 4,290                                                  | 9,370  | 14,910    | 22,040 | 30,490 | 40,000 | 63,955 |
| Threaded<br>Rod                              | Shear Resistance of Steel — Type 304 and 316 Stainless (ASTM A193, Grade B8 & B8M) |                       |           | 2,225                                                  | 4,855  | 7,730     | 11,420 | 15,800 | 20,725 | 33,140 |
| Hou                                          | Reduction for Seismic Shear — ASTM F1554, Grade 36                                 |                       |           | 0.87                                                   | 0.78   | 0.68 0.65 |        |        |        | 0.65   |
|                                              | Reduction for Seismic Shear — ASTM A193, Grade B7                                  | $\alpha_{V,seis}^{5}$ |           | 0.87                                                   | 0.78   | 0.68 0.6  |        |        |        | 0.65   |
|                                              | Reduction for Seismic Shear — Stainless (ASTM A193, Grade B6)                      |                       | —         | 0.69                                                   | 0.82   | 0.75 0.83 |        |        | 0.83   | 0.72   |
|                                              | Reduction for Seismic Shear — Stainless<br>(ASTM A193, Grade B8 & B8M)             |                       |           | 0.69                                                   | 0.82   | 0.75 0.83 |        |        | 0.72   |        |
|                                              | Strength Reduction Factor — Steel Failure                                          | φ                     | _         | $0.65^{2}$                                             |        |           |        |        |        |        |
|                                              | Concrete Br                                                                        | eakout S              | trength i | in Shear                                               |        |           |        |        |        |        |
| Outside D                                    | iameter of Anchor                                                                  | $d_0$                 | in.       | 0.375                                                  | 0.5    | 0.625     | 0.75   | 0.875  | 1      | 1.25   |
| Load Bear                                    | ring Length of Anchor in Shear                                                     | $\ell_e$              | in.       | h <sub>ef</sub>                                        |        |           |        |        |        |        |
| Strength Reduction Factor — Breakout Failure |                                                                                    |                       | _         | $0.70^{3}$                                             |        |           |        |        |        |        |
| Concrete Pryout Strength in Shear            |                                                                                    |                       |           |                                                        |        |           |        |        |        |        |
| Coefficient for Pryout Strength              |                                                                                    |                       | _         | 1.0 for $h_{ef} < 2.50$ "; 2.0 for $h_{ef} \ge 2.50$ " |        |           |        |        |        |        |
| Strength Reduction Factor — Pryout Failure   |                                                                                    |                       | _         | 0.704                                                  |        |           |        |        |        |        |

- 1. The information presented in this table is to be used in conjunction with the design criteria of ACI 318-14 and ACI 318-11.
- 2. The value of  $\phi$  applies when the load combinations of ACI 318-14 5.3 or ACI 318-11 Section 9.2 are used. If the load combinations of ACI 318 Appendix C are used, refer to ACI 318-11 D.4.4 to determine the appropriate value of  $\phi$ .
- 3. The value of  $\phi$  applies when both the load combinations of ACI 318-14 5.3 or ACI 318-11 Section 9.2 are used and the requirements of ACI 318-14 17.3.3 or ACI 318-11 D.4.3 (c) for Condition B are met. If the load combinations of ACI 318-14 5.3 or ACI 318-11 Section 9.2 are used and the requirements of ACI 318-14 17.3.3 or ACI 318-11 D.4.3 (c) for Condition A are met, refer to ACI 318-11 D.4.3 to determine the appropriate value of  $\phi$ . If the load combinations of ACI 318 Appendix C are used, refer to ACI 318-11 D.4.4 to determine the appropriate value of  $\phi$ .
- 4. The value of  $\phi$  applies when both the load combinations of ACl 318-14 5.3 or ACl 318-11 Section 9.2 are used and the requirements of ACl 318-14 5.3 or ACl 318-11 D.4.3 (c) for Condition B are met. If the load combinations of ACl 318 Appendix C are used, refer to ACl 318-11 D.4.4 to determine the appropriate value of  $\phi$ .
- 5. The values of V<sub>sa</sub> are applicable for both cracked concrete and uncracked concrete. For anchors installed in regions assigned to Seismic Design Category C, D, E or F, V<sub>sa</sub> must be multiplied by a<sub>V,seis</sub> for the corresponding anchor steel type.

C-A-2018 @2018 SIMPSON STRONG-TIE COMPANY INC.

# C-A-2018 @ 2018 SIMPSON STRONG-TIE COMPANY INC.

# SET-XP® Design Information — Concrete



### SET-XP Shear Strength Design Data for Rebar in Normal-Weight Concrete<sup>1</sup>

| IBC | <b>→</b> | * |
|-----|----------|---|
|     |          |   |

| Characteristic                  |                                                          | Cumbal         | Symbol Units    |                                                        | Rebar Size    |        |        |         |        |        |  |
|---------------------------------|----------------------------------------------------------|----------------|-----------------|--------------------------------------------------------|---------------|--------|--------|---------|--------|--------|--|
| Gnaracteristic                  |                                                          |                | UIIIIS          | #3                                                     | #4            | #5     | #6     | #7      | #8     | #10    |  |
|                                 |                                                          | Steel Stren    | gth in Shea     | ır                                                     |               |        |        |         |        |        |  |
|                                 | Minimum Shear Stress Area                                | Ase            | in <sup>2</sup> | 0.11                                                   | 0.2           | 0.31   | 0.44   | 0.6     | 0.79   | 1.23   |  |
| Rebar                           | Shear Resistance of Steel — Rebar (ASTM A615 Grade 60)   |                | lb.             | 4,950                                                  | 10,800        | 16,740 | 23,760 | 32,400  | 42,660 | 66,420 |  |
| nevai                           | Reduction for Seismic Shear — Rebar (ASTM A615 Grade 60) |                | _               | 0.85                                                   | 0.88 0.84 0.7 |        |        | 77 0.59 |        |        |  |
|                                 | Strength Reduction Factor — Steel Failure                | φ              | _               | 0.602                                                  |               |        |        |         |        |        |  |
|                                 | Concre                                                   | ete Breakou    | t Strength i    | in Shear                                               |               |        |        |         |        |        |  |
| Outsid                          | e Diameter of Anchor                                     | d <sub>o</sub> | in.             | 0.375                                                  | 0.5           | 0.625  | 0.75   | 0.875   | 1      | 1.25   |  |
| Load-F                          | Bearing Length of Anchor in Shear                        | $\ell_e$       | in.             | h <sub>ef</sub>                                        |               |        |        |         |        |        |  |
| Streng                          | th Reduction Factor — Breakout Failure                   | φ              | _               | 0.703                                                  |               |        |        |         |        |        |  |
|                                 | Concrete Pryout Strength in Shear                        |                |                 |                                                        |               |        |        |         |        |        |  |
| Coefficient for Pryout Strength |                                                          |                | _               | 1.0 for $h_{ef} < 2.50$ "; 2.0 for $h_{ef} \ge 2.50$ " |               |        |        |         |        |        |  |
| Streng                          | th Reduction Factor — Pryout Failure                     | φ              | _               | 0.704                                                  |               |        |        |         |        |        |  |

- 1. The information presented in this table is to be used in conjunction with the design criteria of ACI 318-14 or ACI 318-11.
- 2. The value of  $\phi$  applies when the load combinations of ACI 318-14 5.3 or ACI 318-11 Section 9.2 are used. If the load combinations of ACI 318 Appendix C are used, refer to ACI 318-11 D.4.4 to determine the appropriate value of  $\phi$ .
- 3. The value of  $\phi$  applies when both the load combinations of ACI 318-14 5.3 or ACI 318-11 Section 9.2 are used and the requirements of ACI 318-14 17.3.3 or ACI 318-11 D.4.3 (c) for Condition B are met. If the load combinations of ACI 318-14 5.3 or ACI 318-11 Section 9.2 are used and the requirements of ACI 318-14 17.3.3 or ACI 318-11 D.4.3 (c) for Condition A are met, refer to ACI 318-11 D.4.3 to determine the appropriate value of  $\phi$ . If the load combinations of ACI 318 Appendix C are used, refer to ACI 318-11 D.4.4 to determine the appropriate value of  $\phi$ .
- 4. The value of  $\phi$  applies when both the load combinations of ACI 318-14 5.3 or ACI 318-11 Section 9.2 are used and the requirements of ACI 318-14 5.3 or ACI 318-11 D.4.3 (c) for Condition B are met. If the load combinations of ACI 318 Appendix C are used, refer to ACI 318-11 D.4.4 to determine the appropriate value of  $\phi$ .
- 5. The values of  $V_{sa}$  are applicable for both cracked concrete and uncracked concrete. For anchors installed in regions assigned to Seismic Design Category C, D, E or F,  $V_{sa}$  must be multiplied by  $\alpha_{V,seis}$ .

For additional load tables, visit **strongtie.com/setxp**.



# Anchor Designer<sup>™</sup> Software for ACI 318, ETAG and CSA

Simpson Strong-Tie® Anchor Designer software accurately analyzes existing design or suggests anchor solutions based on user-defined design elements in cracked and uncracked concrete conditions.

# SET-XP® Design Information — Concrete



### SET-XP Development Length for Rebar Dowels in Normal-Weight Concrete



|                   |                                | a: a                       | Development Length, in. (mm)                                                       |                    |                                                       |                                                       |                                                       |  |  |  |  |
|-------------------|--------------------------------|----------------------------|------------------------------------------------------------------------------------|--------------------|-------------------------------------------------------|-------------------------------------------------------|-------------------------------------------------------|--|--|--|--|
| Rebar<br>Size     | Drill Bit<br>Diameter<br>(in.) | Clear Cover<br>in.<br>(mm) | f'c = 2,500 psi<br>(17.2 MPa)<br>Concrete f'c = 3,000 psi<br>(20.7 MPa<br>Concrete |                    | f' <sub>c</sub> = 4,000 psi<br>(27.6 MPa)<br>Concrete | f' <sub>c</sub> = 6,000 psi<br>(41.4 MPa)<br>Concrete | f' <sub>c</sub> = 8,000 psi<br>(55.2 MPa)<br>Concrete |  |  |  |  |
| <b>#3</b> (9.5)   | 1/2                            | <b>1½</b> (38)             | <b>12</b> (305)                                                                    | <b>12</b> (305)    | <b>12</b> (305)                                       | <b>12</b> (305)                                       | <b>12</b> (305)                                       |  |  |  |  |
| <b>#4</b> (12.7)  | 5/8                            | <b>1½</b> (38)             | <b>14.4</b> (366)                                                                  | <b>14</b> (356)    | <b>12</b> (305)                                       | <b>12</b> (305)                                       | <b>12</b> (305)                                       |  |  |  |  |
| <b>#5</b> (15.9)  | 3/4                            | <b>1½</b> (38)             | <b>18</b> (457)                                                                    | <b>17</b> (432)    | <b>14.2</b> (361)                                     | <b>12</b> (305)                                       | <b>12</b> (305)                                       |  |  |  |  |
| <b>#6</b> (19.1)  | 7/8                            | <b>1½</b> (38)             | <b>21.6</b> (549)                                                                  | <b>20</b> (508)    | <b>17.1</b> (434)                                     | <b>14</b> (356)                                       | <b>13</b> (330)                                       |  |  |  |  |
| <b>#7</b> (22.2)  | 1                              | <b>3</b> (76)              | <b>31.5</b> (800)                                                                  | <b>29</b><br>(737) | <b>25</b> (635)                                       | <b>21</b> (533)                                       | <b>18</b> (457)                                       |  |  |  |  |
| <b>#8</b> (25.4)  | 11/8                           | <b>3</b> (76)              | <b>36</b> (914)                                                                    | <b>33</b> (838)    | <b>28.5</b> (724)                                     | <b>24</b> (610)                                       | <b>21</b> (533)                                       |  |  |  |  |
| <b>#9</b> (28.7)  | 13⁄8                           | <b>3</b> (76)              | <b>40.5</b> (1,029)                                                                | <b>38</b> (965)    | <b>32</b><br>(813)                                    | <b>27</b> (686)                                       | <b>23</b> (584)                                       |  |  |  |  |
| <b>#10</b> (32.3) | 1%                             | <b>3</b> (76)              | <b>45</b> (1,143)                                                                  | <b>42</b> (1,067)  | <b>35.6</b> (904)                                     | <b>30</b> (762)                                       | <b>26</b> (660)                                       |  |  |  |  |
| <b>#11</b> (35.8) | 1¾                             | <b>3</b> (76)              | <b>51</b> (1,295)                                                                  | <b>47</b> (1,194)  | <b>41</b> (1,041)                                     | <b>33</b> (838)                                       | <b>29</b> (737)                                       |  |  |  |  |

- 1. Tabulated development lengths are for static, wind and seismic load cases in Seismic Design Category A and B. Development lengths in SDC C through F must comply with ACI 318-14 Chapter 18 or ACI 318-11 Chapter 12, as applicable. The value of f'<sub>C</sub> used to calculate development lengths shall not exceed 2,500 psi in SDC C through F.
- 2. Rebar is assumed to be ASTM A615 Grade 60 or A706 ( $f_y = 60,000$  psi). For rebar with a higher yield strength, multiply tabulated values by  $f_y / 60,000$  psi.
- 3. Concrete is assumed to be normal-weight concrete. For lightweight concrete, multiply tabulated values by 1.33.
- 4. Tabulated values assume bottom cover of less than 12" cast below rebars ( $\Psi_t$  = 1.0).
- 5. Uncoated rebar must be used.

C-A-2018 @ 2018 SIMPSON STRONG-TIE COMPANY INC.

6. The value of  $K_{tr}$  is assumed to be 0. Refer to ACI 318 Section 12.2.3.

# Rebar Development Length Calculator

Rebar Development Length Calculator is a web application that supports the design of post-installed rebar in concrete applications by calculating the necessary tension and compression development lengths required in accordance with ACI 318-14 / ACI 318-11.



<sup>\*</sup> See p. 13 for an explanation of the load table icons.

# SET-XP® Design Information — Masonry



SET-XP Allowable Tension and Shear Loads for Threaded Rod and Rebar in the Face of Fully Grouted CMU Wall Construction<sup>1, 3, 4, 5, 6, 8, 9, 10, 11</sup>

| <b>IBC</b> | 1 |  |  |  | * |
|------------|---|--|--|--|---|
|------------|---|--|--|--|---|

| Diameter (in.) or                              | Drill Bit Diameter | Minimum Embedment <sup>2</sup> | Allowable Load Based on Bond Strength <sup>7</sup> (lb.) |            |  |  |  |  |  |  |
|------------------------------------------------|--------------------|--------------------------------|----------------------------------------------------------|------------|--|--|--|--|--|--|
| Rebar Size Ńo.                                 | (in.)              | (in.)                          | Tension Load                                             | Shear Load |  |  |  |  |  |  |
| Threaded Rod Installed in the Face of CMU Wall |                    |                                |                                                          |            |  |  |  |  |  |  |
| 3/8                                            | 1/2                | 3%                             | 1,490                                                    | 1,145      |  |  |  |  |  |  |
| 1/2                                            | 5/8 41/2           |                                | 1,825                                                    | 1,350      |  |  |  |  |  |  |
| 5⁄8                                            | 3/4                | 55%                            | 1,895                                                    | 1,350      |  |  |  |  |  |  |
| 3/4                                            | 7/8                | 6½                             | 1,895                                                    | 1,350      |  |  |  |  |  |  |
| Rebar Installed in the Face of CMU Wall        |                    |                                |                                                          |            |  |  |  |  |  |  |
| #3                                             | 1/2                | 3%                             | 1,395                                                    | 1,460      |  |  |  |  |  |  |
| #4                                             | 5%8                | 4½                             | 1,835                                                    | 1,505      |  |  |  |  |  |  |
| #5                                             | 3/4                | 5%                             | 2,185                                                    | 1,505      |  |  |  |  |  |  |

- Allowable load shall be the lesser of the bond values shown in this table and steel values, shown on p. 43.
- Embedment depth shall be measured from the outside face of masonry wall.
- Critical and minimum edge distance and spacing shall comply with the information on p. 37. Figure 2 on p. 37 illustrates critical and minimum edge and end distances.
- Minimum allowable nominal width of CMU wall shall be 8 inches.
   No more than one anchor shall be permitted per masonry cell.
- Anchors shall be permitted to be installed at any location in the face of the fully grouted masonry wall construction (cell, web, bed joint), except anchors shall not be installed within 1½ inches of the head joint, as show in Figure 2 on p. 37.
- 6. Tabulated allowable load values are for anchors installed in fully grouted masonry walls.
- 7. Tabulated allowable loads are based on a safety factor of 5.0.
- Tabulated allowable load values shall be adjusted for increased base material temperatures in accordance with Figure 1 below, as applicable.
- Threaded rod and rebar installed in fully grouted masonry walls are permitted to resist dead, live, seismic and wind loads.
- 10. Threaded rod shall meet or exceed the tensile strength of ASTM F1554, Grade 36 steel, which is 58,000 psi.
- 11. For installations exposed to severe, moderate or negligible exterior weathering conditions, as defined in Figure 1 of ASTM C62, allowable tension loads shall be multiplied by 0.80.

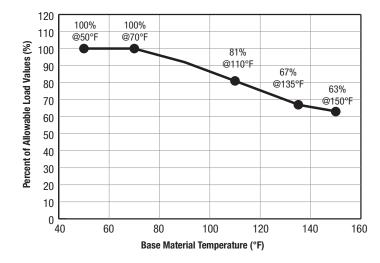
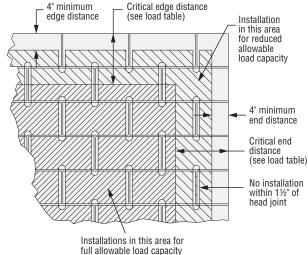



Figure 1. Load Capacity Based on In-Service Temperature for SET-XP® Epoxy Adhesive in the Face of Fully Grouted CMU Wall Construction

# 3E 1-

## **SET-XP®** Design Information — Masonry


SIMPSON
Strong-Tie

SET-XP Edge Distance and Spacing Requirements and Allowable Load Reduction Factors — Threaded Rod and Rebar in the Face of Fully Grouted CMU Wall Construction<sup>7</sup>

| IBC |                             |              | Halista | 7 |
|-----|-----------------------------|--------------|---------|---|
| IDU | <b>(→)</b><br>(00)(100)(10) | / <b>←→\</b> |         |   |

|                                  |                                     | Edge or End Distance <sup>1,8</sup>                           |                                          |                                                                     |                                  |                          |                                     | Spacing <sup>2,9</sup>                              |                                                   |                                               |                     |                     |
|----------------------------------|-------------------------------------|---------------------------------------------------------------|------------------------------------------|---------------------------------------------------------------------|----------------------------------|--------------------------|-------------------------------------|-----------------------------------------------------|---------------------------------------------------|-----------------------------------------------|---------------------|---------------------|
|                                  |                                     | Crit<br>(Full Ancho                                           | ical<br>r Capacity)³                     | (Reduc                                                              | Minimum<br>ced Anchor Capacity)⁴ |                          | Critical<br>(Full Anchor Capacity)⁵ |                                                     | Minimum<br>(Reduced Anchor Capacity) <sup>6</sup> |                                               |                     |                     |
| Rod Dia.<br>(in.)<br>or<br>Rebar | Minimum<br>Embed.<br>Depth<br>(in.) | Critical<br>Edge or End<br>Distance,<br>C <sub>cr</sub> (in.) | Allowable<br>Load<br>Reduction<br>Factor | Minimum<br>Edge or End<br>Distance,<br><i>C<sub>min</sub></i> (in.) |                                  | owable Loa<br>uction Fac |                                     | Critical<br>Spacing, <i>S<sub>cr</sub></i><br>(in.) | Allowable<br>Load<br>Reduction<br>Factor          | Minimum<br>Spacing,<br>S <sub>min</sub> (in.) | Allowab<br>Reductio | le Load<br>n Factor |
| Size No.                         | ()                                  | Load Di                                                       | rection                                  |                                                                     | Load Dired                       | oad Direction            |                                     | Load Di                                             | rection                                           | Load Direction                                |                     |                     |
|                                  |                                     | Tension or                                                    | Tension or                               | Tension or<br>Shear                                                 | Tension                          | Shea                     | ar <sup>10</sup>                    | Tension or                                          | Tension or                                        | Tension or                                    | Tension             | Shear               |
|                                  |                                     | Shear                                                         | Shear                                    |                                                                     |                                  | Perp.                    | Para.                               | Shear                                               | Shear                                             | Shear                                         | IGHSIOH             | onoul               |
| 3/8                              | 3%                                  | 12                                                            | 1.00                                     | 4                                                                   | 0.91                             | 0.72                     | 0.94                                | 8                                                   | 1.00                                              | 4                                             | 1.00                | 1.00                |
| 1/2                              | 41/2                                | 12                                                            | 1.00                                     | 4                                                                   | 1.00                             | 0.58                     | 0.87                                | 8                                                   | 1.00                                              | 4                                             | 0.82                | 1.00                |
| 5/8                              | 55/8                                | 12                                                            | 1.00                                     | 4                                                                   | 1.00                             | 0.48                     | 0.87                                | 8                                                   | 1.00                                              | 4                                             | 0.82                | 1.00                |
| 3/4                              | 61/2                                | 12                                                            | 1.00                                     | 4                                                                   | 1.00                             | 0.44                     | 0.85                                | 8                                                   | 1.00                                              | 4                                             | 0.82                | 1.00                |
| #3                               | 3%                                  | 12                                                            | 1.00                                     | 4                                                                   | 0.96                             | 0.62                     | 0.84                                | 8                                                   | 1.00                                              | 4                                             | 0.87                | 0.91                |
| #4                               | 41/2                                | 12                                                            | 1.00                                     | 4                                                                   | 0.88                             | 0.54                     | 0.82                                | 8                                                   | 1.00                                              | 4                                             | 0.87                | 0.91                |
| #5                               | 5%                                  | 12                                                            | 1.00                                     | 4                                                                   | 0.88                             | 0.43                     | 0.82                                | 8                                                   | 1.00                                              | 4                                             | 0.87                | 1.00                |

- Edge distance (C<sub>cr</sub> or C<sub>min</sub>) is the distance measured from anchor centerline to edge or end of CMU masonry wall. Refer to Figure 2 below for an illustration showing critical and minimum edge and end distances.
- 2. Anchor spacing  $(S_{\it cr}\,{\rm or}\,S_{\it min})$  is the distance measured from centerline to centerline of two anchors.
- Critical edge distance, C<sub>Cr</sub>, is the least edge distance at which tabulated allowable load of an anchor is achieved where a load reduction factor equals 1.0 (no load reduction).
- 4. Minimum edge distance, C<sub>min</sub>, is the least edge distance where an anchor has an allowable load capacity which shall be determined by multiplying the allowable loads assigned to anchors installed at critical edge distance, C<sub>Cr</sub>, by the load reduction factors shown above.
- 5. Critical spacing,  $S_{\rm Cr}$ , is the least anchor spacing at which tabulated allowable load of an anchor is achieved such that anchor performance is not influenced by adjacent anchors.
- Minimum spacing, S<sub>min</sub>, is the least spacing where an anchors has an allowable load capacity, which shall be determined by multiplying the allowable loads assigned to anchors installed at critical spacing distance, S<sub>Cr</sub>, by the load reduction factors shown above.
- Reduction factors are cumulative. Multiple reduction factors for more than one spacing or edge or end distance shall be calculated separately and multiplied.
- Load reduction factor for anchors loaded in tension or shear with edge distances between critical and minimum shall be obtained by linear interpolation.
- 9. Load reduction factor for anchors loaded in tension with spacing between critical and minimum shall be obtained by linear interpolation.
- 10. Perpendicular shear loads act towards the edge or end. Parallel shear loads act parallel to the edge or end (see Figure 5 on page 39). Perpendicular and parallel shear load reduction factors are cumulative when the anchor is located between the critical minimum edge and end distance.



Shaded area = Placement for full and reduced allowable load capacity in grout-filled CMU

Figure 2. Allowable Anchor Locations for Full and Reduced Load Capacity When Installation Is in the Face of Fully Grouted CMU Masonry Wall Construction

<sup>\*</sup> See p. 13 for an explanation of the load table icons.



SET-XP Allowable Tension and Shear Loads for Threaded Rod and Rebar in the Top of Fully Grouted CMU Wall Construction<sup>1, 2, 4, 5, 6, 7, 9, 10, 11, 12</sup>

| IBC  | 1       | <b>→</b> |    |            | *                  |
|------|---------|----------|----|------------|--------------------|
| 1.50 | 580 590 | 550 550  | 雑3 | Po fill of | <del>  '   '</del> |

| Diameter (in.) or | Drill Bit Diameter | Minimum Embedment <sup>3</sup> | Allowable Load Based on Bond Strength <sup>7,8</sup> (lb.) |             |                |  |  |
|-------------------|--------------------|--------------------------------|------------------------------------------------------------|-------------|----------------|--|--|
| Rebar Size Ńo.    | (in.)              | (in.)                          | Tension Load                                               | Shear Perp. | Shear Parallel |  |  |
|                   |                    | Threaded Rod In                | stalled in the Top of CMU Wa                               | all         |                |  |  |
| 1/                | 5/8                | 41/2                           | 1,485                                                      | 590         | 1,050          |  |  |
| 1/2               | 78                 | 12                             | 2,440                                                      | 665         | 1,625          |  |  |
| 5/                | 3/4                | 5%                             | 1,700                                                      | 565         | 1,435          |  |  |
| 5/8               |                    | 15                             | 2,960                                                      | 660         | 1,785          |  |  |
| 7/8               | 1                  | 77/8                           | 1,610                                                      | 735         | 1,370          |  |  |
| '/8               |                    | 21                             | 4,760                                                      | 670         | 1,375          |  |  |
|                   |                    | Rebar Instal                   | led in the Top of CMU Wall                                 |             |                |  |  |
| щи                | 5/8                | 41/2                           | 1,265                                                      | 550         | 865            |  |  |
| #4                | 78                 | 12                             | 2,715                                                      | 465         | 1,280          |  |  |
| #5                | 3/                 | 5%                             | 1,345                                                      | 590         | 1,140          |  |  |
| #5                | 3/4                | 15                             | 3,090                                                      | 590         | 1,285          |  |  |

- 1. Allowable load shall be the lesser of the bond values shown in this table and steel values, shown on p. 43.
- 2. Allowable loads are for installation in the grouted CMU core opening.
- 3. Embedment depth shall be measured from the horizontal surface of the grouted CMU core opening on top of the masonry wall.
- 4. Critical and minimum edge distance, end distance and spacing shall comply with the information on pp. 39 and 40. Figures 3A and 3B on p. 39 illustrate critical and minimum edge and end distances.
- 5. Minimum allowable nominal width of CMU wall shall be 8 inches (203 mm).
- Anchors are permitted to be installed in the CMU core opening shown in Figures 3A and 3B on p. 39. Anchors are limited to one installation per CMU core opening.
- 7. Tabulated allowable load values are for anchors installed in fully grouted masonry walls.
- 8. Tabulated allowable loads are based on a safety factor of 5.0
- 9. Tabulated allowable load values shall be adjusted for increased base material temperatures in accordance with Figure 1 on p. 36, as applicable.
- 10. Threaded rod and rebar installed in fully grouted masonry walls with SET-XP® adhesive are permitted to resist dead, live, seismic and wind loads.
- 11. Threaded rod shall meet or exceed the tensile strength of ASTM F1554, Grade 36 steel, which is 58,000 psi.
- 12. For installations exposed to severe, moderate or negligible exterior weathering conditions, as defined in Figure 1 of ASTM C62, allowable tension loads shall be multiplied by 0.80.



SET-XP Edge and End Distance Requirements and Allowable Load Reduction Factors — Threaded Rod and Rebar in the Top of Fully Grouted CMU Wall Construction<sup>1,4,5</sup>

| IBC |  |  | 7 |
|-----|--|--|---|
|-----|--|--|---|

|                                  |                                                                                                                                                                                                                                             | Critical<br>(Full Anchor Capacity) <sup>2</sup> |               |            | Minimum End<br>(Reduced Anchor Capacity)³ |           |                                                     |                                                         | Minimum Edge<br>(Reduced Anchor Capacity) <sup>6</sup> |          |        |                  |
|----------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------|---------------|------------|-------------------------------------------|-----------|-----------------------------------------------------|---------------------------------------------------------|--------------------------------------------------------|----------|--------|------------------|
| Rod Dia.<br>(in.)<br>or<br>Rebar | Minimum   Edge, $C_{cr}$   Distance,   Education   Distance,   Reduction   Factor   Factor   C_{min}(in.)   Edge, $C_{cr}$   Reduction   Reduction   Factor   C_{min}(in.)   Edge, $C_{cr}$   Reduction   Reduction   Factor   C_{min}(in.) |                                                 |               |            |                                           |           | Minimum<br>Edge,<br><i>C<sub>min</sub></i><br>(in.) | Edge, Allowable Load  C <sub>min</sub> Reduction Factor |                                                        |          |        |                  |
| Size No.                         | (in.)                                                                                                                                                                                                                                       | L                                               | oad Direction | n          |                                           | Load D    | irection                                            |                                                         |                                                        | Load Dir | ection |                  |
|                                  |                                                                                                                                                                                                                                             | Tension or                                      | Tension or    | Tension or | Tension or                                | Tonoion   | She                                                 | ear <sup>6</sup>                                        | Tension or                                             | Tension  | Sh     | ear <sup>6</sup> |
|                                  | Shear                                                                                                                                                                                                                                       | Shear                                           | Shear         | Shear      | Shear                                     | Tension - | Perp.                                               | Parallel                                                | Shear                                                  | IGUSIOU  | Perp.  | Parallel         |
| 1/2                              | 41/2                                                                                                                                                                                                                                        | 23/4                                            | 20            | 1.00       | 313/16                                    | 0.88      | 0.84                                                | 0.66                                                    | 13⁄4                                                   | 0.83     | 0.63   | 0.77             |
| 7/2                              | 12                                                                                                                                                                                                                                          | 2¾                                              | 20            | 1.00       | 313/16                                    | 0.64      | 0.91                                                | 0.34                                                    | 13⁄4                                                   | 0.95     | 0.55   | 0.69             |
| 5/8                              | 5%                                                                                                                                                                                                                                          | 23/4                                            | 20            | 1.00       | 41/4                                      | 0.90      | 1.00                                                | 0.50                                                    | 13⁄4                                                   | 0.82     | 0.57   | 0.71             |
| 78                               | 15                                                                                                                                                                                                                                          | 23/4                                            | 20            | 1.00       | 41/4                                      | 0.38      | 0.85                                                | 0.29                                                    | 13⁄4                                                   | 0.91     | 0.72   | 0.73             |
| 7/8                              | 77/8                                                                                                                                                                                                                                        | 23/4                                            | 20            | 1.00       | 41/4                                      | 0.98      | 0.72                                                | 0.57                                                    | _                                                      | _        | _      | _                |
| '/8                              | 21                                                                                                                                                                                                                                          | 23/4                                            | 20            | 1.00       | 41/4                                      | 0.63      | 0.96                                                | 0.64                                                    | _                                                      | _        | _      | _                |
| #4                               | 41/2                                                                                                                                                                                                                                        | 23/4                                            | 20            | 1.00       | 41/4                                      | 0.96      | 0.90                                                | 0.76                                                    | _                                                      | _        | _      | _                |
| #4                               | 12                                                                                                                                                                                                                                          | 23/4                                            | 20            | 1.00       | 41/4                                      | 0.58      | 1.00                                                | 0.46                                                    | _                                                      | _        | _      | _                |
| #5                               | 5%                                                                                                                                                                                                                                          | 2¾                                              | 20            | 1.00       | 41/4                                      | 1.00      | 0.86                                                | 0.60                                                    | _                                                      | _        | _      | _                |
| #3                               | 15                                                                                                                                                                                                                                          | 23/4                                            | 20            | 1.00       | 41/4                                      | 0.41      | 0.76                                                | 0.49                                                    | _                                                      | _        | _      |                  |

- 1. Edge and end distances ( $C_{Cr}$  or  $C_{min}$ ) are the distances measured from anchor centerline to edge or end of CMU masonry wall. Refer to Figures 3A and 3B below for illustrations showing critical and minimum edge and end distances.
- Critical edge and end distances, C<sub>cr</sub>, are the least edge distances at which tabulated allowable load of an anchor is achieved where a load reduction factor equals 1.0 (no load reduction).
- 3. Minimum edge and end distances,  $C_{min}$ , are the least edge distances where an anchor has an allowable load capacity, which shall be determined by multiplying the allowable loads assigned to anchors installed at critical edge distance,  $C_{cr}$ , by the load reduction factors shown above.
- Reduction factors are cumulative. Multiple reduction factors for more than one spacing or edge or end distance shall be calculated separately and multiplied.
- 5. Load reduction factor for anchors loaded in tension or shear with edge distances between critical and minimum shall be obtained by linear interpolation.
- 6. Perpendicular shear loads act towards the edge or end. Parallel shear loads act parallel to the edge or end (see Figure 5 below). Perpendicular and parallel shear load reduction factors are cumulative when the anchor is located between the critical minimum edge and end distance.

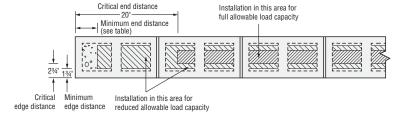



Figure 3A. Allowable Anchor Locations of ½"- and %"-Diameter Threaded Rod for Full and Reduced Load Capacity When Installation Is in the Top of Fully Grouted CMU Masonry Wall Construction

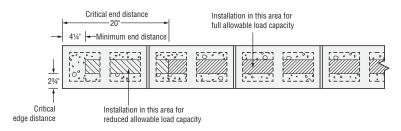
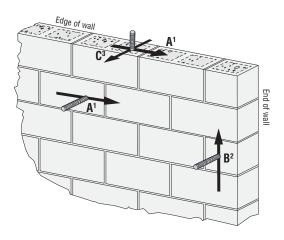




Figure 3B. Allowable Anchor Locations of 1/4"-Diameter Threaded Rod and #4 and #5 Rebar for Full and Reduced Load Capacity When Installation Is in the Top of Fully Grouted CMU Masonry Wall Construction



- Direction of shear load A is parallel to edge of wall and perpendicular to end of wall.
- 2. Direction of shear load B is parallel to end of wall and perpendicular to edge of wall.
- 3. Direction of shear load C is perpendicular to edge of wall.

Figure 5. Direction of Shear Load in Relation to Edge and End of Wall

<sup>\*</sup> See p. 13 for an explanation of the load table icons.



SET-XP Spacing Distance Requirements and Allowable Load Reduction Factors — Threaded Rod and Rebar in the Top of Fully Grouted CMU Wall Construction<sup>1,4,5</sup>

| IDA | ١ |
|-----|---|
| IRC |   |







| 1 |     | * |
|---|-----|---|
|   | 77- |   |
|   |     |   |
|   |     |   |

|                |                         | Critical<br>(Full Ancho          | Spacing<br>r Capacity)²            | Minimum Spacing (Reduced Anchor Capacity) <sup>3</sup> |                |                  |  |
|----------------|-------------------------|----------------------------------|------------------------------------|--------------------------------------------------------|----------------|------------------|--|
| Rod Dia. (in.) | Minimum<br>Embed. Depth | Critical Spacing, $S_{cr}$ (in.) | Allowable Load<br>Reduction Factor | Minimum Spacing, $S_{cr}$ Allowable Load Red           |                | Reduction Factor |  |
| Rebar Size No. | (in.)                   | Load Di                          | rection                            |                                                        | Load Direction |                  |  |
|                |                         | Tension or Shear                 | Tension or Shear                   | Tension or Shear                                       | Tension        | Shear            |  |
| 1/             | 41/2                    | 18                               | 1.00                               | 8                                                      | 0.80           | 0.92             |  |
| 1/2            | 12                      | 48                               | 1.00                               | 8                                                      | 0.63           | 0.98             |  |
| 5/8            | 5%                      | 22.5                             | 1.00                               | 8                                                      | 0.86           | 1.00             |  |
| 78             | 15                      | 60                               | 1.00                               | 8                                                      | 0.56           | 1.00             |  |
| 7/             | 71/8                    | 31.5                             | 1.00                               | 8                                                      | 0.84           | 0.82             |  |
| 7/8            | 21                      | 84                               | 1.00                               | 8                                                      | 0.51           | 0.98             |  |
| #4             | 41/2                    | 18                               | 1.00                               | 8                                                      | 0.97           | 0.93             |  |
| #4             | 12                      | 48                               | 1.00                               | 8                                                      | 0.75           | 1.00             |  |
| ΨΕ             | 5%                      | 22.5                             | 1.00                               | 8                                                      | 1.00           | 1.00             |  |
| #5             | 15                      | 60                               | 1.00                               | 8                                                      | 0.82           | 1.00             |  |

<sup>1.</sup> Anchor spacing ( $S_{cr}$  or  $S_{min}$ ) is the distance measured from centerline to centerline of two anchors.

<sup>2.</sup> Critical spacing,  $S_{Cr}$ , is the least anchor spacing at which tabulated allowable load of an anchor is achieved such that anchor perofrmance is not influenced by adjacent anchors.

<sup>3.</sup> Minimum spacing,  $S_{min}$ , is the least spacing where an anchor has an allowable load capacity, which shall be determined by multiplying the allowable loads assigned to anchors installed at critical spacing distance,  $S_{cr}$ , by the load reduction factors shown above.

<sup>4.</sup> Reduction factors are cumulative. Multiple reduction factors for more than one spacing or edge or end distance shall be calculated separately and multiplied.

<sup>5.</sup> Load reduction factor for anchors loaded in tension or shear with edge distances between critical and minimum shall be obtained by linear interpolation.



SET-XP Allowable Tension and Shear Loads — Threaded Rod in the Face of Hollow CMU Wall Construction<sup>1,3,4,5,6,8,9,10,11</sup>

| Diameter | Drill Bit Diameter | Minimum Embed. <sup>2</sup> | Allowable Load Based on Bond Strength <sup>7</sup> (lb.) |       |  |  |
|----------|--------------------|-----------------------------|----------------------------------------------------------|-------|--|--|
| (in.)    | (in.)              | (in.)                       | Tension                                                  | Shear |  |  |
| 3/8      | %16                | 11⁄4                        | 213                                                      | 384   |  |  |
| 1/2      | 3/4                | 11⁄4                        | 218                                                      | 409   |  |  |
| 5/8      | 7/8                | 11/4                        | 223                                                      | 433   |  |  |

- 1. Allowable load shall be the lesser of bond values shown in this table and steel values shown on p. 43.
- 2. Embedment depth is considered the minimum wall thickness of 8" x 8" x 16" ASTM C90 concrete masonry blocks, and is measured from the outside to the inside face of the block wall. The minimum length Opti-Mesh plastic screen tube for use in hollow CMU is 31/2".
- 3. Critical and minimum edge distance and spacing shall comply with the information provided on p. 42. Figure 4 on p. 42 illustrates critical and minimum edge and end distances.
- 4. Anchors are permitted to be installed in the face shell of hollow masonry wall construction as shown in Figure 4.
- 5. Anchors are limited to one or two anchors per masonry cell and must comply with the spacing and edge distance requirements provided.
- 6. Tabulated load values are for anchors installed in hollow masonry walls.
- 7. Tabulated allowable loads are based on a safety factor of 5.0.
- 8. Tabulated allowable load values shall be adjusted for increased base material temperatures in accordance with Figure 1 on p. 36, as applicable.
- 9. Threaded rods installed in hollow masonry walls with SET-XP® adhesive are permitted to resist dead, live load and wind load applications.
- 10. Threaded rods must meet or exceed the tensile strength of ASTM F1554, Grade 36, which is 58,000 psi.
- 11. For installations exposed to severe, moderate or negligible exterior weathering conditions, as defined in Figure 1 of ASTM C62, allowable tension loads must be multiplied by 0.80.

# C-A-2018 @ 2018 SIMPSON STRONG-TIE COMPANY INC.

## **SET-XP®** Design Information — Masonry



SET-XP Edge, End and Spacing Distance Requirements and Allowable Load Reduction Factors — Threaded Rod in the Face of Hollow CMU Wall Construction<sup>7</sup>

| IDC |                 |              | * |
|-----|-----------------|--------------|---|
| IDU | <del>(→</del> ĭ | <i>1</i> ←→1 |   |

|                          |                                                                     | Edg                                      | e or End Distan                                                     | ce <sup>1,8</sup>                                                         |                     | Spacing <sup>2,9</sup>                              |                                          |                                                     |                                                          |       |
|--------------------------|---------------------------------------------------------------------|------------------------------------------|---------------------------------------------------------------------|---------------------------------------------------------------------------|---------------------|-----------------------------------------------------|------------------------------------------|-----------------------------------------------------|----------------------------------------------------------|-------|
|                          |                                                                     | ical<br>r Capacity)³                     | (Reduc                                                              | Minimum ced Anchor Capacity) <sup>4</sup> Allowable Load Reduction Factor |                     | Critical<br>(Full Anchor Capacity)⁵                 |                                          | Minimum<br>(Reduced Anchor Capacity) <sup>6</sup>   |                                                          |       |
| Rod<br>Diameter<br>(in.) | Critical<br>Edge or End<br>Distance, <i>C<sub>cr</sub></i><br>(in.) | Allowable<br>Load<br>Reduction<br>Factor | Minimum<br>Edge or End<br>Distance, <i>C<sub>min</sub></i><br>(in.) |                                                                           |                     | Critical<br>Spacing, <i>S<sub>cr</sub></i><br>(in.) | Allowable<br>Load<br>Reduction<br>Factor | Minimum<br>Spacing, <i>S<sub>min</sub></i><br>(in.) | ing, S <sub>min</sub> Allowable Load<br>Reduction Factor |       |
|                          | Load Di                                                             | irection                                 |                                                                     | Load Direction                                                            |                     | Load Direction                                      |                                          | Load Direction                                      |                                                          |       |
|                          | Tension or<br>Shear                                                 | Tension or<br>Shear                      | Tension or<br>Shear                                                 | Tension                                                                   | Shear <sup>10</sup> | Tension or<br>Shear                                 | Tension or<br>Shear                      | Tension or<br>Shear                                 | Tension                                                  | Shear |
| 3/8                      | 12                                                                  | 1.00                                     | 4                                                                   | 1.00                                                                      | 0.74                | 8                                                   | 1.00                                     | 4                                                   | 0.82                                                     | 0.73  |
| 1/2                      | 12                                                                  | 1.00                                     | 4                                                                   | 0.96                                                                      | 0.69                | 8                                                   | 1.00                                     | 4                                                   | 0.79                                                     | 0.73  |
| 5/8                      | 12                                                                  | 1.00                                     | 4                                                                   | 0.96                                                                      | 0.55                | 8                                                   | 1.00                                     | 4                                                   | 0.75                                                     | 0.73  |

- Edge and end distances (C<sub>cr</sub> or C<sub>min</sub>) are the distances measured from anchor centerline to edge or end of CMU masonry wall.
   Refer to Figure 4 below for an illustration showing critical and minimum edge and end distances.
- 2. Anchor spacing (S<sub>cr</sub> or S<sub>min</sub>) is the distance measured from centerline to centerline of two anchors.
- Critical edge and end distances, C<sub>Cr</sub>, are the least edge distances at which tabulated allowable load of an anchor is achieved where a load reduction factor equals 1.0 (no load reduction).
- 4. Minimum edge and end distances, C<sub>min</sub>, are the least edge distances where an anchor has an allowable load capacity which shall be determined by multiplying the allowable loads assigned to anchors installed at critical edge distance, C<sub>cr</sub>, by the load reduction factors shown above.
- Critical spacing, S<sub>Cr</sub> is the least anchor spacing at which tabulated allowable load of an anchor is achieved such that anchor performance is not influenced by adjacent anchors.
- Minimum spacing, S<sub>min</sub>, is the least spacing where an anchors has an allowable load capacity, which shall be determined by multiplying the allowable loads assigned to anchors installed at critical spacing distance, S<sub>Cr</sub>, by the load reduction factors shown above.
- 7. Reduction factors are cumulative. Multiple reduction factors for more than one spacing or edge or end distance shall be calculated separately and multiplied.
- 8. Load reduction factor for anchors loaded in tension or shear with edge distances between critical and minimum shall be obtained by linear interpolation.
- 9. Load reduction factor for anchors loaded in tension with spacing between critical and minimum shall be obtained by linear interpolation.
- 10. Perpendicular shear loads act toward the edge or end. Parallel shear loads act parallel to the edge or end (see Figure 5 on p. 39). Perpendicular and parallel shear load reduction factors are cumulative when the anchor is located between the critical minimum edge and end distance.

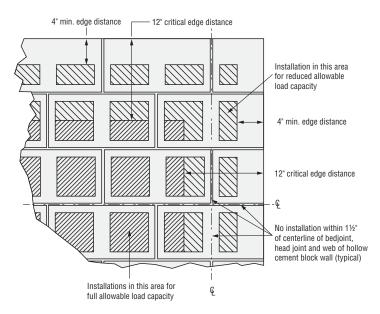



Figure 4. Allowable Anchor Locations for Full and Reduced Load Capacity When Installation Is in the Face of Hollow CMU Masonry Wall Construction



# SET-XP Allowable Tension and Shear Loads — Threaded Rod Based on Steel Strength<sup>1</sup>

| IBC | 1         | <b>→</b> |       | * |
|-----|-----------|----------|-------|---|
| l J | 45.4 2.58 | 200      | [ [ ] |   |

|                                | Tensio         |                                     | Load Based o                       | n Steel Streng                     | jth² (lb.)                                     | Shear Load Based on Steel Strength <sup>3</sup> (lb |                                    |                                    |                                                |  |
|--------------------------------|----------------|-------------------------------------|------------------------------------|------------------------------------|------------------------------------------------|-----------------------------------------------------|------------------------------------|------------------------------------|------------------------------------------------|--|
| Threaded Tensile<br>Rod Stress |                |                                     |                                    | Stainle                            | ss Steel                                       |                                                     |                                    | Stainless Steel                    |                                                |  |
| Rod<br>Diameter<br>(in.)       | Area<br>(in.²) | ASTM F1554<br>Grade 36 <sup>4</sup> | ASTM A193<br>Grade B7 <sup>6</sup> | ASTM A193<br>Grade B6 <sup>5</sup> | ASTM A193<br>Grades B8<br>and B8M <sup>7</sup> | ASTM F1554<br>Grade 36 <sup>4</sup>                 | ASTM A193<br>Grade B7 <sup>6</sup> | ASTM A193<br>Grade B6 <sup>5</sup> | ASTM A193<br>Grades B8<br>and B8M <sup>7</sup> |  |
| 3/8                            | 0.078          | 1,495                               | 3,220                              | 2,830                              | 1,930                                          | 770                                                 | 1,660                              | 1,460                              | 995                                            |  |
| 1/2                            | 0.142          | 2,720                               | 5,860                              | 5,155                              | 3,515                                          | 1,400                                               | 3,020                              | 2,655                              | 1,810                                          |  |
| 5/8                            | 0.226          | 4,325                               | 9,325                              | 8,205                              | 5,595                                          | 2,230                                               | 4,805                              | 4,225                              | 2,880                                          |  |
| 3/4                            | 0.334          | 6,395                               | 13,780                             | 12,125                             | 8,265                                          | 3,295                                               | 7,100                              | 6,245                              | 4,260                                          |  |
| 7/8                            | 0.462          | 8,845                               | 19,055                             | 16,770                             | 11,435                                         | 4,555                                               | 9,815                              | 8,640                              | 5,890                                          |  |

- 1. Allowable load shall be the lesser of bond values given on pp. 36, 38 or 41 and steel values in the table above.
- 2. Allowable Tension Steel Strength is based on the following equation:  $F_V = 0.33 \times F_U \times \text{Tensile Stress Area}$ .
- 3. Allowable Shear Steel Strength is based on the following equation:  $F_V = 0.17 \times F_U \times \text{Tensile Stress Area.}$
- 4. Minimum specified tensile strength ( $F_U$  = 58,000 psi) of ASTM F1554, Grade 36 used to calculate allowable steel strength.
- 5. Minimum specified tensile strength ( $F_U$  = 110,000 psi) of ASTM A193, Grade B6 used to calculate allowable steel strength.
- 6. Minimum specified tensile strength ( $F_U$  = 125,000 psi) of ASTM A193, Grade B7 used to calculate allowable steel strength.
- 7. Minimum specified tensile strength (Fu = 75,000 psi) of ASTM A193, Grades B8 and B8M used to calculate allowable steel strength.

# SET-XP® Allowable Tension and Shear Loads — Deformed Reinforcing Bar Based on Steel Strength¹



|       |                        | Tension I                          | Load (lb.)                         | Shear L                              | oad (lb.)                            |  |  |  |
|-------|------------------------|------------------------------------|------------------------------------|--------------------------------------|--------------------------------------|--|--|--|
| Rebar | Tensile<br>Stress Area | Based on St                        | eel Strength                       | Based on Steel Strength              |                                      |  |  |  |
| Size  | (in.²)                 | ASTM A615<br>Grade 40 <sup>2</sup> | ASTM A615<br>Grade 60 <sup>3</sup> | ASTM A615<br>Grade 40 <sup>4,5</sup> | ASTM A615<br>Grade 60 <sup>4,6</sup> |  |  |  |
| #3    | 0.11                   | 2,200                              | 2,640                              | 1,310                                | 1,685                                |  |  |  |
| #4    | 0.20                   | 4,000                              | 4,800                              | 2,380                                | 3,060                                |  |  |  |
| #5    | 0.31                   | 6,200                              | 7,400                              | 3,690                                | 4,745                                |  |  |  |

- 1. Allowable load shall be the lesser of bond values given on pp. 36, 38 or 41 and steel values in the table above.
- 2. Allowable Tension Steel Strength is based on AC58 Section 3.3.3 (20,000 psi x tensile stress area) for Grade 40 rebar.
- 3. Allowable Tension Steel Strength is based on AC58 Section 3.3.3 (24,000 psi x tensile stress area) for Grade 60 rebar.
- 4. Allowable Shear Steel Strength is based on AC58 Section 3.3.3 ( $F_V = 0.17 \times F_U \times Tensile Stress Area.$ )
- 5.  $F_u = 70,000$  psi for Grade 40 rebar.
- 6.  $F_u = 90,000$  psi for Grade 60 rebar.

<sup>\*</sup> See p. 13 for an explanation of the load table icons.

## ET-HP® Epoxy Adhesive



ET-HP is a two-component, high-solids, epoxy-based system for use as a high-strength, non-shrink anchor-grouting material. Resin and hardener are dispensed and mixed simultaneously through the static mixing nozzle. ET-HP is formulated for anchoring threaded rod and rebar into concrete (cracked/uncracked) and masonry.

### **Features**

- Passed the demanding ICC-ES AC308 adverse-condition tests pertaining to elevated temperatures and long-term sustained loads
- Code listed under the IBC/IRC for cracked and uncracked concrete per ICC-ES ESR-3372
- Code listed under the IBC/IRC for masonry per IAPMO UES ER-241
- Suitable for use under static and seismic loading conditions in cracked and uncracked concrete and masonry
- Cure times: 24 hours at 70°F (21°C), 72 hours at 50°F (10°C)
- Easy hole-cleaning no power-brushing required
- Suitable for use in dry or water-saturated concrete
- When properly mixed, adhesive will be a uniform gray color
- Available in 22 oz. cartridges packaged either with or without nozzles and in 1-gallon, 10-gallon, and 100-gallon kits for high-volume applications utilizing metering pumps
- · Manufactured in the USA using global materials
- Tested per ACI 355.4 and AC308

### **Applications**

- Threaded rod anchoring and rebar doweling into concrete and unreinforced masonry
- Suitable for horizontal, vertical and overhead applications
- Multiple DOT listings refer to strongtie.com/DOT for current approvals

### Codes:

ICC-ES ESR-3372 (concrete); ICC-ES ESR-3638 (unreinforced masonry); IAPMO UES ER-241 (masonry); City of L.A. RR25120 (unreinforced masonry); AASHTO M-235 and ASTM C881 (Type IV, Grade 3, Class C); multiple DOT listings; FL-17449.1; FL-16230.2

### **Chemical Resistance**

See pp. 252-253

### Installation and Application Instructions

(See also pp. 100-105)

- Surfaces to receive epoxy must be clean.
- Base material temperature must be 50°F (10°C) or above at the time of installation. For best results, material should be 70°F (21°C) to 80°F (27°C) at time of application.
- To warm cold material, store cartridges in a warm, uniformly heated area or storage container. Do not immerse cartridges in water or use microwave to facilitate warming.
- Mixed material in nozzle can harden in 30 minutes at temperatures of 70°F (21°C) and above.

### Suggested Specifications

See strongtie.com for more information.



**ET-HP Adhesive** 

# ET-HP® Epoxy Adhesive



### Test Criteria

Anchors installed with ET-HP adhesive have been tested in accordance with ICC-ES Acceptance Criteria for Post-Installed *Adhesive Anchors in Masonry Elements* (AC58) *and Adhesive Anchors in Concrete Elements* (AC308).

| Property                                | Test Method | Result*                                   |
|-----------------------------------------|-------------|-------------------------------------------|
| Consistency                             | ASTM C881   | Non-sag/thixotropic paste                 |
| Heat deflection                         | ASTM D648   | 145°F (63°C)                              |
| Glass transition temperature            | ASTM D648   | 168°F (76°C)                              |
| Bond strength (moist cure, 60°F)        | ASTM C882   | 2,963 psi (2 days)<br>3,002 psi (14 days) |
| Water absorption                        | ASTM D570   | 0.0% (24 hours)                           |
| Compressive yield strength (cured 60°F) | ASTM D695   | 14,260 psi (7 days)                       |
| Compressive modulus                     | ASTM D695   | 775,850 psi (7 days)                      |
| Gel time                                | ASTM C881   | 10 minutes                                |
| Shore D Durometer                       | ASTM D2240  | 87                                        |
| Volatile Organic Compound (VOC)         | _           | 3 g/L                                     |

<sup>\*</sup>Material and curing conditions: 73  $\pm$  2°F unless otherwise noted.

### ET-HP Package Systems

| Model<br>No.           | Capacity<br>(ounces)    | Package Type        | Carton<br>Quantity | Dispensing Tools           | Mixing Nozzle |
|------------------------|-------------------------|---------------------|--------------------|----------------------------|---------------|
| ET-HP22-N <sup>4</sup> | 22                      | Side-by-side        | 10                 | EDT22S                     | EMN22I        |
| ET-HP22                | 22                      | Side-by-side        | 10                 | EDT22CKT                   | EMN22I        |
| ETHP1KT                | 1-gallon kit (231)      | (2) ½-gallon pails  | 1 kit              | Metering pump⁵             | EMN37A        |
| ETHP10KT               | 10-gallon kit (2,310)   | (2) 5-gallon pails  | 1 kit              | Metering pump⁵             | EMN37A        |
| ETHP100KT              | 100-gallon kit (23,100) | (2) 50-gallon pails | 1 kit              | Metering pump <sup>5</sup> | EMN37A        |

- 1. Cartridge estimation guidelines are available at strongtie.com/apps.
- 2. Detailed information on dispensing tools, mixing nozzles and other adhesive accessories is available at **strongtie.com**.
- 3. Use only Simpson Strong-Tie® mixing nozzles in accordance with Simpson Strong-Tie instructions. Modification or improper use of mixing nozzle may impair ET-HP adhesive performance.
- ${\it 4.\,One\,\,EMN22i\,\,mixing\,\,nozzle\,\,and\,\,one\,\,nozzle\,\,extension\,\,are\,\,supplied\,\,with\,\,each\,\,cartridge.}$
- 5. Metering pumps are offered by third-party manufacturers.

### Cure Schedule

| Base Materia | l Temperature | Gel Time  | Cure Time <sup>1</sup> |  |
|--------------|---------------|-----------|------------------------|--|
| °F           | °C            | (minutes) | (hrs.)                 |  |
| 50           | 10            | 45        | 72                     |  |
| 60           | 16            | 30        | 24                     |  |
| 80           | 27            | 20        | 24                     |  |
| 100          | 38            | 15        | 24                     |  |

<sup>1.</sup> For water-saturated concrete, the cure times must be doubled.



ET-HP Installation Information and Additional Data for Threaded Rod and Rebar in Normal-Weight Concrete<sup>1</sup>

|    | <br> | _ |
|----|------|---|
| BC |      |   |

| Charactaristic                      | Characteristic           |                   | Symbol Units — |               | Nominal Anchor Diameter (in.) / Rebar Size |        |          |                  |        |            |
|-------------------------------------|--------------------------|-------------------|----------------|---------------|--------------------------------------------|--------|----------|------------------|--------|------------|
| Characteristic                      |                          | Syllibol          | Units          | % / #3        | 1/2 / #4                                   | % / #5 | 3/4 / #6 | 7⁄8 / # <b>7</b> | 1 / #8 | 11/4 / #10 |
|                                     | Installation Information |                   |                |               |                                            |        |          |                  |        |            |
| Drill Bit Diameter                  |                          | d <sub>hole</sub> | in.            | 1/2           | 5/8                                        | 3/4    | 7/8      | 1                | 11/8   | 1%         |
| Maximum Tightening Torque           |                          | T <sub>inst</sub> | ftlb.          | 10            | 20                                         | 30     | 45       | 60               | 80     | 125        |
| Darmittad Embadment Denth Dange     | Minimum                  | h <sub>ef</sub>   | in.            | 2%            | 23/4                                       | 31/8   | 3½       | 3¾               | 4      | 5          |
| Permitted Embedment Depth Range     | Maximum                  | h <sub>ef</sub>   | in.            | 41/2          | 6                                          | 7½     | 9        | 10½              | 12     | 15         |
| Minimum Concrete Thickness          |                          | h <sub>min</sub>  | in.            |               | $h_{ef} + 5d_{hole}$                       |        |          |                  |        |            |
| Critical Edge Distance <sup>2</sup> |                          | Cac               | in.            | See foonote 2 |                                            |        |          |                  |        |            |
| Minimum Edge Distance               |                          | C <sub>min</sub>  | in.            | 1¾            |                                            |        |          |                  | 23/4   |            |
| Minimum Anchor Spacing              |                          | S <sub>min</sub>  | in.            |               |                                            | (      | 3        |                  |        | 6          |

<sup>1.</sup> The information presented in this table is to be used in conjunction with the design criteria of ACI 318-14 and ACI 318-11.

 $[h/h_{ef}] \leq 2.4$ 

 $\tau_{k,uncr}$  = the characteristic bond strength in uncracked concrete, given in the tables that follow  $\leq k_{uncr} ((h_{ef} \times f_c')^{0.5}/(\pi \times d_a))$ 

h =the member thickness (inches)

 $h_{ef}$  = the embedment depth (inches)

<sup>2.</sup>  $c_{ac} = h_{ef}(\tau_{k,uncr}/1160)^{0.4} \times [3.1 - 0.7(h/h_{ef})]$ , where:



### ET-HP Tension Strength Design Data for Threaded Rod in Normal-Weight Concrete<sup>1</sup>

|                                                                                            | Characteristic                                                               |                  | Cumhal            | Haita    |                   |                           | Nominal                 | Anchor Diar | neter (in.) |        |         |
|--------------------------------------------------------------------------------------------|------------------------------------------------------------------------------|------------------|-------------------|----------|-------------------|---------------------------|-------------------------|-------------|-------------|--------|---------|
|                                                                                            | Gilaracienstic                                                               |                  | Symbol            | Units    | 3/8               | 1/2                       | 5/8                     | 3/4         | 7/5         | 1      | 11/4    |
|                                                                                            |                                                                              |                  | Steel S           | Strengt  | h in Tensior      | 1                         |                         |             |             |        |         |
|                                                                                            | Minimum Tensile Stress Area                                                  |                  | A <sub>se</sub>   | in.2     | 0.078             | 0.142                     | 0.226                   | 0.334       | 0.462       | 0.606  | 0.969   |
|                                                                                            | Tension Resistance of Steel — ASTM F                                         | 1554, Grade 36   |                   |          | 4,525             | 8,235                     | 13,110                  | 19,370      | 26,795      | 35,150 | 56,200  |
|                                                                                            | Tension Resistance of Steel — ASTM A                                         | 193, Grade B7    |                   |          | 9,750             | 17,750                    | 28,250                  | 41,750      | 57,750      | 75,750 | 121,125 |
| Threaded<br>Rod                                                                            | Tension Resistance of Steel — Type 41 (ASTM A193, Grade B6)                  | 0 Stainless      | N <sub>sa</sub>   | lb.      | 8,580             | 15,620                    | 24,860                  | 36,740      | 50,820      | 66,660 | 106,590 |
|                                                                                            | Tension Resistance of Steel — Type 30<br>Stainless (ASTM A193, Grade B8 & B8 |                  |                   |          | 4,445             | 8,095                     | 12,880                  | 19,040      | 26,335      | 34,540 | 55,235  |
|                                                                                            | Strength Reduction Factor — Steel Fai                                        | lure             | φ                 | _        |                   |                           |                         | 0.756       |             |        |         |
|                                                                                            | C                                                                            | oncrete Breakout | Strength          | in Ten   | sion (2,500       | psi ≤ f' <sub>c</sub> ≤ 8 | ,000 psi) <sup>12</sup> |             |             |        |         |
| Effectiven                                                                                 | ness Factor — Uncracked Concrete                                             |                  | K <sub>uncr</sub> | _        | 24                |                           |                         |             |             |        |         |
| Effectiven                                                                                 | ness Factor — Cracked Concrete                                               |                  | Kcr               | _        | 17                |                           |                         |             |             |        |         |
| Strength                                                                                   | Reduction Factor — Breakout Failure                                          |                  | φ                 | _        | 0.65 <sup>8</sup> |                           |                         |             |             |        |         |
|                                                                                            |                                                                              | Bond Streng      | gth in Ten        | sion (2, | ,500 psi ≤ f      | c ≤ 8,000 ps              | Si) <sup>12</sup>       |             |             |        |         |
| Uncracked                                                                                  | Characteristic Bond Strength <sup>5,13</sup>                                 |                  | $	au_{k,uncr}$    | psi      | 390               | 380                       | 370                     | 360         | 350         | 335    | 315     |
| Concrete                                                                                   | Daysaittad Frehadraart Dayth Daysa                                           | Minimum          | 6                 | in.      | 23/8              | 23/4                      | 31/8                    | 3½          | 3¾          | 4      | 5       |
| 2,3,4                                                                                      | Permitted Embedment Depth Range                                              | Maximum          | h <sub>ef</sub>   | 111.     | 41/2              | 6                         | 71/2                    | 9           | 10½         | 12     | 15      |
| Cracked                                                                                    | Characteristic Bond Strength 5,9,10,11,12,13                                 |                  | $	au_{k,cr}$      | psi      | 160               | 200                       | 160                     | 205         | 190         | 165    | 140     |
| Concrete                                                                                   | Daysaittad Frehadraart Dayth Daysa                                           | Minimum          |                   | in       | 23/8              | 23/4                      | 31/8                    | 3½          | 3¾          | 4      | 5       |
| 2,3,4                                                                                      | Permitted Embedment Depth Range                                              | Maximum          | - h <sub>ef</sub> | in.      | 41/2              | 6                         | 71/2                    | 9           | 10½         | 12     | 15      |
| Bond Strength in Tension — Bond Strength Reduction Factors for Periodic Special Inspection |                                                                              |                  |                   |          |                   |                           |                         |             |             |        |         |
| Strength                                                                                   | Strength Reduction Factor — Dry Concrete                                     |                  |                   |          |                   |                           |                         | 0.657       |             |        |         |
| Strength                                                                                   | Reduction Factor — Water-Saturated Con                                       | crete            | $\phi_{sat}$      | _        |                   |                           |                         | 0.457       |             | -      |         |

- The information presented in this table is to be used in conjunction with the design criteria of ACI 318-14 or ACI 318-11.
- Temperature Range: Maximum short-term temperature of 150°F (66°C). Maximum long-term temperature of 110°F (43°C).
- Short-term concrete temperatures are those that occur over short intervals (diurnal cycling).
- Long-term concrete temperatures are constant temperatures over a significant time period.
- 5. For anchors that only resist wind or seismic loads, bond strengths may be multiplied by 2.70.
- 6. The value of  $\phi$  applies when the load combinations of ACI 318-14 5.3 or ACI 318-11 Section 9.2 are used. If the load combinations of ACI 318 Appendix C are used, refer to ACI 318-11 D.4.4 to determine the appropriate value of  $\phi$ .

- 7. The value of  $\phi$  applies when both the load combinations of ACI 318-14 5.3 or ACI 318-11 Section 9.2 are used and the requirements of ACI 318-14 17.3.3 or ACI 318-11 D.4.4 (c) for Condition B are met. If the load combinations of ACI 318 Appendix C are used, refer to ACI 318-11 D.4.5 to determine the appropriate value of  $\phi$ .
- 8. The value of  $\phi$  applies when both the load combinations of ACI 318-14 5.3 or ACI 318-11 Section 9.2 are used and the requirements of ACI 318-14 17.3.3 or ACI 318-11 D.4.4 (c) for Condition B are met. If the load combinations of ACI 318-14 5.3 or ACI 318-11 Section 9.2 are used and the requirements of ACI 318-11 D.4.4 (c) for Condition A are met, refer to ACI 318-11 D.4.4 to determine the appropriate value of  $\phi$ . If the load combinations of ACI 318 Appendix C are used, refer to ACI 318-11 D.4.5 to determine the appropriate value of  $\phi$ .

- 9. For anchors installed in regions assigned to Seismic Design Category C, D, E or F, the bond strength values for %" and 11½" anchors must be multiplied by  $\alpha_{N,\text{seis}} = 0.78$ .
- 10. For anchors installed in regions assigned to Seismic Design Category C, D, E or F, the bond strength values for ½", %" and ¾" anchors must be multiplied by  $\alpha_{N,\text{seis}} = 0.85$ .
- 11. For anchors installed in regions assigned to Seismic Design Category C, D, E or F, the bond strength values for %" anchors must be multiplied by  $\alpha_{N,seis} = 0.82$ .
- 12. For anchors installed in regions assigned to Seismic Design Category C, D, E or F, the bond strength values for 1" anchors must be multiplied by  $\alpha_{N,seis} = 0.70$ .
- 13. For applications where maximum short-term temperature is 110°F (43°C) and the maximum long-term temperature is 75°F (24°C), bond strengths may be multiplied by 3.50. No additional increase is permitted for anchors that only resist wind or seismic loads.

<sup>\*</sup> See p. 13 for an explanation of the load table icons.

ET-HP Tension Strength Design Data for Rebar in Normal-Weight Concrete<sup>1</sup>

# ET-HP® Design Information — Concrete





101/2

12

15

Rebar Size







| Characteristic                              |                                             | Symbol              | Units             |                           | 110001 0120       |           |                   |        | /      |        |         |
|---------------------------------------------|---------------------------------------------|---------------------|-------------------|---------------------------|-------------------|-----------|-------------------|--------|--------|--------|---------|
|                                             |                                             | Зупівої             | Units             | #3                        | #4                | #5        | #6                | #7     | #8     | #10    |         |
|                                             |                                             | Steel               | Strength in       | Tension                   |                   |           |                   |        |        |        |         |
|                                             | Minimum Tensile Stress Area                 |                     | A <sub>se</sub>   | in <sup>2</sup>           | 0.11              | 0.2       | 0.31              | 0.44   | 0.6    | 0.79   | 1.23    |
| Rebar                                       | Tension Resistance of Steel — Rebar (AS*    | TM A615 Grade 60)   | N <sub>sa</sub>   | lb.                       | 9,900             | 18,000    | 27,900            | 39,600 | 54,000 | 71,100 | 110,700 |
| Strength Reduction Factor — Steel Failure   |                                             | φ                   | _                 |                           |                   |           | 0.65 <sup>6</sup> |        |        |        |         |
|                                             | Concre                                      | te Breakout Streng  | th in Tensio      | n (2,500 ps               | $i \le f_C \le 8$ | ,000 psi) |                   |        |        |        |         |
| Effectiveness F                             | actor — Uncracked Concrete                  |                     | k <sub>uncr</sub> |                           |                   |           |                   | 24     |        |        |         |
| Effectiveness F                             | actor — Cracked Concrete                    |                     | k <sub>cr</sub>   | _                         | 17                |           |                   |        |        |        |         |
| Strength Reduc                              | ction Factor — Breakout Failure             |                     | φ                 |                           |                   |           |                   | 0.658  |        |        |         |
|                                             |                                             | Bond Strength in To | ension (2,50      | 0 psi ≤ f' <sub>c</sub> ≤ | ≤ 8,000 ps        | si)       |                   |        |        |        |         |
|                                             | Characteristic Bond Strength <sup>5,9</sup> |                     | $	au_{k,uncr}$    | psi                       | 370               | 360       | 350               | 335    | 325    | 315    | 295     |
| Uncracked<br>Concrete <sup>2,3,4</sup>      | Parmitted Embadment Depth Panga             | Minimum             | h                 | in.                       | 2%                | 2¾        | 31/8              | 3½     | 3¾     | 4      | 5       |
| Permitted Embedment Depth Range Maximum     |                                             | n <sub>ef</sub>     | 111.              | 41/2                      | 6                 | 7½        | 9                 | 10½    | 12     | 15     |         |
| Characteristic Bond Strength <sup>5,9</sup> |                                             |                     | $	au_{k,cr}$      | psi                       | 130               | 140       | 155               | 165    | 180    | 190    | 215     |
| Cracked<br>Concrete 2,3,4                   | Darmittad Embadment Depth Denge             | Minimum             | h                 | in                        | 2%                | 2¾        | 31/8              | 3½     | 3¾     | 4      | 5       |
| Concrete                                    | Permitted Embedment Depth Range             | Movimum             | - h <sub>ef</sub> | in.                       | /1/               | 6         | 71/-              | 0      | 1014   | 10     | 15      |

Bond Strength in Tension — Bond Strength Reduction Factors for Periodic and Continuous Special Inspection

 $\phi_{sat}$ 

41/2

6

71/2

 $0.45^{7}$ 

- 1. The information presented in this table is to be used in conjunction with the design criteria of ACI 318-14 or ACI 318-11.
- 2. Temperature Range: Maximum short-term temperature of 150°F (66°C). Maximum long-term temperature of 110°F (43°C).
- 3. Short-term concrete temperatures are those that occur over short intervals (diurnal cycling).
- ${\it 4.}\,{\it Long-term}\,\,{\it concrete}\,\,{\it temperatures}\,\,{\it are}\,\,{\it constant}\,\,{\it temperatures}\,\,{\it over}\,\,{\it a}\,\,{\it significant}\,\,{\it time}\,\,{\it period}.$
- 5. For anchors that only resist wind or seismic loads, bond strengths may be multiplied by 2.70.
- 6. The value of  $\phi$  applies when the load combinations of ACI 318-14 5.3 or ACI 318-11 Section 9.2 are used. If the load combinations of ACI 318 Appendix C are used, refer to ACI 318-11 D.4.4 to determine the appropriate value of  $\phi$ .
- 7. The value of  $\phi$  applies when both the load combinations of ACI 318-14 5.3 or ACI 318-11 Section 9.2 are used and the requirements of ACI 318-14 17.3.3 or ACI 318-11 D.4.4 (c) for Condition B are met. If the load combinations of ACI 318 Appendix C are used, refer to ACI 318-11 D.4.5 to determine the appropriate value of  $\phi$ .

Maximum

- 8. The value of φ applies when both the load combinations of ACI 318-14 5.3 or ACI 318-11 Section 9.2 are used and the requirements of ACI 318-14 17.3.3 or ACI 318-11 D.4.4 (c) for Condition B are met. If the load combinations of ACI 318-14 5.3 or ACI 318-11 Section 9.2 are used and the requirements of ACI 318-11 D.4.4 (c) for Condition A are met, refer to ACI 318-11 D.4.4 to determine the appropriate value of φ. If the load combinations of ACI 318 Appendix C are used, refer to ACI 318-11 D.4.5 to determine the appropriate value of φ.
- 9. For applications where maximum short-term temperature is 110°F (43°C) and the maximum long-term temperature is 75°F (24°C), bond strengths may be multiplied by 3.50. No additional increase is permitted for anchors that only resist wind or seismic loads.

Strength Reduction Factor — Dry Concrete

Strength Reduction Factor — Water-Saturated Concrete

Characteristic

Shear Resistance of Steel — Type 410 Stainless (ASTM A193, Grade B6)

Shear Resistance of Steel — ASTM F1554, Grade 36

Shear Resistance of Steel — ASTM A193, Grade B7

Shear Resistance of Steel — Type 304 and 316 Stainless

Reduction for Seismic Shear — ASTM F1554, Grade 36

Reduction for Seismic Shear — ASTM A193, Grade B7

Strength Reduction Factor — Steel Failure

Reduction for Seismic Shear — Stainless (ASTM A193, Grade B6)

Reduction for Seismic Shear — Stainless (ASTM A193, Grade B8 & B8M)

Minimum Shear Stress Area

(ASTM A193, Grade B8 & B8M)

Strength Reduction Factor — Pryout Failure

Threaded Rod

C-A-2018 @2018 SIMPSON STRONG-TIE COMPANY INC.



ET-HP Shear Strength Design Data for Threaded Rod in Normal-Weight Concrete<sup>1</sup>

|                              |                   | IBC       |        |        |  |  |  |  |  |
|------------------------------|-------------------|-----------|--------|--------|--|--|--|--|--|
| ominal Anchor Diameter (in.) |                   |           |        |        |  |  |  |  |  |
| 5/8                          | 3/4               | 78 1 11/4 |        |        |  |  |  |  |  |
|                              |                   |           |        |        |  |  |  |  |  |
| 0.226                        | 0.334             | 0.462     | 0.606  | 0.969  |  |  |  |  |  |
| 7,865                        | 11,625            | 16,080    | 21,090 | 33,720 |  |  |  |  |  |
| 16,950                       | 25,050            | 34,650    | 45,450 | 72,675 |  |  |  |  |  |
| 14,910                       | 22,040            | 30,490    | 40,000 | 63,955 |  |  |  |  |  |
| 7,730                        | 11,420            | 15,800    | 20,725 | 33,140 |  |  |  |  |  |
|                              | 0.85              |           | 0.     | 75     |  |  |  |  |  |
|                              | 0.85              |           | 0.     | 75     |  |  |  |  |  |
| 0.85 0.75                    |                   |           |        |        |  |  |  |  |  |
|                              | 0.85              |           | 0.     | 75     |  |  |  |  |  |
|                              | 0.65 <sup>2</sup> |           |        |        |  |  |  |  |  |

Nomi

 $0.70^{4}$ 

1/2

0.142

4,940

10.650

9,370

4,855

| Concrete Breakout Strength in Shear          |                 |     |                     |      |                  |           |                    |       |      |
|----------------------------------------------|-----------------|-----|---------------------|------|------------------|-----------|--------------------|-------|------|
| Outside Diameter of Anchor                   | d <sub>0</sub>  | in. | 0.375               | 0.5  | 0.625            | 0.75      | 0.875              | 1     | 1.25 |
| Load Bearing Length of Anchor in Shear       | $\ell_e$        | in. | h <sub>ef</sub>     |      |                  |           |                    |       |      |
| Strength Reduction Factor — Breakout Failure | φ               | _   | - 0.70 <sup>3</sup> |      |                  |           |                    |       |      |
| Concrete Pryout Strength in Shear            |                 |     |                     |      |                  |           |                    |       |      |
| Coefficient for Pryout Strength              | K <sub>cp</sub> | _   |                     | 1.01 | for $h_{ef} < 2$ | .50"; 2.0 | for $h_{ef} \ge 2$ | 2.50" |      |

Symbol Units

in.2

lb

 $\alpha_{V\!\!, {\it seis}}$ 

Steel Strength in Shear

3/8

0.078

2,260

4.875

4,290

2,225

0.63

0.63

0.60

0.60

- 1. The information presented in this table is to be used in conjunction with the design criteria of ACI 318-14 and ACI 318-11.
- 2. The value of  $\phi$  applies when the load combinations of ACI 318-14 5.3 or ACI 318-11 Section 9.2 are used. If the load combinations of ACI 318 Appendix C are used, refer to ACI 318-11 D.4.4 to determine the appropriate value of  $\phi$ .
- 3. The value of φ applies when both the load combinations of ACI 318-14 5.3 or ACI 318-11 Section 9.2 are used and the requirements of ACI 318-14 17.3.3 and ACI 318-11 D.4.3 (c) for Condition B are met. If the load combinations of ACI 318-14 5.3 or ACI 318-11 Section 9.2 are used and the requirements of ACI 318-14 17.3.3 and ACI 318-11 D.4.3 (c) for Condition A are met, refer to ACI 318-14 17.3.3 and ACI 318-11 D.4.3 to determine the appropriate value of  $\phi$ . If the load combinations of ACI 318 Appendix C are used, refer to ACI 318-14 and ACI 318-11 D.4.4 to determine the appropriate value of  $\phi$ .
- 4. The value of φ applies when both the load combinations of ACI 318-14 5.3 or ACI 318-11 Section 9.2 are used and the requirements of ACI 318-14 17.3.3 and ACI 318-11 D.4.3 (c) for Condition B are met. If the load combinations of ACI 318 Appendix C are used, refer to ACI 318-14 and ACI 318-11 D.4.4 to determine the appropriate value of  $\phi$ .
- 5. The values of Vsa are applicable for both cracked concrete and uncracked concrete. For anchors installed in regions assigned to Seismic Design Category C, D, E or F,  $V_{sa}$  must be multiplied by  $\alpha V_{seis}$  for the corresponding anchor steel type.

<sup>\*</sup> See p. 13 for an explanation of the load table icons.

# C-A-2018 @2018 SIMPSON STRONG-TIE COMPANY INC.

## ET-HP® Design Information — Concrete



### ET-HP Shear Strength Design Data for Rebar in Normal-Weight Concrete<sup>1</sup>



| Characteristic                  |                                                                    | Symbol                | nbol Units       |                                                      |        |        | Rebar Size | ;      |        |        |  |  |  |
|---------------------------------|--------------------------------------------------------------------|-----------------------|------------------|------------------------------------------------------|--------|--------|------------|--------|--------|--------|--|--|--|
|                                 | Characteristic                                                     |                       |                  | #3                                                   | #4     | #5     | #6         | #7     | #8     | #10    |  |  |  |
|                                 | Steel Strength in Shear                                            |                       |                  |                                                      |        |        |            |        |        |        |  |  |  |
|                                 | Minimum Shear Stress Area                                          | Ase                   | in. <sup>2</sup> | 0.11                                                 | 0.2    | 0.31   | 0.44       | 0.6    | 0.79   | 1.23   |  |  |  |
| Rebar                           | Shear Resistance of Steel — Rebar (ASTM A615 Grade 60)             | V <sub>sa</sub>       | lb.              | 4,950                                                | 10,800 | 16,740 | 23,760     | 32,400 | 42,660 | 66,420 |  |  |  |
| neuai                           | Reduction for Seismic Shear — Rebar (ASTM A615 Grade 60)           | $\alpha_{V,seis}^{5}$ |                  | 0                                                    | .6     | 0.8    |            | 0.75   |        |        |  |  |  |
|                                 | Strength Reduction Factor — Steel Failure $\phi$ — 0.60 $^{\circ}$ |                       |                  |                                                      |        |        |            |        |        |        |  |  |  |
|                                 | Concrete E                                                         | Breakout St           | ength in         | Shear                                                |        |        |            |        |        |        |  |  |  |
| Outside                         | Diameter of Anchor                                                 | do                    | in.              | 0.375                                                | 0.5    | 0.625  | 0.75       | 0.875  | 1      | 1.25   |  |  |  |
| Load-B                          | earing Length of Anchor in Shear                                   | $\ell_e$              | in.              | h <sub>ef</sub>                                      |        |        |            |        |        |        |  |  |  |
| Strengt                         | h Reduction Factor — Breakout Failure                              | φ                     | _                |                                                      | 0.70³  |        |            |        |        |        |  |  |  |
|                                 | Concrete                                                           | Pryout Stre           | ngth in S        | hear                                                 |        |        |            |        |        |        |  |  |  |
| Coefficient for Pryout Strength |                                                                    |                       | _                | 1.0 for $h_{ef}$ < 2.50"; 2.0 for $h_{ef} \ge$ 2.50" |        |        |            |        |        |        |  |  |  |
| Strengt                         | h Reduction Factor — Pryout Failure                                | φ                     | _                |                                                      |        |        | 0.704      |        |        |        |  |  |  |

- 1. The information presented in this table is to be used in conjunction with the design criteria of ACI 318-14 or ACI 318-11.
- 2. The value of  $\phi$  applies when the load combinations of ACI 318-14 5.3 or ACI 318-11 Section 9.2 are used. If the load combinations of ACI 318 Appendix C are used, refer to ACI 318-11 D.4.4 to determine the appropriate value of  $\phi$ .
- 3. The value of  $\phi$  applies when both the load combinations of ACI 318-14 5.3 or ACI 318-11 Section 9.2 are used and the requirements of ACI 318-14 17.3.3 and ACI 318-11 D.4.3 (c) for Condition B are met. If the load combinations of ACI 318-14 5.3 or ACI 318-11 Section 9.2 are used and the requirements of ACI 318-14 17.3.3 and ACI 318-11 D.4.3 (c) for Condition A are met, refer to ACI 318-14 17.3.3 and ACI 318-11 D.4.3 to determine the appropriate value of  $\phi$ . If the load combinations of ACI 318 Appendix C are used, refer to ACI 318-14 and ACI 318-11 D.4.4 to determine the appropriate value of  $\phi$ .
- 4. The value of  $\phi$  applies when both the load combinations of ACI 318-14 5.3 or ACI 318-11 Section 9.2 are used and the requirements of ACI 318-14 17.3.3 and ACI 318-11 D.4.3 (c) for Condition B are met. If the load combinations of ACI 318 Appendix C are used, refer to ACI 318-14 and ACI 318-11 D.4.4 to determine the appropriate value of  $\phi$ .
- 5. The values of V<sub>sa</sub> are applicable for both cracked concrete and uncracked concrete. For anchors installed in regions assigned to Seismic Design Category C, D, E or F, V<sub>sa</sub> must be multiplied by α<sub>V<sub>i</sub>seis</sub>.

For additional load tables, visit **strongtie.com/ethp**.



# Anchor Designer<sup>™</sup> Software for ACI 318, ETAG and CSA

Simpson Strong-Tie® Anchor Designer software accurately analyzes existing design or suggests anchor solutions based on user-defined design elements in cracked and uncracked concrete conditions.



ET-HP Allowable Tension and Shear Loads for Threaded Rod and Rebar in the Face of Fully Grouted CMU Wall Construction<sup>1, 3, 4, 5, 6, 8, 9, 10, 11, 12</sup>

| IBC 1 | <b>→</b> |  |  |
|-------|----------|--|--|
|-------|----------|--|--|

| Diameter (in.) or                              | Drill Bit Diameter | Minimum Embedment <sup>2</sup> | Allowable Load Based on Bond Strength <sup>7</sup> (lb.) |            |  |  |  |  |  |
|------------------------------------------------|--------------------|--------------------------------|----------------------------------------------------------|------------|--|--|--|--|--|
| Rebar Size Ńo.                                 | (in.)              | (in.)                          | Tension Load                                             | Shear Load |  |  |  |  |  |
| Threaded Rod Installed in the Face of CMU Wall |                    |                                |                                                          |            |  |  |  |  |  |
| 3/8                                            | 1/2                | 3%                             | 1,425                                                    | 845        |  |  |  |  |  |
| 1/2                                            | 5/8                | 41/2                           | 1,425                                                    | 1,470      |  |  |  |  |  |
| 5/8                                            | 3/4                | 5%                             | 1,560                                                    | 1,835      |  |  |  |  |  |
| 3/4                                            | 7/8                | 6½                             | 1,560                                                    | 2,050      |  |  |  |  |  |
|                                                | Reba               | r Installed in the Face of CMU | Wall                                                     |            |  |  |  |  |  |
| #3                                             | 1/2                | 3%                             | 1,275                                                    | 1,335      |  |  |  |  |  |
| #4                                             | 5/8                | 41/2                           | 1,435                                                    | 1,355      |  |  |  |  |  |
| #5                                             | 3/4                | 55/8                           | 1,550                                                    | 1,355      |  |  |  |  |  |

- 1. Allowable load shall be the lesser of the bond values shown in this table and steel values, shown on p. 53.
- 2. Embedment depth shall be measured from the outside face of masonry wall.
- 3. Critical and minimum edge distance and spacing shall comply with the information on p. 52. Figure 2 on p. 52 illustrates critical and minimum edge and end distances.
- 4. Minimum allowable nominal width of CMU wall shall be 8 inches. The minimum allowable member thickness shall be no less than 1½ times the actual anchor embedment.
- 5. No more than one anchor shall be permitted per masonry cell.
- 6. Anchors shall be permitted to be installed at any location in the face of the fully grouted masonry wall construction (cell, web, bed joint), except anchors shall not be installed within 1½ inches of the head joint, as show in Figure 2 on p. 52.
- 7. Tabulated allowable load values are for anchors installed in fully grouted masonry walls.
- 8. Tabulated allowable loads are based on a safety factor of 5.0.
- Tabulated allowable load values shall be adjusted for increased base material temperatures in accordance with Figure 1 below, as applicable.
- 10. Threaded rod and rebar installed in fully grouted masonry walls with ET-HP® are permitted to resist dead, live, seismic and wind loads.
- 11. Threaded rod shall meet or exceed the tensile strength of ASTM F1554, Grade 36 steel, which is 58,000 psi.
- 12. For installations exposed to severe, moderate or negligible exterior weathering conditions, as defined in Figure 1 of ASTM C62, allowable tension loads shall be multiplied by 0.80.

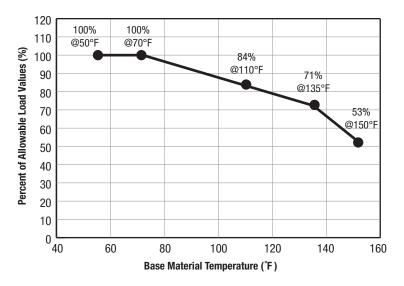



Figure 1. Load Capacity Based on In-Service Temperature for ET-HP Epoxy Adhesive in the Face of Fully Grouted CMU Wall Construction

<sup>\*</sup> See p. 13 for an explanation of the load table icons.



ET-HP Edge Distance and Spacing Requirements and Allowable Load Reduction Factors — Threaded Rod and Rebar in the Face of Fully Grouted CMU Wall Construction<sup>2,7</sup>

| IDC |              |             | · • • • • • • • • • • • • • • • • • • • | 7 |
|-----|--------------|-------------|-----------------------------------------|---|
| IRC | <b>←</b> → i | 7 <b>←→</b> |                                         |   |

|                                              |                                     | Edge or End Distance <sup>1,8</sup>                                 |                                          |                                                                     |         |                             |                  |                                               | Spacing <sup>2,9</sup>                   |                                                   |                     |        |  |  |
|----------------------------------------------|-------------------------------------|---------------------------------------------------------------------|------------------------------------------|---------------------------------------------------------------------|---------|-----------------------------|------------------|-----------------------------------------------|------------------------------------------|---------------------------------------------------|---------------------|--------|--|--|
|                                              |                                     | Critical<br>(Full Anchor Capa                                       |                                          | Minimum<br>(Reduced Anchor Capacity)⁴                               |         |                             |                  |                                               | ical<br>r Capacity)⁵                     | Minimum<br>(Reduced Anchor Capacity) <sup>6</sup> |                     |        |  |  |
| Rod Dia.<br>(in.)<br>or<br>Rebar Size<br>No. | Minimum<br>Embed.<br>Depth<br>(in.) | Critical Edge<br>or End<br>Distance,<br><i>C<sub>cr</sub></i> (in.) | Allowable<br>Load<br>Reduction<br>Factor | Minimum<br>Edge or<br>End Distance,<br><i>C<sub>min</sub></i> (in.) |         | lowable Loa<br>duction Fact |                  | Critical<br>Spacing,<br>S <sub>cr</sub> (in.) | Allowable<br>Load<br>Reduction<br>Factor | Minimum<br>Spacing,<br>S <sub>min</sub> (in.)     | Allowab<br>Reductio |        |  |  |
| 1101                                         |                                     | Load Di                                                             | rection                                  | Load Direction                                                      |         |                             |                  | Load D                                        | irection                                 | Load Direction                                    |                     |        |  |  |
|                                              |                                     | Tension or                                                          | Tension or                               | Tension or                                                          | Tension | She                         | ar <sup>10</sup> | Tension or                                    | Tension or                               | Tension or                                        | Tension             | Shear  |  |  |
|                                              |                                     | Shear                                                               | Shear                                    | Shear                                                               | IGHSIOH | Perp.                       | Parallel         | Shear                                         | Shear                                    | Shear                                             | 161131011           | Jileai |  |  |
| 3/8                                          | 3%                                  | 12                                                                  | 1.00                                     | 4                                                                   | 0.76    | 1.00                        | 1.00             | 8                                             | 1.00                                     | 4                                                 | 0.47                | 0.94   |  |  |
| 1/2                                          | 41/2                                | 12                                                                  | 1.00                                     | 4                                                                   | 1.00    | 0.92                        | 0.9              | 8                                             | 1.00                                     | 4                                                 | 0.60                | 0.96   |  |  |
| 5/8                                          | 5%                                  | 12                                                                  | 1.00                                     | 4                                                                   | 1.00    | 0.55                        | 0.86             | 8                                             | 1.00                                     | 4                                                 | 0.72                | 0.98   |  |  |
| 3/4                                          | 6½                                  | 12                                                                  | 1.00                                     | 4                                                                   | 1.00    | 0.55                        | 0.86             | 8                                             | 1.00                                     | 4                                                 | 0.85                | 1.00   |  |  |
| #3                                           | 3%                                  | 12                                                                  | 1.00                                     | 4                                                                   | 0.96    | 0.86                        | 1.00             | 8                                             | 1.00                                     | 4                                                 | 0.37                | 0.92   |  |  |
| #4                                           | 41/2                                | 12                                                                  | 1.00                                     | 4                                                                   | 1.00    | 0.71                        | 1.00             | 8                                             | 1.00                                     | 4                                                 | 0.69                | 0.96   |  |  |
| #5                                           | 5%                                  | 12                                                                  | 1.00                                     | 4                                                                   | 1.00    | 0.71                        | 1.00             | 8                                             | 1.00                                     | 4                                                 | 1.00                | 1.00   |  |  |

- Edge distance (C<sub>cr</sub> or C<sub>min</sub>) is the distance measured from anchor centerline to edge or end of CMU masonry wall. Refer to Figure 2 below for an illustration showing critical and minimum edge and end distances.
- 2. Anchor spacing (S<sub>cr</sub> or S<sub>min</sub>) is the distance measured from centerline to centerline of two anchors.
- Critical edge distance, C<sub>cr</sub>, is the least edge distance at which tabulated allowable load of an anchor is achieved where a load reduction factor equals 1.0 (no load reduction).
- Minimum edge distance, C<sub>min</sub>, is the least edge distance where an anchor has an allowable load capacity which shall be determined by multiplying the allowable loads assigned to anchors installed at critical edge distance, C<sub>cr</sub>, by the load reduction factors shown above.
- Critical spacing, S<sub>cr.</sub> is the least anchor spacing at which tabulated allowable load of an anchor is achieved such that anchor performance is not influenced by adjacent anchors.
- 6. Minimum spacing,  $S_{min}$ , is the least spacing where an anchors has an allowable load capacity, which shall be determined by multiplying the allowable loads assigned to anchors installed at critical spacing distance,  $S_{cr}$ , by the load reduction factors shown above.
- 7. Reduction factors are cumulative. Multiple reduction factors for more than one spacing or edge or end distance shall be calculated separately and multiplied.
- 8. Load reduction factor for anchors loaded in tension or shear with edge distances between critical and minimum shall be obtained by linear interpolation.
- 9. Load reduction factor for anchors loaded in tension with spacing between critical and minimum shall be obtained by linear interpolation.
- 10. Perpendicular shear loads act towards the edge or end. Parallel shear loads act parallel to the edge or end (see Figure 3 below). Perpendicular and parallel shear load reduction factors are cumulative when the anchor is located between the critical minimum edge and end distance.

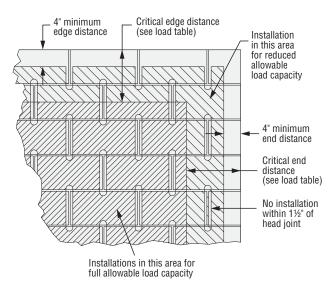



Figure 2. Allowable Anchor Placement in Grouted CMU Face Shell

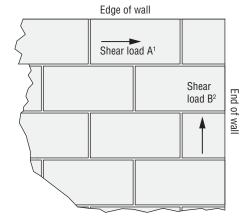



Figure 3. Direction of Shear Load in Relation to Edge and End of Wall

- Direction of Shear Load A is parallel to edge of wall and perpendicular to end of wall.
- 2. Direction of Shear Load B is parallel to end of wall and perpendicular to edge of wall.

<sup>\*</sup> See p. 13 for an explanation of the load table icons



### ET-HP Allowable Tension and Shear Loads — Threaded Rod Based on Steel Strength<sup>1</sup>

Threaded

Rod Diameter

> (in.) 3/2

> > 1/2

5/8

3/4

0.334

| a nou             | Daseu on                            | Steel Str                          | angur.                             |                                                |                                                       | _                | (contrast                             |                                                |  |
|-------------------|-------------------------------------|------------------------------------|------------------------------------|------------------------------------------------|-------------------------------------------------------|------------------|---------------------------------------|------------------------------------------------|--|
|                   | Tension                             | Load Based o                       | n Steel Stren                      | gth² (lb.)                                     | Shear Load Based on Steel Strength <sup>3</sup> (lb.) |                  |                                       |                                                |  |
| Tensile<br>Stress |                                     |                                    | Stainless Steel                    |                                                | ACTM                                                  | ASTMA            | Stainless Steel                       |                                                |  |
| Area<br>(in.²)    | ASTM F1554<br>Grade 36 <sup>4</sup> | ASTM A193<br>Grade B7 <sup>6</sup> | ASTM A193<br>Grade B6 <sup>5</sup> | ASTM A193<br>Grades B8<br>and B8M <sup>7</sup> | 11334                                                 | 193<br>Grade B76 | ASTM<br>A193<br>Grade B6 <sup>5</sup> | ASTM A193<br>Grades B8<br>and B8M <sup>7</sup> |  |
| 0.078             | 1,495                               | 3,220                              | 2,830                              | 1,930                                          | 770                                                   | 1,660            | 1,460                                 | 995                                            |  |
| 0.142             | 2,720                               | 5,860                              | 5,155                              | 3,515                                          | 1,400                                                 | 3,020            | 2,655                                 | 1,810                                          |  |
| 0.226             | 4,325                               | 9,325                              | 8,205                              | 5,595                                          | 2,230                                                 | 4,805            | 4,225                                 | 2,880                                          |  |

8.265

- 6,395 1. Allowable load shall be the lesser of bond values given on p. 51 and steel values in the table above.
- 2. Allowable Tension Steel Strength is based on the following equation:  $F_v = 0.33 \times F_u \times Tensile Stress Area.$
- 3. Allowable Shear Steel Strength is based on the following equation:  $F_v = 0.17 \times F_u \times \text{Tensile Stress Area.}$
- 4. Minimum specified tensile strength ( $F_{II} = 58,000 \text{ psi}$ ) of ASTM F1554, Grade 36 used to calculate allowable steel strength.
- 5. Minimum specified tensile strength ( $F_{II} = 110,000 \text{ psi}$ ) of ASTM A193, Grade B6 used to calculate allowable steel strenath.

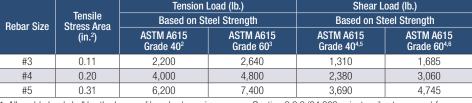
7.100

6,245

4.260

3.295

- 6. Minimum specified tensile strength ( $F_u = 125,000 \text{ psi}$ ) of ASTM A193, Grade B7 used to calculate allowable steel strength.
- Minimum specified tensile strength ( $F_u = 75,000 \text{ psi}$ ) of ASTM A193, Grades B8 and B8M used to calculate allowable steel strength.


IBC

### ET-HP Allowable Tension and Shear Loads — Deformed Reinforcing Bar Based on Steel Strength<sup>1</sup>

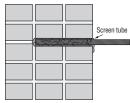
13,780

12.125

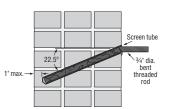




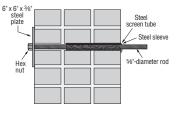
- 1. Allowable load shall be the lesser of bond values given on p. 51 and steel values in the table above.
- 2. Allowable Tension Steel Strength is based on AC58 Section 3.3.3 (20,000 psi x tensile stress area) for Grade 40 rebar.
- 3. Allowable Tension Steel Strength is based on AC58
- Section 3.3.3 (24.000 psi x tensile stress area) for Grade 60 rebar.
- 4. Allowable Shear Steel Strength is based on AC58 Section 3.3.3 ( $F_V = 0.17 \times F_u \times \text{Tensile Stress Area}$ ).
- F<sub>11</sub> = 70.000 psi for Grade 40 rebar.
- F<sub>II</sub> = 90,000 psi for Grade 60 rebar.


### ET-HP Allowable Tension and Shear Loads for Installations in Unreinforced Brick Masonry Walls -Minimum URM Wall Thickness is 13" (3 wvthes thick)

| Will in the trivial value of the territory                     |          |                      |                  |                                 |                 |                                         |                                         |  |  |
|----------------------------------------------------------------|----------|----------------------|------------------|---------------------------------|-----------------|-----------------------------------------|-----------------------------------------|--|--|
| Rod                                                            | Drill    | Embed.               | Min.<br>Edge/End | Min.<br>Vertical                | Min.<br>Horiz.  | Tension Load Based on URM Strength      | Shear Load Based<br>on URM Strength     |  |  |
| Dia.<br>in.<br>(mm)                                            | in. Dia. | Depth<br>in.<br>(mm) | Ďist.<br>in.     | Spacing<br>Dist.<br>in.<br>(mm) | Dist. in. (mm)  | Minimum Net Mortar<br>Strength = 50 psi | Minimum Net Mortar<br>Strength = 50 psi |  |  |
| ` ′                                                            |          |                      | (mm)             |                                 |                 | Allowable lb. (kN)                      | Allowable lb. (kN)                      |  |  |
| Configuration A (Simpson Strong-Tie® ETS Screen Tube Required) |          |                      |                  |                                 |                 |                                         |                                         |  |  |
| <b>3/4</b> (19.1)                                              | 1        | <b>8</b> (203)       | <b>24</b> (610)  | <b>18</b> (457)                 | <b>18</b> (457) | _                                       | <b>1,000</b> (4.4)                      |  |  |
|                                                                |          | Config               | uration B (S     | Simpson St                      | ong-Tie® E      | TS Screen Tube Required)                |                                         |  |  |
| <b>3/4</b> (19.1)                                              | 1        | 13<br>(330)          | <b>16</b> (406)  | <b>18</b> (457)                 | <b>24</b> (610) | <b>1,200</b> (5.3)                      | <b>1,000</b> (4.4)                      |  |  |
|                                                                | Config   | uration C (S         | Simpson Str      | ong-Tie® E                      | TS Screen 1     | Tube and AST Steel Sleeve               | Required)                               |  |  |
| <b>5%</b> (15.9)                                               | 1        | **                   | <b>24</b> (610)  | <b>18</b> (457)                 | <b>18</b> (457) | <b>1,200</b> (5.3)                      | <b>750</b> (3.3)                        |  |  |


Threaded rods must comply with ASTM F1554 Grade 36 minimum.

C-A-2018 @2018 SIMPSON STRONG-TIE COMPANY INC.


- All holes are drilled with a 1"-diameter carbide-tipped drill bit with the drill set in the rotation-only mode.
- The unreinforced brick walls must have a minimum thickness of 13 inches (three wythes of brick).
- The allowable load is applicable only where in-place shear tests indicate minimum net mortar strength of 50 psi.
- The allowable load for Configuration B and C anchors subjected to a combined tension and shear load is determined by assuming a straight-line relationship between allowable tension and shear.
- The anchors installed in unreinforced brick walls are limited to resisting seismic or wind forces only.
- Configuration A has a straight threaded rod or rebar embedded 8 inches into the wall with a 31/32"-diameter by 8-inch-long screen tube (part # ETS758). This configuration is designed to resist shear loads only.
- 8. Configuration B has a 3/4" threaded rod bent and installed at a 22.5-degree angle and installed 13 inches into the wall, to within 1-inch (maximum) of the exterior wall surface. This configuration is designed to resist tension and shear loads. The pre-bent threaded rod is installed with a 31/32" diameter by 13-inch-long screen tube (part # ETS7513).
- Configuration C is designed to resist tension and shear forces. It consists of a %"-diameter, ASTM F1554 Grade 36 threaded rod and an 8"-long sleeve (part # AST800) and a 31/32"-diameter by 8-inch-long screen tube (part # ETS758). The steel sleeve has a plastic plug in one end. A 6" by 6" by %" thick ASTM A 36 steel plate is located on the back face of the wall.
- 10. Special inspection requirements are determined by local jurisdiction and must be confirmed by the local building official.
- 11. Refer to in-service temperature sensitivity chart for allowable load adjustment for temperature.



Configuration A (Shear)



Configuration B (Tension and Shear)



Configuration C (Tension and Shear)

### Installation Instructions for Configuration C

- 1. Drill hole perpendicular to the wall to a depth of 8" with a 1"-diameter carbide-tipped drill bit (rotation-only mode)
- 2. Clean hole with oil-free compressed air and a nylon brush.
- 3. Fill 8" steel screen tube with mixed adhesive and insert into hole
- 4. Insert steel sleeve slowly into screen tube (adhesive will displace).
- 5. Allow adhesive to cure (see cure schedule).
- 6. Drill through plastic plug in (inside) end of steel sleeve with %" bit.
- 7. Drill completely through the wall with %" carbide-tipped concrete drill bit (rotation-only mode).
- 8. Insert %" rod through hole and attach metal plate and nut.

<sup>\*</sup> See p. 13 for an explanation of the load table icons.

# C-A-2018 @ 2018 SIMPSON STRONG-TIE COMPANY INC.

### **SET** Epoxy Adhesive



SET is a high-strength, non-shrink, epoxy-based adhesive formulated for anchoring and doweling threaded rod and rebar. Resin and hardener are dispensed and mixed simultaneously through the mixing nozzle.

### **Features**

- Code listed under the IBC/IRC for URM per ICC-ES ESR-1772
- Meets or exceeds the requirements of ASTM C881 specification for Type I and IV, Grade 3, Class C
- Cure times 24 hours at 65°F (18°C), 72 hours at 40°F (4°C)
- Easy hole-cleaning procedure no power-brushing required
- Suitable for use in damp or wet anchor sites
- When properly mixed, adhesive will be a uniform gray color
- Available in 22 oz. cartridge for application versatility
- Manufactured in the USA using global materials

### **Applications**

- Threaded rod anchoring and rebar doweling into concrete, masonry and URM (red brick)
- Pick-proof sealant around doors, windows and fixtures
- Paste-over for crack injection preparation
- Bonding hardened concrete to hardened concrete
- CalTrans and multiple DOT listings; refer to strongtie.com/DOT

### Codes

ICC-ES ESR-1772 (unreinforced masonry); Florida FL15730.5; AASHTO M-235 and ASTM C881 (Type I and IV, Grade 3, Class C); CalTrans Approved; Multiple DOT listings; NSF/ANSI Standard 61 (216 in.²/1,000 gal.)

### Chemical Resistance

See pp. 252-253

### Installation and Application Instructions

(See also pp. 100-105)

- Surfaces to receive epoxy must be clean.
- Base material temperature must be 40°F (4°C) or above at the time of installation. For best results, material should be 70° (21°C)-80°F (27°C) at time of application.
- To warm cold material, store cartridges in a warm, uniformly heated area or storage container. Do not immerse cartridges in water or use microwave to facilitate warming.
- Mixed material in nozzle can harden in 30 minutes at temperatures of 70°F (21°C) and above.

### Suggested Specifications

See **strongtie.com** for more information.



**SET Adhesive** 

# **SET** Epoxy Adhesive



### Test Criteria

Anchors installed with SET adhesive have been tested in accordance with ICC-ES Acceptance Criteria for Anchors in Unreinforced Masonry Elements (AC60).

| Property                    | Test Method | Result*                                             |
|-----------------------------|-------------|-----------------------------------------------------|
| Consistency                 | ASTM C881   | Non-sag/thixotropic paste                           |
| Heat deflection temperature | ASTM D648   | 136°F (58°C)                                        |
| Bond strength (moist cure)  | ASTM C882   | 3,218 psi (2 days)<br>3,366 psi (14 days)           |
| Water absorption            | ASTM D570   | 0.11% (24 hours)                                    |
| Compressive yield strength  | ASTM D695   | 5,065 psi (24 hours)<br>12,650 psi (7 days)         |
| Compressive modulus         | ASTM D695   | 439,000 psi (7 days)                                |
| Shore D Durometer           | ASTM D2240  | 81                                                  |
| Gel time (75°F)             | ASTM C881   | 30 minutes — 60 gram mass<br>60 minutes — thin film |
| VOC                         | ASTM D2369  | 6 g/L                                               |

<sup>\*</sup>Material and curing conditions: 73  $\pm$  2°F, unless otherwise noted.

### SET Cartridge System

| Model No.            | Capacity<br>(ounces) | Cartridge Type | Carton Quantity | Dispensing Tools  | Mixing Nozzle |
|----------------------|----------------------|----------------|-----------------|-------------------|---------------|
| SET22                | 22                   | Side-by-side   | 10              | EDT22S, EDTA22CKT | EMN22I        |
| SET22-N <sup>4</sup> | 22                   | Side-by-side   | 10              | EDTA22P           | EMN22I        |

- 1. Cartridge estimation guidelines are available at **strongtie.com/apps**.
- Detailed information on dispensing tools, mixing nozzles and other adhesive accessories is available at strongtie.com.
- 3. Use only Simpson Strong-Tie mixing nozzles in accordance with Simpson Strong-Tie instructions. Modification or improper use of mixing nozzle may impair SET adhesive performance.
- 4. One EMN22I mixing nozzle and one nozzle extension are supplied with each cartridge.

### Cure Schedule

| Base Materia | Cure Time |        |  |  |
|--------------|-----------|--------|--|--|
| °F           | °C        | (hrs.) |  |  |
| 40           | 4         | 72     |  |  |
| 65           | 18        | 24     |  |  |
| 85           | 29        | 20     |  |  |
| 90           | 32        | 16     |  |  |

For water-saturated concrete (including damp and water-filled holes), the cure times must be doubled.

### In-Service Temperature Sensitivity

| Base Materia | Percent |                |  |
|--------------|---------|----------------|--|
| °F           | °C      | Allowable Load |  |
| 40           | 4       | 100%           |  |
| 70           | 21      | 100%           |  |
| 110          | 43      | 100%           |  |
| 135          | 57      | 75%            |  |
| 150          | 66      | 44%            |  |
| 180          | 82      | 20%            |  |

 $<sup>1. \\</sup> Percent allowable load may be linearly interpolated for intermediate base material temperatures.$ 

<sup>2. °</sup>C = (°F-32) / 1.8



SET Allowable Tension Loads for Threaded Rod Anchors in Normal-Weight Concrete (continued on next page)

IBC 📫



| Rod                   | Drill       | Embed.               | Critical                      | Critical                |                       |                                          |                      | n Load<br>ond Strengtl | 1                                        |                      | Base                | Tension Load<br>d on Steel Strer |                      |  |
|-----------------------|-------------|----------------------|-------------------------------|-------------------------|-----------------------|------------------------------------------|----------------------|------------------------|------------------------------------------|----------------------|---------------------|----------------------------------|----------------------|--|
| Dia.<br>in.           | Bit<br>Dia. | Depth<br>in.         | Edge<br>Dist.<br>in.          | Spacing<br>Dist.<br>in. | f<br>(13.             | ' <sub>c</sub> ≥ 2,000 ps<br>8 MPa) Cond | si<br>erete          | f<br>(27.              | ' <sub>c</sub> ≥ 4,000 ps<br>6 MPa) Cond | si<br>crete          | F1554<br>Grade 36   | A193 GR B7                       | F593<br>304SS        |  |
| (mm)                  | in.         | (mm)                 | (mm)                          | (mm)                    | Ultimate<br>lb. (kN)  | Std. Dev.<br>lb. (kN)                    | Allow.<br>lb. (kN)   | Ultimate<br>lb. (kN)   | Std. Dev.<br>lb. (kN)                    | Allow.<br>lb. (kN)   | Allow.<br>lb. (kN)  | Allow.<br>lb. (kN)               | Allow.<br>lb. (kN)   |  |
|                       |             | <b>13/4</b> (44)     | <b>25/8</b> (67)              | <b>7</b> (178)          | <b>1,900</b> (8.5)    | <b>485</b> (2.2)                         | <b>475</b> (2.1)     | <b>1,900</b> (8.5)     | _                                        | <b>475</b> (2.1)     |                     |                                  |                      |  |
| <b>3/8</b> (9.5)      | 1/2         | <b>3½</b> (89)       | <b>51/4</b> (133)             | <b>14</b> (356)         | <b>10,200</b> (45.4)  | <b>119</b> (0.5)                         | <b>2,550</b> (11.3)  | <b>10,280</b> (45.7)   | <b>97</b> (0.4)                          | <b>2,570</b> (11.4)  | <b>2,105</b> (9.4)  | <b>4,535</b> (20.2)              | <b>3,630</b> (16.1)  |  |
|                       |             | <b>4½</b> (114)      | <b>6¾</b> (171)               | <b>18</b> (457)         | <b>10,613</b> (47.2)  | <b>84</b> (0.4)                          | <b>2,655</b> (11.8)  | <b>10,613</b> (47.2)   | _                                        | <b>2,655</b> (11.8)  |                     |                                  |                      |  |
|                       |             | <b>2</b> 1/8<br>(54) | <b>3¾</b> 6 (81)              | <b>8½</b> (216)         | <b>7,216</b> (32.1)   | <b>1,163</b> (5.2)                       | <b>1,805</b> (8.0)   | <b>7,216</b> (32.1)    | _                                        | <b>1,805</b> (8.0)   |                     |                                  |                      |  |
| <b>½</b> (12.7)       | 5/8         | <b>4½</b> (108)      | <b>6</b> % (162)              | <b>17</b> (432)         | <b>17,700</b> (78.7)  | <b>629</b> (2.8)                         | <b>4,425</b> (19.7)  | <b>18,400</b> (81.8)   | <b>788</b> (3.5)                         | <b>4,600</b> (20.5)  | <b>3,750</b> (16.7) | <b>8,080</b> (35.9)              | <b>6,470</b> (28.8)  |  |
|                       |             | <b>6</b> (152)       | <b>9</b> (229)                | <b>24</b> (610)         | <b>18,556</b> (82.5)  | <b>853</b> (3.8)                         | <b>4,640</b> (20.6)  | <b>18,556</b> (82.5)   | _                                        | <b>4,640</b> (20.6)  |                     |                                  |                      |  |
|                       |             | <b>2½</b> (64)       | <b>3¾</b> (95)                | <b>10</b> (254)         | <b>6,780</b> (30.2)   | <b>315</b> (1.4)                         | <b>1,695</b> (7.5)   | <b>6,780</b> (30.2)    | _                                        | <b>1,695</b> (7.5)   |                     |                                  | <b>10,120</b> (45.0) |  |
|                       |             | <b>3¾</b> (95)       | <b>5</b> % (143)              | <b>15</b> (381)         | _                     | _                                        | <b>4,190</b> (18.6)  | _                      | _                                        | <b>4,875</b> (21.7)  |                     | <b>12,660</b> (56.3)             |                      |  |
| <b>5%</b> (15.9)      | 3/4         | <b>5</b> (127)       | <b>7½</b> (191)               | <b>20</b> (508)         | <b>26,700</b> (118.8) | <b>1,121</b> (5.0)                       | <b>6,680</b> (29.7)  | <b>32,200</b> (143.2)  | <b>964</b> (4.3)                         | <b>8,050</b> (35.8)  | <b>5,875</b> (26.1) |                                  |                      |  |
|                       |             | <b>73/16</b> (183)   | <b>10</b> % (276)             | <b>28¾</b> (730)        | _                     | _                                        | <b>7,515</b> (33.4)  | _                      | _                                        | <b>8,200</b> (36.5)  |                     |                                  |                      |  |
|                       |             | <b>9</b> % (238)     | <b>14</b> 1/8 (359)           | <b>37½</b> (953)        | <b>33,402</b> (148.6) | <b>1,198</b> (5.3)                       | <b>8,350</b> (37.1)  | <b>33,402</b> (148.6)  | _                                        | <b>8,350</b> (37.1)  |                     |                                  |                      |  |
|                       |             | <b>3</b> % (86)      | <b>5½</b> <sub>16</sub> (129) | <b>13½</b> (343)        | <b>15,456</b> (68.8)  | <b>2,621</b> (11.7)                      | <b>3,865</b> (17.2)  | <b>15,456</b> (68.8)   | _                                        | <b>3,865</b> (17.2)  |                     |                                  |                      |  |
|                       |             | <b>5</b> ½16 (129)   | <b>7</b> 5/8<br>(194)         | <b>201/4</b> (514)      | _                     | _                                        | <b>7,195</b> (32.0)  | _                      | _                                        | <b>7,245</b> (32.2)  |                     |                                  |                      |  |
| <b>3/4</b> (19.1) 7/6 | 7/8         | <b>6¾</b> (171)      | <b>10</b> 1/8 (257)           | <b>27</b> (686)         | <b>42,100</b> (187.3) | <b>1,945</b> (8.7)                       | <b>10,525</b> (46.8) | <b>42,480</b> (189.0)  | <b>1,575</b> (7.0)                       | <b>10,620</b> (47.2) | <b>8,460</b> (37.6) | <b>18,230</b> (81.1)             | <b>12,400</b> (55.2) |  |
|                       |             | <b>9</b> (229)       | <b>13½</b> (343)              | <b>36</b> (914)         | _                     | _                                        | <b>11,220</b> (49.9) | _                      | _                                        | <b>11,265</b> (50.1) |                     |                                  |                      |  |
|                       |             | <b>11</b> 1/4 (286)  | <b>16</b> % (429)             | <b>45</b> (1,143)       | <b>47,634</b> (211.9) | <b>608</b> (2.7)                         | <b>11,910</b> (53.0) | <b>47,634</b> (211.9)  | _                                        | <b>11,910</b> (53.0) |                     |                                  |                      |  |

See notes on next page.

<sup>7</sup>/<sub>8</sub>"−1½" diameters on next page



SET Allowable Tension Loads for Threaded Rod Anchors in Normal-Weight Concrete (continued from previous page)



| Rod                 | Drill       | Embed.                                    | <sub>th</sub>   cuye                      | Critical                                      |                        | [                                        |                       | n Load<br>ond Strengt  | h                                        |                       | Base                  | Tension Load<br>d on Steel Strer | igth                  |
|---------------------|-------------|-------------------------------------------|-------------------------------------------|-----------------------------------------------|------------------------|------------------------------------------|-----------------------|------------------------|------------------------------------------|-----------------------|-----------------------|----------------------------------|-----------------------|
| Dia.<br>in.         | Bit<br>Dia. | Depth<br>in.                              | Edge<br>Dist.<br>in.                      | Spacing<br>Dist.<br>in.                       |                        | ' <sub>c</sub> ≥ 2,000 ps<br>8 MPa) Cond |                       | f<br>(27.              | ' <sub>c</sub> ≥ 4,000 ps<br>6 MPa) Cond | si<br>crete           | F1554<br>Grade 36     | A193 GR B7                       | F593<br>304SS         |
| (mm)                | in.         | (mm)                                      | (mm)                                      | (mm)                                          | Ultimate<br>lb. (kN)   | Std. Dev.<br>lb. (kN)                    | Allow.<br>lb. (kN)    | Ultimate<br>lb. (kN)   | Std. Dev.<br>lb. (kN)                    | Allow.<br>lb. (kN)    | Allow.<br>lb. (kN)    | Allow.<br>lb. (kN)               | Allow.<br>lb. (kN)    |
|                     |             | <b>37/8</b><br>(98)                       | <b>5<sup>13</sup>/<sub>16</sub></b> (148) | <b>15½</b> (394)                              | <b>19,120</b> (85.1)   | <b>1,239</b> (5.5)                       | <b>4,780</b> (21.3)   | <b>19,120</b> (85.1)   | _                                        | <b>4,780</b> (21.3)   |                       |                                  |                       |
|                     |             | <b>5<sup>13</sup>/<sub>16</sub></b> (148) | <b>8¾</b> (222)                           | <b>231/4</b> (591)                            | _                      | _                                        | <b>8,535</b> (38.0)   | _                      | _                                        | <b>9,250</b> (41.1)   |                       |                                  |                       |
| 7/8<br>(22.2)       | 1           | <b>7</b> 3/4<br>(197)                     | <b>11</b> % (295)                         | <b>31</b> (787)                               | <b>49,160</b> (218.7)  | <b>2,149</b> (9.6)                       | <b>12,290</b> (54.7)  | <b>54,880</b> (244.1)  | <b>1,050</b> (4.7)                       | <b>13,720</b> (61.0)  | <b>11,500</b> (51.2)  | <b>24,785</b> (110.2)            | <b>16,860</b> (75.0)  |
|                     |             | <b>10</b> 7/16 (265)                      | <b>15</b> % (397)                         | <b>41</b> <sup>3</sup> ⁄ <sub>4</sub> (1,060) | _                      | _                                        | <b>14,480</b> (64.4)  | _                      | _                                        | <b>15,195</b> (67.6)  |                       |                                  |                       |
|                     |             | <b>13</b> 1/8 (333)                       | <b>19</b> % (498)                         | <b>52½</b> (1,334)                            | <b>66,679</b> (296.6)  | <b>506</b> (2.3)                         | <b>16,670</b> (74.2)  | <b>66,679</b> (296.6)  | _                                        | <b>16,670</b> (74.2)  |                       |                                  |                       |
|                     |             | <b>4½</b> (114)                           | <b>6¾</b> (171)                           | <b>18</b> (457)                               | <b>20,076</b> (89.3)   | <b>2,388</b> (10.6)                      | <b>5,020</b> (22.3)   | <b>20,076</b> (89.3)   | _                                        | <b>5,020</b> (22.3)   |                       |                                  | <b>22,020</b> (97.9)  |
|                     |             | <b>6¾</b> (171)                           | <b>10</b> 1/8 (257)                       | <b>27</b> (686)                               | _                      | _                                        | <b>10,020</b> (44.6)  | _                      | _                                        | <b>10,640</b> (47.3)  |                       | <b>32,380</b> (144.0)            |                       |
| <b>1</b> (25.4)     | 11/8        | <b>9</b> (229)                            | <b>13½</b> (343)                          | <b>36</b> (914)                               | <b>60,060</b> (267.2)  | <b>5,472</b> (24.3)                      | <b>15,015</b> (66.8)  | <b>65,020</b> (289.2)  | <b>2,924</b> (13.0)                      | <b>16,255</b> (72.3)  | <b>15,025</b> (66.8)  |                                  |                       |
|                     |             | <b>12</b> (305)                           | <b>18</b> (457)                           | <b>48</b> (1,219)                             | _                      | _                                        | <b>17,810</b> (79.2)  | _                      | _                                        | <b>18,430</b> (82.0)  |                       |                                  |                       |
|                     |             | <b>15</b> (381)                           | <b>22½</b> (572)                          | <b>60</b> (1,524)                             | <b>82,401</b> (366.5)  | <b>6,432</b> (28.6)                      | <b>20,600</b> (91.6)  | <b>82,401</b> (366.5)  | _                                        | <b>20,600</b> (91.6)  |                       |                                  |                       |
|                     |             | <b>5</b> 1/8<br>(130)                     | <b>7</b> 3/4<br>(197)                     | <b>20½</b> (521)                              | <b>27,560</b> (122.6)  | _                                        | <b>6,890</b> (30.6)   | <b>27,560</b> (122.6)  | _                                        | <b>6,890</b> (30.6)   |                       |                                  |                       |
|                     |             | <b>7</b> 5/8<br>(194)                     | <b>11½</b> (292)                          | <b>30½</b> (775)                              | _                      | _                                        | <b>12,105</b> (53.8)  | _                      | _                                        | <b>12,500</b> (55.6)  |                       |                                  |                       |
| <b>1 1/8</b> (28.6) | 11/4        | <b>10</b> 1/8 (257)                       | <b>15</b> 1⁄4 (387)                       | <b>40½</b> (1,029)                            | <b>69,200</b> (307.8)  | _                                        | <b>17,300</b> (77.0)  | <b>72,340</b> (321.8)  | _                                        | <b>18,085</b> (80.4)  | <b>19,025</b> (84.6)  | <b>41,000</b> (182.4)            | <b>27,880</b> (124.0) |
|                     |             | <b>13½</b> (343)                          | <b>201/4</b> (514)                        | <b>54</b> (1,372)                             | _                      | _                                        | <b>21,380</b> (95.1)  | _                      | _                                        | <b>21,770</b> (96.8)  |                       |                                  |                       |
|                     |             | <b>16</b> % (429)                         | <b>25</b> % (645)                         | <b>67½</b> (1,715)                            | <b>101,820</b> (452.9) | _                                        | <b>25,455</b> (113.2) | <b>101,820</b> (452.9) | _                                        | <b>25,455</b> (113.2) |                       |                                  |                       |
|                     |             | <b>5</b> % (143)                          | <b>87/</b> 16 (214)                       | <b>22½</b> (572)                              | <b>35,858</b> (159.5)  | <b>2,389</b> (10.6)                      | <b>8,965</b> (39.9)   | <b>35,858</b> (159.5)  | _                                        | <b>8,965</b> (39.9)   |                       |                                  |                       |
|                     |             | <b>87/</b> 16 (214)                       | <b>12¾</b> (324)                          | <b>33¾</b> (857)                              | _                      | _                                        | <b>14,115</b> (62.8)  | _                      | _                                        | <b>14,115</b> (62.8)  |                       |                                  |                       |
| <b>1 ½</b> (31.8)   | 1%          | <b>11</b> 1/ <sub>4</sub> (286)           | <b>16</b> % (429)                         | <b>45</b> (1,143)                             | <b>77,045</b> (342.7)  | <b>7,024</b> (31.2)                      | <b>19,260</b> (85.7)  | <b>77,045</b> (342.7)  | _                                        | <b>19,260</b> (85.7)  | <b>23,490</b> (104.5) | <b>50,620</b> (225.2)            | <b>34,425</b> (153.1) |
|                     |             | <b>15</b> (381)                           | <b>22½</b> (572)                          | <b>60</b> (1,524)                             | _                      | _                                        | <b>24,965</b> (111.0) | _                      | _                                        | <b>24,965</b> (111.0) |                       |                                  |                       |
|                     |             | <b>18¾</b> (476)                          | <b>28</b> 1/8<br>(714)                    | <b>75</b> (1,905)                             | <b>122,681</b> (545.7) | <b>10,940</b> (48.7)                     | <b>30,670</b> (136.4) | <b>122,681</b> (545.7) | _                                        | <b>30,670</b> (136.4) |                       |                                  |                       |

1. Allowable load must be the lesser of the bond or steel strength.

- 2. The allowable loads listed under allowable bond are based on a safety factor of 4.0.
- 3. Refer to allowable load-adjustment factors for spacing and edge distance on pp. 68 and 70.
- 4. Refer to in-service temperature sensitivity chart for allowable load adjustment for temperature.
- 5. Anchors are permitted to be used within fire-resistive construction, provided the anchors resist wind or seismic loads only. For use in fire-resistive construction, the anchors can also be permitted to be used to resist gravity loads, provided special consideration has been given to fire-exposure conditions.
- Anchors are not permitted to resist tension forces in overhead or wall installations unless proper consideration is given to fire-exposure and elevated-temperature conditions.
- 7. Allowable load based on bond strength may be interpolated for concrete compressive strengths between 2,000 psi and 4,000 psi.

<sup>\*</sup> See p. 13 for an explanation of the load table icons.

SET Allowable Shear Loads for Threaded Rod Anchors in Normal-Weight Concrete

|            |          | <br>_ |
|------------|----------|-------|
| <b>IBC</b> | <b>→</b> |       |

|                      | Tiai VVCI                | Embed.                       | Critical             | Critical                        | Based on              | Shear Load<br>Concrete Edge                   | e Distance            | Base                  | Shear Load<br>ed on Steel Stre | ngth                  |
|----------------------|--------------------------|------------------------------|----------------------|---------------------------------|-----------------------|-----------------------------------------------|-----------------------|-----------------------|--------------------------------|-----------------------|
| Rod<br>Dia.<br>in.   | Drill Bit<br>Dia.<br>in. | Depth<br>in.                 | Edge<br>Dist.<br>in. | Spacing<br>Dist.<br>in.         | (13                   | f' <sub>c</sub> ≥ 2,000 psi<br>3.8 MPa) Concr | ete                   | F1554<br>Grade 36     | A193 GR B7                     | F593<br>304SS         |
| (mm)                 | ""                       | (mm)                         | (mm)                 | (mm)                            | Ultimate<br>lb. (kN)  | Std. Dev.<br>lb. (kN)                         | Allowable<br>lb. (kN) | Allowable<br>lb. (kN) | Allowable<br>lb. (kN)          | Allowable<br>lb. (kN) |
|                      |                          | <b>13/4</b><br>(44)          |                      | <b>25/8</b> (67)                | <b>4,573</b> (20.3)   | <b>317</b> (1.4)                              | <b>1,145</b> (5.1)    |                       |                                |                       |
| <b>3/8</b> (9.5)     | 1/2                      | <b>3½</b> (89)               | <b>5</b> ½ (133)     | <b>5</b> 1⁄ <sub>4</sub> (133)  | <b>6,935</b> (30.8)   | <b>965</b> (4.3)                              | <b>1,735</b> (7.7)    | <b>1,085</b> (4.8)    | <b>2,340</b> (10.4)            | <b>1,870</b> (8.3)    |
|                      |                          | <b>4½</b><br>(114)           |                      | <b>51/4</b> (133)               | _                     | _                                             | <b>1,735</b> (7.7)    |                       |                                |                       |
|                      |                          | <b>2</b> 1/8<br>(54)         |                      | <b>31/4</b> (83)                | <b>7,001</b> (31.1)   | <b>437</b> (1.9)                              | <b>1,750</b> (7.8)    |                       |                                | <b>3,330</b> (14.8)   |
| <b>½</b> (12.7)      | 5/8                      | <b>4½</b> (108)              | <b>6</b> % (162)     | <b>6</b> % (162)                | <b>11,116</b> (49.4)  | <b>1,696</b> (7.5)                            | <b>2,780</b> (12.4)   | <b>1,930</b> (8.6)    | <b>4,160</b> (18.5)            |                       |
|                      |                          | <b>6</b> (152)               |                      | <b>6</b> % (162)                | _                     | _                                             | <b>2,780</b> (12.4)   |                       |                                |                       |
|                      |                          | <b>2½</b> (64)               |                      | <b>3¾</b> (95)                  | <b>14,427</b> (64.2)  | <b>826</b> (3.7)                              | <b>3,605</b> (16.0)   |                       |                                |                       |
| <b>5%</b> (15.9)     | 3/4                      | <b>5</b> (127)               | <b>7½</b> (191)      | <b>7½</b> (191)                 | <b>19,501</b> (86.7)  | <b>1,027</b> (4.6)                            | <b>4,875</b> (21.7)   | <b>3,025</b> (13.5)   | <b>6,520</b> (29.0)            | <b>5,220</b> (23.2)   |
|                      |                          | <b>9</b> %<br>(238)          |                      | <b>7½</b> (191)                 | _                     | _                                             | <b>4,875</b> (21.7)   |                       |                                |                       |
|                      |                          | <b>3</b> % (86)              | <b>10</b> 1/8 (257)  | <b>5</b> 1/8<br>(130)           | <b>21,180</b> (94.2)  | <b>942</b> (4.2)                              | <b>5,295</b> (23.6)   | <b>4,360</b> (19.4)   |                                | <b>6,385</b> (28.4)   |
| <b>3/4</b> (19.1)    | 7/8                      | <b>6¾</b> (171)              |                      | <b>10</b> 1/8 (257)             | <b>25,244</b> (112.3) | <b>2,538</b> (11.3)                           | <b>6,310</b> (28.1)   |                       | <b>9,390</b> (41.8)            |                       |
|                      |                          | <b>111/4</b> (286)           |                      | <b>10</b> 1/8 (257)             | _                     | _                                             | <b>6,310</b> (28.1)   |                       |                                |                       |
|                      |                          | <b>3</b> %<br>(98)           |                      | <b>5</b> % (149)                | <b>28,333</b> (126.0) | <b>2,406</b> (10.7)                           | <b>7,085</b> (31.5)   |                       |                                |                       |
| 7/8<br>(22.2)        | 1                        | <b>7¾</b><br>(197)           | <b>11</b> % (295)    | <b>11%</b> (295)                | <b>33,533</b> (149.2) | <b>2,793</b> (12.4)                           | <b>8,385</b> (37.3)   | <b>5,925</b> (26.4)   | <b>12,770</b> (56.8)           | <b>8,685</b> (38.6)   |
|                      |                          | <b>13</b> 1/8<br>(333)       |                      | <b>11</b> 5/8 (295)             | _                     | _                                             | <b>8,385</b> (37.3)   |                       |                                |                       |
|                      |                          | <b>4½</b><br>(114)           |                      | <b>6¾</b> (171)                 | <b>30,520</b> (135.8) | <b>2,166</b> (9.6)                            | <b>7,630</b> (33.9)   |                       |                                |                       |
| <b>1</b> (25.4)      | 11/8                     | <b>9</b> (229)               | <b>13½</b> (343)     | <b>13½</b> (343)                | <b>50,187</b> (223.2) | <b>2,176</b> (9.7)                            | <b>12,545</b> (55.8)  | <b>7,740</b> (34.4)   | <b>16,680</b> (74.2)           | <b>11,345</b> (50.5)  |
|                      |                          | <b>15</b> (381)              |                      | <b>13½</b> (343)                | _                     | _                                             | <b>12,545</b> (55.8)  |                       |                                |                       |
|                      |                          | <b>5</b> 1/8<br>(130)        |                      | <b>7</b> 3/4<br>(197)           | <b>41,325</b> (183.8) |                                               | <b>10,330</b> (46.0)  |                       |                                |                       |
| <b>1 </b> 1/8 (28.6) | 11/4                     | <b>10</b> 1/8<br>(257)       | <b>15</b> 1/4 (387)  | <b>15</b> 1⁄ <sub>4</sub> (387) | <b>58,285</b> (259.3) | _                                             | <b>14,570</b> (64.8)  | <b>9,800</b> (43.6)   | <b>21,125</b> (94.0)           | <b>14,365</b> (63.9)  |
|                      |                          | <b>16</b> % (429)            |                      | <b>151/4</b> (387)              | _                     | _                                             | <b>14,570</b> (64.8)  |                       |                                |                       |
|                      |                          | (429)<br><b>5</b> %<br>(143) | <b>8½</b> (216)      | <b>52,130</b> (231.9)           | <b>3,969</b> (17.7)   | <b>13,035</b> (58.0)                          |                       |                       |                                |                       |
| <b>1 1/4</b> (31.8)  | 1%                       | <b>111/4</b> (286)           | 4 167/8              | <b>16</b> % (429)               | <b>66,383</b> (295.3) | <b>3,948</b> (17.6)                           | <b>16,595</b> (73.8)  | <b>12,100</b> (53.8)  | <b>26,075</b> (116.0)          | <b>17,730</b> (78.9)  |
|                      |                          | <b>18¾</b> (476)             |                      | <b>16</b> % (429)               | _                     | _                                             | <b>16,595</b> (73.8)  |                       |                                |                       |

<sup>1.</sup> Allowable load must be the lesser of the load based on concrete edge distance or steel strength.

<sup>2.</sup> The allowable loads based on concrete edge distance are based on a safety factor of 4.0.

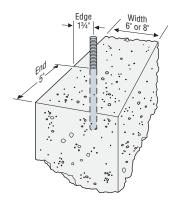
<sup>3.</sup> Refer to allowable load-adjustment factors for spacing and edge distance on pp. 69 and 71.

<sup>4.</sup> Refer to in-service temperature sensitivity chart for allowable load adjustment for temperature.

<sup>5.</sup> Anchors are permitted to be used within fire-resistive construction, provided the anchors resist wind or seismic loads only. For use in fire-resistive construction, the anchors can also be permitted to be used to resist gravity loads, provided special consideration has been given to fire-exposure conditions.

<sup>\*</sup> See p. 13 for an explanation of the load table icons.

# C-A-2018 @ 2018 SIMPSON STRONG-TIE COMPANY INC.


### **SET** Design Information — Concrete

# SIMPSON Strong-Tie

# SET Allowable Tension Loads for Threaded Rod Anchors in Normal-Weight Concrete Stemwall

|                                            |     | Embed.            | Stemwall         | Min.                   | Min.                |                                    | n Load<br>ond Strength | Tension Load<br>Based on Steel Strength |  |
|--------------------------------------------|-----|-------------------|------------------|------------------------|---------------------|------------------------------------|------------------------|-----------------------------------------|--|
| Rod Dia. Drill Bit<br>in. Dia.<br>(mm) in. |     | Depth<br>in.      | Width<br>in.     | Edge<br>Dist.<br>in.   | End<br>Dist.<br>in. | f' <sub>c</sub> ≥ 2,¦<br>(17.2 MPa | 500 psi<br>) Concrete  | F1554 Grade 36                          |  |
|                                            |     | (mm)              | (mm)             | (mm)                   | (mm)                | Ultimate<br>lb. (kN)               | Allowable<br>lb. (kN)  | Allowable<br>lb. (kN)                   |  |
| <b>5%</b> (15.9)                           | 3/4 | <b>10</b> (254.0) | <b>6</b> (152.4) | <b>1</b> 3/4<br>(44.5) | <b>5</b> (127.0)    | <b>13,634</b> (60.6)               | <b>3,410</b> (15.2)    | <b>5,875</b> (26.1)                     |  |
| 7/8<br>(22.2)                              | 1   | <b>15</b> (381.0) | <b>8</b> (203.2) | <b>13/4</b> (44.5)     | <b>5</b> (127.0)    | <b>22,664</b> (100.8)              | <b>5,665</b> (25.2)    | <b>11,500</b> (51.2)                    |  |

- 1. Allowable load must be the lesser of the bond or steel strength.
- 2. The allowable loads listed under allowable bond are based on a safety factor of 4.0.
- 3. Refer to in-service temperature sensitivity chart for allowable load adjustment for temperature.
- 4. Anchors are permitted to be used within fire-resistive construction, provided the anchors resist wind or seismic loads only. For use in fire-resistive construction, the anchors can also be permitted to be used to resist gravity loads, provided special consideration has been given to fire-exposure conditions.



Edge and End Distances for Threaded Rod in Concrete Foundation Stemwall

# SET Allowable Shear Loads for Threaded Rod Anchors in Normal-Weight Concrete, Load Applied Parallel to Concrete Edge



|                         |                          | Embed.            | Min.                 | Min.                | Based on                                           | Shear Load<br>Concrete Edge | Distance              | Shear Load<br>Based on Steel Strength |  |
|-------------------------|--------------------------|-------------------|----------------------|---------------------|----------------------------------------------------|-----------------------------|-----------------------|---------------------------------------|--|
| Rod Dia.<br>in.<br>(mm) | Drill Bit<br>Dia.<br>in. | Depth<br>in.      | Edge<br>Dist.<br>in. | End<br>Dist.<br>in. | f' <sub>c</sub> ≥ 2,000 psi<br>(13.8 MPa) Concrete |                             |                       | F1554 Grade 36                        |  |
|                         |                          | (mm)              | (mm)                 | (mm)                | Ultimate<br>lb. (kN)                               | Std. Dev.<br>lb. (kN)       | Allowable<br>lb. (kN) | Allowable<br>lb. (kN)                 |  |
| <b>½</b> (12.7)         | 5/8                      | <b>4½</b> (108.0) | <b>13/4</b> (44.5)   | <b>8½</b> (219.9)   | <b>8,496</b> (37.8)                                | <b>654</b> (2.9)            | <b>2,125</b> (9.5)    | <b>1,930</b> (8.6)                    |  |
| <b>5%</b> (15.9)        | 3/4                      | <b>5</b> (127.0)  | <b>13/4</b> (44.5)   | <b>10</b> (254.0)   | <b>8,857</b> (39.4)                                | <b>225</b> (1.0)            | <b>2,215</b> (9.9)    | <b>3,025</b> (13.5)                   |  |

- 1. Allowable load must be the lesser of the load based on concrete edge distance, steel strength or wood bearing capacity.
- 2. The allowable loads based on concrete edge distance are based on a safety factor of 4.0.
- 3. Refer to allowable load-adjustment factors for spacing on p. 71.
- 4. Refer to in-service temperature sensitivity chart for allowable load adjustment for temperature.
- 5. Anchors are permitted to be used within fire-resistive construction, provided the anchors resist wind or seismic loads only. For use in fire-resistive construction, the anchors can also be permitted to be used to resist gravity loads, provided special consideration has been given to fire-exposure conditions.

<sup>\*</sup> See p. 13 for an explanation of the load table icons.

# Strong-I

# **SET** Design Information — Concrete

SET Allowable Tension Loads for Rebar Dowels in Normal-Weight Concrete





| l                     | Embed.                          | Critical                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Critical                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | В                                                                                                                                     | Tensio<br>Based on Bo                                 | on Load<br>ond Strengt                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | th                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Tension Load<br>Based on Steel Strength                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|-----------------------|---------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Dia.                  | in.                             | Dist.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Dist.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | f'<br>(13.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | <sub>c</sub> ≥ 2,000 p<br>3 MPa) Con                                                                                                  | si<br>crete                                           | f'<br>(27.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | <sub>c</sub> ≥ 4,000 p<br>6 MPa) Con                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | si<br>crete                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ASTM A615<br>Grade 60 Rebar                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| ""                    | ()                              | (mm)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | (mm)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Ultimate<br>Ib. (kN)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Std. Dev.<br>Ib. (kN)                                                                                                                 | Allow.<br>lb. (kN)                                    | Ultimate<br>lb. (kN)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Std. Dev.<br>lb. (kN)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Allow.<br>lb. (kN)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Allowable<br>lb. (kN)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 5/                    | <b>4½</b> (108)                 | <b>6</b> % (162)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | <b>17</b> (432)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | <b>16,480</b> (73.3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | <b>245</b> (1.1)                                                                                                                      | <b>4,120</b> (18.3)                                   | <b>18,320</b> (81.5)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | <b>560</b> (2.5)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | <b>4,580</b> (20.4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 4,800                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 7/8                   | <b>6</b> (152)                  | <b>9</b> (229)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | <b>24</b> (610)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | <b>19,360</b> (86.1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | <b>678</b> (3.0)                                                                                                                      | <b>4,840</b> (21.5)                                   | <b>19,360</b> (86.1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | <b>4,840</b> (21.5)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | (Ź1.4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 3/                    | <b>5</b> (127)                  | <b>7½</b> (191)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | <b>20</b> (508)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | <b>24,600</b> (109.4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | <b>2,598</b> (11.6)                                                                                                                   | <b>6,150</b> (27.4)                                   | <b>26,040</b> (115.8)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | <b>1,740</b> (7.7)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | <b>6,510</b> (29.0)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 7,440                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 9/4                   | <b>9</b> % (238)                | <b>14</b> 1/8 (359)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | <b>37½</b> (953)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | <b>48,380</b> (215.2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | <b>2,841</b> (12.6)                                                                                                                   | <b>12,095</b> (53.8)                                  | <b>48,380</b> (215.2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | <b>12,095</b> (53.8)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | (33.1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 7/                    | <b>6¾</b> (171)                 | <b>10</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | <b>27</b> (686)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | <b>38,380</b> (170.7)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | <b>4,044</b> (18.0)                                                                                                                   | <b>9,595</b> (42.7)                                   | <b>40,500</b> (180.2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | <b>1,533</b> (6.8)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | <b>10,125</b> (45.0)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 10,560                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| (19.1)                | <b>11</b> 1/4 (286)             | <b>16</b> % (429)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <b>45</b> (1,143)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | <b>65,020</b> (289.2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | <b>3,152</b> (14.0)                                                                                                                   | <b>16,255</b> (72.3)                                  | <b>65,020</b> (289.2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | <b>16,255</b> (72.3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | (47.0)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 4                     | <b>7</b> 3/4<br>(197)           | <b>11</b> % (295)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <b>31</b> (787)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | <b>47,760</b> (212.4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | <b>1,266</b> (5.6)                                                                                                                    | <b>11,940</b> (53.1)                                  | <b>47,760</b> (212.4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | <b>11,940</b> (53.1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 14.400                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| '                     | <b>13</b> 1/ <sub>8</sub> (333) | <b>19</b> % (498)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <b>52½</b> (1,334)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | <b>81,560</b> (362.8)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | <b>3,575</b> (15.9)                                                                                                                   | <b>20,390</b> (90.7)                                  | <b>81,560</b> (362.8)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | <b>20,390</b> (90.7)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | (64.1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 11/                   | <b>9</b> (229)                  | <b>13½</b> (343)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | <b>36</b> (914)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | <b>53,680</b> (238.8)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | _                                                                                                                                     | <b>13,420</b> (59.7)                                  | <b>53,680</b> (238.8)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | <b>13,420</b> (59.7)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 18,960                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| I 1/8                 | <b>15</b> (381)                 | <b>22½</b> (572)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | <b>60</b> (1,524)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | <b>94,240</b> (419.2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | <b>7,520</b> (33.5)                                                                                                                   | <b>23,560</b> (104.8)                                 | <b>94,240</b> (419.2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | <b>23,560</b> (104.8)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | (84.3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 11/                   | <b>10</b>                       | <b>15</b> 1⁄4 (387)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | <b>40½</b> (1,029)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | <b>53,680</b> (238.8)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | <b>7,977</b> (35.5)                                                                                                                   | <b>13,420</b> (59.7)                                  | <b>53,680</b> (238.8)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | <b>13,420</b> (59.7)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 24,000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 1 1/4                 | <b>16</b> % (429)               | <b>25</b> % (645)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <b>67½</b> (1,715)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | <b>111,460</b> (495.8)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | <b>5,753</b> (25.6)                                                                                                                   | <b>27,865</b> (123.9)                                 | <b>111,460</b> (495.8)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | <b>27,865</b> (123.9)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | (106.8)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 11/                   | <b>11</b> 1/4 (286)             | <b>16</b> % (429)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <b>45</b> (1,143)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | <b>76,000</b> (338.1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | <b>1,408</b> (6.3)                                                                                                                    | <b>19,000</b> (84.5)                                  | <b>76,000</b> (338.1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | <b>19,000</b> (84.5)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 30,480                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| # <b>10</b> (31.8) 1½ | <b>18¾</b> (476)                | <b>28</b> (711)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | <b>75</b> (1,905)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | <b>125,840</b> (559.8)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | <b>9,551</b> (42.5)                                                                                                                   | <b>31,460</b> (139.9)                                 | <b>125,840</b> (559.8)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | <b>31,460</b> (139.9)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | (135.6)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 15/                   | <b>12</b> % (314)               | <b>18</b> 5% (473)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | <b>49½</b> (1,257)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | <b>87,500</b> (389.2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | <b>3,498</b> (15.6)                                                                                                                   | <b>21,875</b> (97.3)                                  | <b>87,500</b> (389.2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | <b>21,875</b> (97.3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 37,440                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 1 78                  | 15% 205% 28 82½ 132,080 11,2    | <b>11,297</b> (50.3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | <b>33,020</b> (146.9)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | <b>132,080</b> (587.5)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | _                                                                                                                                     | <b>33,020</b> (146.9)                                 | (166.5)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                       | 7/8  1  11/4  11/2              | Drill Bit Dia. in.         Depth in. (mm)           \$\frac{41/4}{(108)}\$         6           \$(152)\$         5           \$\frac{63/4}{(171)}\$         111/4           \$(288)\$         63/4           \$(171)\$         111/4           \$(286)\$         73/4           \$(197)\$         131/6           \$(333)\$         9           \$(229)\$         15           \$(381)\$         101/6           \$(257)\$         167/6           \$(429)\$         111/4           \$(286)\$         183/4           \$(476)\$         123/6           \$(314)\$         205/6 | Drill Bit Dia. in.         Depth in. (mm)         Edge Dist. in. (mm)           %         4¼         6%           6         9 (152)         (229)           3/4         5/8         (162)           6         9 (152)         (229)           5         7½         (191)           9%         14½         (238)           (238)         (359)           6%         10½         (257)           11¼         16½         (257)           11¼         16½         (299)           13½         (197)         (295)           13½         (197)         (295)           13½         (229)         (343)           1½         (381)         (572)           1½         (257)         (387)           1½         (257)         (387)           1½         (257)         (387)           1½         (257)         (387)           1½         (286)         (429)           1½         (286)         (429)           1½         (286)         (429)           1½         (286)         (429)           1½         (286)         (429) <td>Drill Bit Dia. in.         Depth in. (mm)         Edge Dist. in. (mm)         Spacing Dist. in. (mm)           %         4¼ 6% (162)         17 (432)           6 9 24 (152)         (229)         (610)           3/4         5, 7½ 20 (191)         20 (508)           9% 14½ (238)         (359)         (953)           6% (171)         10½ (257)         (686)           11¼ 16% (286)         429)         (1,143)           1         13½ (295)         (787)           13½ (333)         498)         (1,334)           9 (229)         (343)         (914)           1½ (257)         (387)         (1,029)           1¼         15¼ (257)         (387)           1½ (257)         (387)         (1,029)           1¼         15¼ (257)         (387)           1½ (286)         (429)         (1,524)           1¼         16½ (257)         (387)           1½ (286)         (429)         (1,029)           1½ (286)         (429)         (1,143)           1½ (286)         (429)         (1,143)           1½ (286)         (429)         (1,143)           1½ (286)         (429)         (1,143)           1½ (</td> <td>  Drill Bit Dia. in. (mm)   Edge Dist. in. (mm)   Ultimate Ib. (kN)    </td> <td>  Drill Bit Dia. in. in. in. in. in. in. in. in. in. in</td> <td>  Drill Bit Dia. in.   Critical Edge Dist. in.   (mm)   Dist. in.   (in. in.   (i</td> <td>  Drill Bit   Dia.   in.   (mm)   Edge   Dist.   in.   (mm)   (mm)   Dist.   in.   (mm)   (mm)   Dist.   in.   (mm)   (mm)   (mm)   Dist.   in.   (mm)   (mm)   (mm)   (mm)   Ultimate   Dist.   (in. mm)   (in. mm)   (in. mm)   Ultimate   Dist.   (in. mm)   Dist.   (in. mm)   (in. mm)   Ultimate   Dist.   (in. mm)   Dist.   (in. mm)  </td> <td>  Drill Bit Dia. in.   In.   Embed.   Depth in. (mm)   Dist. in. (in. (mm)   Dist. in. (mm)   Dist. in. (in. (mm)   Dist. in. (in. (mm)   Dist. in. (in. (in. in. (in. in. (in. in. (in. in. (in. in. (in. in. (i</td> <td>  Prill Bit Dia.   In.   In.</td> | Drill Bit Dia. in.         Depth in. (mm)         Edge Dist. in. (mm)         Spacing Dist. in. (mm)           %         4¼ 6% (162)         17 (432)           6 9 24 (152)         (229)         (610)           3/4         5, 7½ 20 (191)         20 (508)           9% 14½ (238)         (359)         (953)           6% (171)         10½ (257)         (686)           11¼ 16% (286)         429)         (1,143)           1         13½ (295)         (787)           13½ (333)         498)         (1,334)           9 (229)         (343)         (914)           1½ (257)         (387)         (1,029)           1¼         15¼ (257)         (387)           1½ (257)         (387)         (1,029)           1¼         15¼ (257)         (387)           1½ (286)         (429)         (1,524)           1¼         16½ (257)         (387)           1½ (286)         (429)         (1,029)           1½ (286)         (429)         (1,143)           1½ (286)         (429)         (1,143)           1½ (286)         (429)         (1,143)           1½ (286)         (429)         (1,143)           1½ ( | Drill Bit Dia. in. (mm)   Edge Dist. in. (mm)   Ultimate Ib. (kN) | Drill Bit Dia. in. in. in. in. in. in. in. in. in. in | Drill Bit Dia. in.   Critical Edge Dist. in.   (mm)   Dist. in.   (in. in.   (i | Drill Bit   Dia.   in.   (mm)   Edge   Dist.   in.   (mm)   (mm)   Dist.   in.   (mm)   (mm)   Dist.   in.   (mm)   (mm)   (mm)   Dist.   in.   (mm)   (mm)   (mm)   (mm)   Ultimate   Dist.   (in. mm)   (in. mm)   (in. mm)   Ultimate   Dist.   (in. mm)   Dist.   (in. mm)   (in. mm)   Ultimate   Dist.   (in. mm)   Dist.   (in. mm) | Drill Bit Dia. in.   In.   Embed.   Depth in. (mm)   Dist. in. (in. (mm)   Dist. in. (mm)   Dist. in. (in. (mm)   Dist. in. (in. (mm)   Dist. in. (in. (in. in. (in. in. (in. in. (in. in. (in. in. (in. in. (i | Prill Bit Dia.   In.   In. |

- 1. Allowable load must be the lesser of the bond or steel strength.
- 2. The allowable loads listed under allowable bond are based on a safety factor of 4.0.
- 3. Refer to allowable load-adjustment factors for spacing and edge distance on pp. 68 and 70.
- 4. Refer to in-service temperature sensitivity chart for allowable load adjustment for temperature.
- 5. Anchors are permitted to be used within fire-resistive construction, provided the anchors resist wind or seismic loads only. For use in fire-resistive construction, the anchors can also be permitted to be used to resist gravity loads, provided special consideration has been given to fire-exposure conditions.
- 6. Anchors are not permitted to resist tension forces in overhead or wall installations unless proper consideration is given to fire exposure and elevated-temperature conditions.
- 7. Allowable load based on bond strength may be interpolated for concrete compressive strengths between 2,000 psi and 4,000 psi.



SET Allowable Shear Loads for Rebar Dowels in Normal-Weight Concrete

| IBC | 578 | <b>▶</b> |
|-----|-----|----------|
|     |     |          |





| Rebar       |                          | Embed.               | Critical             | Critical                | Based o                | Shear Load<br>on Concrete Edge | Distance             | Shear Load<br>Based on Steel Strength |  |  |  |     |                       |                    |                      |       |
|-------------|--------------------------|----------------------|----------------------|-------------------------|------------------------|--------------------------------|----------------------|---------------------------------------|--|--|--|-----|-----------------------|--------------------|----------------------|-------|
| Size<br>No. | Drill Bit<br>Dia.<br>in. | Depth<br>in.         | Edge<br>Dist.<br>in. | Spacing<br>Dist.<br>in. | f¹ <sub>c</sub> ≥ 2,00 | 00 psi (13.8 MPa)              | ) Concrete           | ASTM A615<br>Grade 60 Rebar           |  |  |  |     |                       |                    |                      |       |
| (mm)        |                          | (mm)                 | (mm)                 | (mm)                    | Ultimate<br>lb. (kN)   | Std. Dev.<br>lb. (kN)          | Allow.<br>lb. (kN)   | Allowable<br>lb. (kN)                 |  |  |  |     |                       |                    |                      |       |
| #4          | 5/8                      | <b>4½</b> (108)      | 6%                   | 6%                      | <b>15,156</b> (67.4)   | <b>542</b> (2.4)               | <b>3,790</b> (16.9)  | 3,060                                 |  |  |  |     |                       |                    |                      |       |
| (12.7)      | 78                       | <b>6</b> (152)       | (162)                | (162)                   | <b>15,156</b> (67.4)   | _                              | <b>3,790</b> (16.9)  | (13.6)                                |  |  |  |     |                       |                    |                      |       |
| #5          | 3/4                      | <b>5</b> (127)       | 7½                   | 71/2                    | <b>24,245</b> (107.8)  | <b>1,121</b> (5.0)             | <b>6,060</b> (27.0)  | 4,740                                 |  |  |  |     |                       |                    |                      |       |
| (15.9)      | 94                       | <b>9</b> %<br>(238)  | (191)                | (191)                   | <b>24,245</b> (107.8)  | _                              | <b>6,060</b> (27.0)  | (21.1)                                |  |  |  |     |                       |                    |                      |       |
| #6          | 7/8                      | <b>6¾</b> (171)      | 101//8               | 101/8                   | <b>33,195</b> (147.7)  | <b>2,314</b> (10.3)            | <b>8,300</b> (36.9)  | 6,730                                 |  |  |  |     |                       |                    |                      |       |
| (19.1)      | '/8                      | <b>11</b> 1/4 (286)  | (257)                | (257)                   | <b>33,195</b> (147.7)  | _                              | <b>8,300</b> (36.9)  | (29.9)                                |  |  |  |     |                       |                    |                      |       |
| #7          | 1                        | <b>7¾</b><br>(197)   | 11%                  |                         |                        |                                |                      |                                       |  |  |  | 11% | <b>47,017</b> (209.1) | <b>2,227</b> (9.9) | <b>11,755</b> (52.3) | 9,180 |
| (22.2)      | ľ                        | <b>13</b> 1/8 (333)  | (295)                | (295)                   | <b>47,017</b> (209.1)  | _                              | <b>11,755</b> (52.3) | (40.8)                                |  |  |  |     |                       |                    |                      |       |
| #8          | 11/8                     | <b>9</b> (229)       | 13½                  | 13½                     | <b>58,880</b> (261.9)  | _                              | <b>14,720</b> (65.5) | 12,085                                |  |  |  |     |                       |                    |                      |       |
| (25.4)      | 1 78                     | <b>15</b> (381)      | (343)                | (343)                   | <b>58,880</b> (261.9)  | _                              | <b>14,720</b> (65.5) | (53.8)                                |  |  |  |     |                       |                    |                      |       |
| #9          | 11/4                     | <b>10</b> 1/8 (257)  | 151/4                | 151⁄4                   | <b>58,880</b> (261.9)  | <b>1,487</b> (6.6)             | <b>14,720</b> (65.5) | 15,300                                |  |  |  |     |                       |                    |                      |       |
| (28.6)      | 1 74                     | <b>16</b> % (429)    | (387)                | (387)                   | <b>58,880</b> (261.9)  | _                              | <b>14,720</b> (65.5) | (68.1)                                |  |  |  |     |                       |                    |                      |       |
| #10         | 114                      | <b>11</b> 1/4 (286)  | 167/8                | 167⁄8                   | <b>65,840</b> (292.9)  | <b>7,120</b> (31.7)            | <b>16,460</b> (73.2) | 19,430                                |  |  |  |     |                       |                    |                      |       |
| (31.8)      | 1½                       | <b>18¾</b> (476)     | (429)                | (429)                   | <b>65,840</b> (292.9)  | _                              | <b>16,460</b> (73.2) | (86.4)                                |  |  |  |     |                       |                    |                      |       |
| #11         | <b>#11</b> (34.9) 1%     | <b>12</b> %<br>(314) | 185%                 | 185%                    | <b>81,400</b> (362.1)  | <b>9,596</b> (42.7)            | <b>20,350</b> (90.5) | 23,870                                |  |  |  |     |                       |                    |                      |       |
| (34.9)      |                          | <b>20</b> 5/8 (524)  | (473)                | (473)                   | <b>81,400</b> (362.1)  | _                              | <b>20,350</b> (90.5) | (106.2)                               |  |  |  |     |                       |                    |                      |       |

<sup>1.</sup> Allowable load must be the lesser of the load based on concrete edge distance or steel strength.

<sup>2.</sup> The allowable loads based on concrete edge distance are based on a safety factor of 4.0.

<sup>3.</sup> Refer to allowable load-adjustment factors for spacing and edge distance on pp. 71 and 72.

<sup>4.</sup> Refer to in-service temperature sensitivity chart for allowable load adjustment for temperature.

<sup>5.</sup> Anchors are permitted to be used within fire-resistive construction, provided the anchors resist wind or seismic loads only. For use in fire-resistive construction, the anchors can also be permitted to be used to resist gravity loads, provided special consideration has been given to fire-exposure conditions.

# C-A-2018 @ 2018 SIMPSON STRONG-TIE COMPANY INC.

## **SET** Design Information — Concrete



# SET Allowable Tension Loads for Threaded Rod Anchors in Sand-Lightweight Concrete









| Rod                 |                          |                      | Critical             | Critical                |                          | ension Load Ba<br>on Bond Streng |                       |                       | Tension Load Based<br>on Steel Strength |                       |  |
|---------------------|--------------------------|----------------------|----------------------|-------------------------|--------------------------|----------------------------------|-----------------------|-----------------------|-----------------------------------------|-----------------------|--|
| Dia.<br>in.<br>(mm) | Drill Bit<br>Dia.<br>in. |                      | Edge<br>Dist.<br>in. | Spacing<br>Dist.<br>in. | f' <sub>c</sub> ≥<br>Liç | 3,000 psi (20.7<br>htweight Conc | MPa)<br>rete          | F1554<br>Grade 36     | A193 GR B7                              | F593<br>304SS         |  |
|                     |                          |                      | (mm)                 | (mm)                    | Ultimate<br>lb. (kN)     | Std. Dev.<br>lb. (kN)            | Allowable<br>lb. (kN) | Allowable<br>lb. (kN) | Allowable<br>lb. (kN)                   | Allowable<br>lb. (kN) |  |
| 3/8                 | 1/                       | <b>13/4</b> (44)     | <b>2</b> 5/8<br>(67) | <b>3½</b> (89)          | <b>2,400</b> (10.7)      | <b>540</b> (2.4)                 | <b>600</b> (2.7)      | 2,105                 | 4,535                                   | 3,630                 |  |
| (9.5)               | 1/2                      | <b>3½</b> (89)       | <b>5</b> ½ (133)     | <b>7</b> (178)          | <b>6,220</b> (27.7)      | <b>422</b> (1.9)                 | <b>1,555</b> (6.9)    | (9.4)                 | (20.2)                                  | (16.1)                |  |
| 1/2                 | E/                       | <b>2</b> 1/8<br>(54) | <b>3</b> 1/8<br>(79) | <b>4½</b> (108)         | <b>2,900</b> (12.9)      | <b>550</b> (2.4)                 | <b>725</b> (3.2)      | 3,750                 | 8,080                                   | 6,470                 |  |
| (12.7)              | 5/8                      | <b>4½</b> (108)      | <b>6</b> % (162)     | <b>8½</b> (216)         | <b>6,720</b> (29.9)      | <b>1,087</b> (4.8)               | <b>1,680</b> (7.5)    | (16.7)                | (35.9)                                  | (28.8)                |  |
| 5/8                 | 2/                       | <b>2½</b> (64)       | <b>3¾</b> (95)       | <b>5</b> (127)          | <b>4,820</b> (21.4)      | <b>327</b> (1.5)                 | <b>1,205</b> (5.4)    | 5,875                 | 12,660                                  | 10,120                |  |
| (15.9)              | 3/4                      | <b>5</b> (127)       | <b>7½</b> (191)      | <b>10</b> (254)         | <b>9,160</b> (40.7)      | <b>1,677</b> (7.5)               | <b>2,290</b> (10.2)   | (26.1)                | (56.3)                                  | (45.0)                |  |

- 1. Allowable load must be the lesser of the bond or steel strength.
- 2. The allowable loads listed under allowable bond are based on a safety factor of 4.0.
- 3.100% of the allowable load is permitted at critical spacing. No reduction in spacing is allowed.
- 4. Refer to allowable load-adjustment factors for edge distance on p. 72.
- Refer to in-service temperature sensitivity chart for allowable load adjustment for temperature.
- 6. Anchors are permitted to be used within fire-resistive construction, provided the anchors resist wind or seismic loads only. For use in fire-resistive construction, the anchors can also be permitted to be used to resist gravity loads, provided special consideration has been given to fire-exposure conditions.
- Anchors are not permitted to resist tension forces in overhead or wall installations unless proper consideration is given to fire-exposure and elevated-temperature conditions.

# SET Allowable Shear Loads for Threaded Rod Anchors in Sand-Lightweight Concrete







| Rod                 |                          | Embed.               | Critical             | Critical                | Based or                 | Shear Load<br>1 Concrete Edg      | e Distance            | Bas                                          | Shear Load<br>ed on Steel Stren | gth                   |
|---------------------|--------------------------|----------------------|----------------------|-------------------------|--------------------------|-----------------------------------|-----------------------|----------------------------------------------|---------------------------------|-----------------------|
| Dia.<br>in.<br>(mm) | Drill Bit<br>Dia.<br>in. | ia. Depth            | Edge<br>Dist.<br>in. | Spacing<br>Dist.<br>in. | f' <sub>c</sub> ≥<br>Liç | 3,000 psi (20.7<br>ghtweight Cond | 7 MPa)<br>crete       | F1554 A193 GR B7 F593<br>Grade 36 A193 GR B7 |                                 |                       |
|                     |                          |                      | (mm)                 | (mm)                    | Ultimate<br>lb. (kN)     | Std. Dev.<br>lb. (kN)             | Allowable<br>lb. (kN) | Allowable<br>lb. (kN)                        | Allowable<br>lb. (kN)           | Allowable<br>lb. (kN) |
| 3/8                 | 1/                       | <b>13/4</b> (44)     | <b>2</b> %<br>(67)   | <b>3½</b> (89)          | <b>2,364</b> (10.5)      | <b>129</b> (0.6)                  | <b>590</b> (2.6)      | 1,085                                        | 2,340                           | 1,870                 |
| (9.5)               | 1/2                      | <b>3½</b> (89)       | <b>5</b> ½ (133)     | <b>7</b> (178)          | <b>5,784</b> (25.7)      | <b>547</b> (2.4)                  | <b>1,445</b> (6.4)    | (4.8)                                        | (10.4)                          | (8.3)                 |
| 1/2                 | E/                       | <b>2</b> 1/8<br>(54) | <b>3</b> 1⁄8<br>(79) | <b>4½</b> (108)         | <b>2,948</b> (13.1)      | <b>224</b> (1.0)                  | <b>735</b> (3.3)      | 1,930                                        | 4,160                           | 3,330                 |
| (12.7)              | 5/8                      | <b>4½</b> (108)      | <b>6%</b> (162)      | <b>8½</b> (216)         | <b>8,436</b> (37.5)      | <b>891</b> (4.0)                  | <b>2,110</b> (9.4)    | (8.6)                                        | (18.5)                          | (14.8)                |
| <b>5%</b> (15.9)    | 3/                       | <b>2½</b> (64)       | <b>3¾</b> (95)       | <b>5</b> (127)          | <b>3,584</b> (15.9)      | <b>1,072</b> (4.8)                | <b>895</b> (4.0)      | 3,025                                        | <b>6,520</b> (29.0)             | 5,220                 |
|                     | 3/4                      | <b>5</b> (127)       | <b>7½</b> (191)      | <b>10</b> (254)         | <b>11,784</b> (52.4)     | <b>650</b> (2.9)                  | <b>2,945</b> (13.1)   | (13.5)                                       |                                 | (23.2)                |

- Allowable load must be the lesser of the load based on concrete edge distance or steel strength.
- 2. The allowable loads based on concrete edge distance are based on a safety factor of 4.0.
- 3.100% of the allowable load is permitted at critical spacing. No reduction in spacing is allowed.
- 4. Refer to allowable load-adjustment factors for edge distance on p. 72.
- Refer to in-service temperature sensitivity chart for allowable load adjustment for temperature.
- 6. Anchors are permitted to be used within fire-resistive construction, provided the anchors resist wind or seismic loads only. For use in fire-resistive construction, the anchors can also be permitted to be used to resist gravity loads, provided special consideration has been given to fire-exposure conditions.

<sup>\*</sup> See p. 13 for an explanation of the load table icons



SET Allowable Tension and Shear Loads for Threaded Rod Anchors in 8-inch Lightweight, Medium-Weight and Normal-Weight Grout-Filled CMU

| IBC | 1 | <b>→</b> |  | (Fig. 1) |
|-----|---|----------|--|----------|
|-----|---|----------|--|----------|

| Rod               | Drill                                                                | Min.<br>Embed.  | Critical<br>Edge | Critical<br>End | Critical<br>Spacing | 8-inch Grout-Filled CMU Allowable Loads<br>Based on CMU Strength |                       |                      |                       |  |  |  |  |
|-------------------|----------------------------------------------------------------------|-----------------|------------------|-----------------|---------------------|------------------------------------------------------------------|-----------------------|----------------------|-----------------------|--|--|--|--|
| Dia.<br>in.       | Bit<br>Dia.                                                          | Depth           | Dist.            | Dist.           | Dist.               | Ten                                                              | sion                  | Shear                |                       |  |  |  |  |
| (mm)              | in.                                                                  | in.<br>(mm)     | in.<br>(mm)      | in.<br>(mm)     | in.<br>(mm)         | Ultimate<br>lb. (kN)                                             | Allowable<br>lb. (kN) | Ultimate<br>lb. (kN) | Allowable<br>lb. (kN) |  |  |  |  |
|                   | Anchor Installed Anywhere on the Face of the CMU Wall (See Figure 1) |                 |                  |                 |                     |                                                                  |                       |                      |                       |  |  |  |  |
| <b>½</b> (12.7)   | 5/8                                                                  | <b>4½</b> (108) | <b>17</b> (432)  | <b>17</b> (432) | <b>17</b> (432)     | <b>6,496</b> (28.9)                                              | <b>1,300</b> (5.8)    | <b>6,766</b> (30.1)  | <b>1,355</b> (6.0)    |  |  |  |  |
| <b>5%</b> (15.9)  | 3/4                                                                  | <b>5</b> (127)  | <b>20</b> (508)  | <b>20</b> (508) | <b>20</b> (508)     | <b>8,232</b> (36.6)                                              | <b>1,645</b> (7.3)    | <b>13,676</b> (60.8) | <b>2,735</b> (12.2)   |  |  |  |  |
| <b>3/4</b> (19.1) | 7/8                                                                  | <b>6¾</b> (171) | <b>27</b> (686)  | <b>27</b> (686) | <b>27</b> (686)     | <b>15,656</b> (69.6)                                             | <b>3,130</b> (13.9)   | <b>17,578</b> (78.2) | <b>3,515</b> (15.6)   |  |  |  |  |

- 1. Threaded rods must comply with ASTM F1554 Grade 36 minimum.
- 2. Values for 8-inch wide concrete masonry units (CMU) with a minimum specified compressive strength of masonry, f'm, at 28 days is 1,500 psi.
- 3. Embedment depth is measured from the outside face of the concrete masonry unit.
- 4. Allowable loads may be increased 331/6% for short-term loading due to wind forces or seismic forces where permitted by code.
- 5. Refer to in-service temperature sensitivity chart for allowable load adjustment for temperature.
- 6. The tabulated allowable loads are based on a safety factor of 5.0.
- 7. Refer to allowable load-adjustment factors for end distance, edge distance and spacing on p. 73.

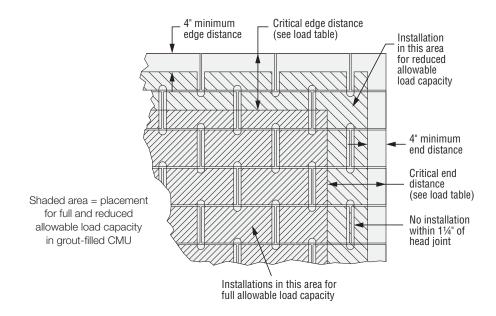



Figure 1

<sup>\*</sup> See p. 13 for an explanation of the load table icons.



SET Allowable Tension and Shear Loads for Threaded Rod Anchors in 6- and 8-inch Lightweight, Medium-Weight and Normal-Weight Grout-Filled CMU — Anchor Installed in Cell Opening (Top of Wall)

|     |  | (E3) | * |
|-----|--|------|---|
| IBC |  |      |   |

| Rod                    | Drill                                                                      | Embed.          | Min.<br>Edge     | Min.<br>End                    | Min.<br>Spacing   | 6- and 8-inch Grout-Filled CMU Allowable Loads<br>Based on CMU Strength |                      |                       |                    |  |  |  |  |
|------------------------|----------------------------------------------------------------------------|-----------------|------------------|--------------------------------|-------------------|-------------------------------------------------------------------------|----------------------|-----------------------|--------------------|--|--|--|--|
| Dia.<br>in.            | Bit<br>Dia.                                                                | Depth<br>in.    | Dist.            | Dist.                          | Dist.             | Tens                                                                    | sion                 | Shear                 |                    |  |  |  |  |
| (mm)                   | in.                                                                        | (mm)            | in.<br>(mm)      | in. in. (mm) Ultimate Ib. (kN) |                   | Allowable<br>lb. (kN)                                                   | Ultimate<br>lb. (kN) | Allowable<br>lb. (kN) |                    |  |  |  |  |
|                        | Allowable Tension and Shear Values EXCLUDING Earthquake Loads <sup>1</sup> |                 |                  |                                |                   |                                                                         |                      |                       |                    |  |  |  |  |
| <b>5%</b> (15.9)       | 3/4                                                                        | <b>5</b> (127)  | <b>3</b> (76)    | <b>3½</b> (89)                 | <b>20</b> (508)   | <b>12,573</b> (55.9)                                                    |                      |                       | <b>1,905</b> (8.5) |  |  |  |  |
| <b>3/4</b> (19.1)      | 7/8                                                                        | <b>5</b> (127)  | <b>3</b> (76)    | <b>3½</b> (89)                 | <b>20</b> (508)   | _                                                                       | <b>2,515</b> (11.2)  | _                     | <b>1,905</b> (8.5) |  |  |  |  |
| 7/ <sub>8</sub> (22.2) | 1                                                                          | <b>12</b> (305) | <b>2</b><br>(51) | <b>37/8</b> (98)               | <b>48</b> (1,219) | <b>8,908</b> (39.6)                                                     | <b>1,780</b> (7.9)   | _                     | _                  |  |  |  |  |
|                        |                                                                            |                 | All              | owable Ten                     | sion and Sh       | ear Values INCLUDII                                                     | NG Earthquake Load   | S <sup>2</sup>        |                    |  |  |  |  |
| <b>5%</b> (15.9)       | 3/4                                                                        | <b>5</b> (127)  | <b>3</b> (76)    | <b>3½</b> (89)                 | <b>20</b> (508)   | <b>6,500 1,300</b> (28.9) (5.8)                                         |                      | <b>6,780</b> (30.2)   | <b>1,355</b> (6.0) |  |  |  |  |
| <b>3/4</b> (19.1)      | 7/8                                                                        | <b>5</b> (127)  | <b>3</b> (76)    | <b>3½</b> (89)                 | <b>20</b> (508)   | _                                                                       | <b>1,300</b> (5.8)   |                       | <b>1,355</b> (6.0) |  |  |  |  |

- 1. Allowable tension and shear values EXCLUDING earthquake loads may not be increased for wind forces.
- $2. \ Allowable \ tension \ and \ shear \ values \ INCLUDING \ earthquake \ loads \ may \ be \ increased \ 33\%\% \ for \ wind \ forces \ or \ seismic \ forces \ where \ permitted \ by \ code.$
- 3. Also see notes 1-3 and 5-7 on next page.

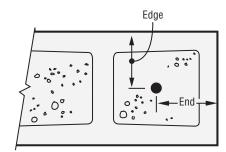



Figure 2. Anchor Installed in Cell Opening (Top of Wall)



SET Allowable Tension and Shear Loads for Threaded Rod Anchors in Lightweight, Medium-Weight and Normal-Weight Hollow CMU

| IBC | 1         | <b>→</b>    |        | 7 |
|-----|-----------|-------------|--------|---|
| l J | 2014 2018 | 2007 (2008) | し 振る 丿 |   |

| Rod Dia.          | Dia. Drill Bit Embed. |                  | Min.              | /lin. Min.              | 6- and 8-inch Hollow CMU Allowable Loads<br>Min. Based on CMU Strength |                       |                      |                       |  |  |  |
|-------------------|-----------------------|------------------|-------------------|-------------------------|------------------------------------------------------------------------|-----------------------|----------------------|-----------------------|--|--|--|
| in.               | Dia.                  | Depth<br>in.     | Edge Dist.<br>in. | End Dist.<br>in.        | Ten                                                                    | sion                  | Shear                |                       |  |  |  |
| (mm)              | in.                   | (mm)             | (mm)              | (mm)                    | Ultimate<br>lb. (kN)                                                   | Allowable<br>lb. (kN) | Ultimate<br>lb. (kN) | Allowable<br>lb. (kN) |  |  |  |
|                   |                       | Anchor In        | stalled in Face   | Shell with S            | impson Strong-Tie®                                                     | Epoxy Carbon-Stee     | l Screen Tube        |                       |  |  |  |
| <b>5%</b> (15.9)  | 7/8                   | <b>3½</b> (88.9) | <b>4</b> (101.6)  | <b>4</b> 5/8<br>(117.5) | <b>881</b> (3.9)                                                       | <b>175</b> (0.8)      | <b>1,440</b> (6.4)   | <b>290</b> (1.3)      |  |  |  |
| <b>3/4</b> (19.1) | 1                     | <b>3½</b> (88.9) | <b>4</b> (101.6)  | <b>4</b> 5/8<br>(117.5) | _                                                                      | <b>175</b> (0.8)      | _                    | <b>290</b> (1.3)      |  |  |  |

- 1. Threaded rods must comply with ASTM F1554 Grade 36 minimum.
- 2. Values for 8-inch wide concrete masonry units (CMU) with a minimum specified compressive strength of masonry, f'<sub>m</sub>, at 28 days is 1,500 psi.
- 3. Embedment depth is measured from the outside face of the concrete masonry unit for installations through a face shell.
- 4. Allowable loads may not be increased for short-term loading due to wind forces or seismic forces.
- 5. Refer to in-service temperature sensitivity chart for allowable load adjustment for temperature.
- 6. The tabulated allowable loads are based on a safety factor of 5.0.
- 7. Anchors must be spaced a minimum distance of four times the anchor embedment.
- 8. Set drill to rotation-only mode when drilling into hollow CMU.

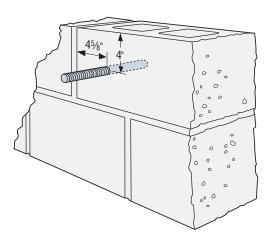
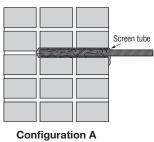



Figure 3. Anchor Installed in Face Shell with Screen Tube in Hollow Cell

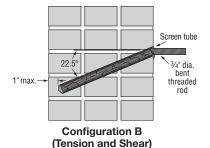
<sup>\*</sup> See p. 13 for an explanation of the load table icons.

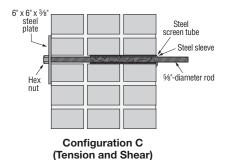
# C-A-2018 @ 2018 SIMPSON STRONG-TIE COMPANY INC.

## **SET** Design Information — Masonry




SET Allowable Tension and Shear Loads for Installations in Unreinforced Brick Masonry Walls — Minimum URM Wall Thickness is 13" (3 wythes thick)


| IBC |         | <b>→</b> | o <b>11</b> 0° | * |
|-----|---------|----------|----------------|---|
| IDU | 257 257 | 257 252  |                |   |


| Rod/Rebar<br>Dia./Size<br>in.<br>(mm) | Drill Bit<br>Dia.<br>in. | Embed.<br>Depth<br>in.<br>(mm) | Min.<br>Edge/End<br>Dist.<br>in. (mm) | Min.<br>Vertical<br>Spacing Dist.<br>in. (mm)<br>oson Strong-Tie® | Min.<br>Horiz.<br>Spacing Dist.<br>in. (mm) | Tension Load Based<br>on URM Strength<br>Allowable<br>lb. (kN) | Shear Load Based<br>on URM Strength<br>Allowable<br>lb. (kN) |
|---------------------------------------|--------------------------|--------------------------------|---------------------------------------|-------------------------------------------------------------------|---------------------------------------------|----------------------------------------------------------------|--------------------------------------------------------------|
|                                       |                          |                                |                                       |                                                                   |                                             |                                                                |                                                              |
| 3/ <sub>4</sub><br>(19.1)             | 1                        | <b>8</b> (203)                 | <b>16</b> (406)                       | <b>16</b> (406)                                                   | <b>16</b> (406)                             | _                                                              | <b>1,000</b> (4.4)                                           |
| <b>#5</b> (15.9)                      | 1                        | <b>8</b> (203)                 | <b>16</b> (406)                       | <b>16</b> (406)                                                   | <b>16</b> (406)                             | _                                                              | <b>750</b> (3.3)                                             |
| <b>#6</b> (19.1)                      | 1                        | <b>8</b> (203)                 | <b>16</b> (406)                       | <b>16</b> (406)                                                   | <b>16</b> (406)                             | _                                                              | 1,000<br>(4.4)                                               |
|                                       |                          | Co                             | nfiguration B (Sim                    | pson Strong-Tie E                                                 | TS Screen Tube R                            | equired)                                                       |                                                              |
| 3/4<br>(19.1)                         | 1                        | 13<br>(330)                    | <b>16</b> (406)                       | <b>16</b> (406)                                                   | <b>16</b> (406)                             | <b>1,200</b> (5.3)                                             | <b>1,000</b> (4.4)                                           |
|                                       |                          | Configuration                  | C (Simpson Stron                      | g-Tie ETS Screen                                                  | Tube and AST Ste                            | el Sleeve Required)                                            |                                                              |
| <b>5%</b> (15.9)                      | 1                        | **                             | <b>16</b> (406)                       | <b>16</b> (406)                                                   | <b>16</b> (406)                             | <b>1,200</b> (5.3)                                             | <b>750</b> (3.3)                                             |

- 1. Threaded rods must comply with ASTM F1554 Grade 36 minimum.
- 2. All holes are drilled with a 1" diameter carbide-tipped drill bit with the drill set in the rotation-only mode.
- 3. The unreinforced brick walls must have a minimum thickness of 13 inches (three wythes of brick).
- 4. The allowable load is applicable only where in-place shear tests indicate minimum net mortar strength of 50 psi. For installations using a wet diamond core-drill bit, the allowable load is applicable only where in-place shear tests indicate minimum net mortar strength of 325 psi.
- The allowable load for Configuration B and C anchors subjected to a combined tension and shear load is determined by assuming a straight-line relationship between allowable tension and shear.
- 6. The anchors installed in unreinforced brick walls are limited to resisting seismic or wind forces only.
- Configuration A has a straight threaded rod or rebar embedded 8 inches into the wall with a <sup>3</sup>½" diameter by 8-inch long screen tube (part # ETS758). This configuration is designed to resist shear loads only.
- 8. Configuration B has a ¾" threaded rod bent and installed at a 22.5-degree angle and installed 13 inches into the wall, to within 1-inch (maximum) of the exterior wall surface. This configuration is designed to resist tension and shear loads. The pre-bent threaded rod is installed with a ³½" diameter by 13-inch long screen tube (part # ETS7513).
- 9. Configuration C is designed to resist tension and shear forces. It consists of a %" diameter, ASTM F1554 Grade 36 threaded rod and an 8" long sleeve (part # AST800) and a 31/32" diameter by 8-inch long screen tube (part # ETS758). The steel sleeve has a plastic plug in one end. A 6" by 6" by %" thick ASTM A 36 steel plate is located on the back face of the wall.
- 10. Special inspection requirements are determined by local jurisdiction and must be confirmed by the local building official.
- 11. Refer to in-service temperature sensitivity chart for allowable load adjustment for temperature



(Shear)

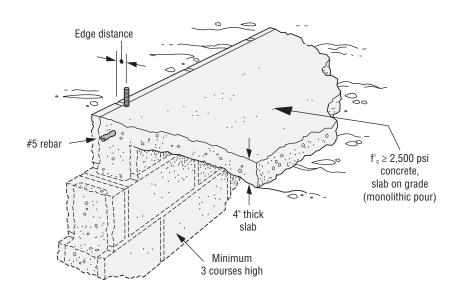




### Installation Instructions for Configuration C

- 1. Drill hole perpendicular to the wall to a depth of 8" with a 1" diameter carbide-tipped drill bit (rotation only mode).
- 2. Clean hole with oil-free compressed air and a nylon brush.
- 3. Fill 8" steel screen tube with mixed adhesive and insert into hole.
- 4. Insert steel sleeve slowly into screen tube (adhesive will displace).
- 5. Allow adhesive to cure (see cure schedule).
- 6. Drill through plastic plug in (inside) end of steel sleeve with %" bit.
- Drill completely through the wall with %" carbide tipped concrete drill bit (rotation mode only).
- 8. Insert %" rod through hole and attach metal plate and nut.

<sup>\*</sup> See p. 13 for an explanation of the load table icons.


SIMPSON
Strong-Tie

SET Allowable Tension Loads for Threaded Rod Anchors in 8" Lightweight, Medium-Weight and Normal-Weight CMU Chair Blocks Filled with Normal-Weight Concrete

| IBC |  | * |
|-----|--|---|
|-----|--|---|

|                         |                          | Min.                | Min.               | Critical             | 8-inch Concrete-Filled<br>CMU Chair Block<br>Allowable Tension Loads<br>Based on CMU Strength |                       |  |  |
|-------------------------|--------------------------|---------------------|--------------------|----------------------|-----------------------------------------------------------------------------------------------|-----------------------|--|--|
| Rod Dia.<br>in.<br>(mm) | Drill Bit<br>Dia.<br>in. | Embed. Depth<br>in. | Edge Dist.<br>in.  | Spacing Dist.<br>in. |                                                                                               |                       |  |  |
| ()                      |                          | (mm)                | (mm)               | (mm)                 | Ultimate<br>lb. (kN)                                                                          | Allowable<br>lb. (kN) |  |  |
| 1/2                     | 5/8                      | <b>4½</b><br>(114)  | <b>13/4</b> (44.5) | <b>18</b> (457)      | <b>4,810</b> (21.4)                                                                           | <b>960</b> (4.3)      |  |  |
| (12.7)                  | 78                       | <b>7</b> (178)      | <b>13/4</b> (44.5) | <b>28</b> (711)      | <b>7,715</b> (34.3)                                                                           | <b>1,545</b> (6.9)    |  |  |
|                         |                          | <b>4½</b> (114)     | <b>13/4</b> (44.5) | <b>18</b> (457)      | <b>4,955</b> (22.0)                                                                           | <b>990</b> (4.4)      |  |  |
| <b>5%</b><br>(15.9)     | 3/4                      | <b>7</b> (178)      | <b>13/4</b> (44.5) | <b>28</b> (711)      | <b>7,600</b> (33.8)                                                                           | <b>1,520</b> (6.8)    |  |  |
|                         |                          | <b>12</b> (305)     | <b>1¾</b> (44.5)   | <b>48</b> (1,219)    | <b>12,200</b> (54.4)                                                                          | <b>2,440</b> (10.9)   |  |  |

- 1. Threaded rods must comply with ASTM F1554 Grade 36 minimum.
- 2. Values are for 8-inch-wide concrete masonry units CMU filled with concrete with minimum compressive strength of 2,500 psi and poured monolithically with the floor slab.
- 3. Center #5 rebar in CMU cell and concrete slab as shown.
- 4. The tabulated allowable loads are based on a safety factor of 5.0.



<sup>\*</sup> See p. 13 for an explanation of the load table icons.

# C-A-2018 @ 2018 SIMPSON STRONG-TIE COMPANY INC.

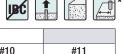
## **SET** Design Information — Concrete



SET Allowable Load-Adjustment Factors in Normal-Weight Concrete: Edge Distance, Tension Load

### How to use these charts

- 1. The following tables are for reduced edge distance.
- Locate the anchor size to be used for either a tension and/or shear load application.
- 3. Locate the embedment (E) at which the anchor is to be installed.
- 4. Locate the edge distance ( $\mathbf{c}_{\mathit{act}}$ ) at which the anchor is to be installed.
- 5. The load-adjustment factor (f  $_{\!\scriptscriptstyle C}$  ) is the intersection of the row and column.
- 6. Multiply the allowable load by the applicable load-adjustment factor.
- 7. Reduction factors for multiple edges are multiplied together.
- 8. Adjustment factors do not apply to allowable steel strength values.
- Adjustment factors are to be applied to allowable tension load based on bond strength values only.


### Edge Distance Tension (f<sub>c</sub>)



|                           | Dia.              |      | 3/8  |      |      | 1/2  |      |      | 5/8  |       | 3/4  |       |       |  |
|---------------------------|-------------------|------|------|------|------|------|------|------|------|-------|------|-------|-------|--|
| Edge                      | Rebar             |      |      |      |      | #4   |      |      | #5   |       | #(   |       | 6     |  |
| Dist.                     | E                 | 13/4 | 31/2 | 41/2 | 21/8 | 41/4 | 6    | 21/2 | 5    | 9%    | 3%   | 6¾    | 111/4 |  |
| c <sub>act</sub><br>(in.) | Ccr               | 25/8 | 51/4 | 6¾   | 31/4 | 6%   | 9    | 3¾   | 71/2 | 141/8 | 51/8 | 101/8 | 16%   |  |
| (III.)                    | C <sub>min</sub>  | 13/4 | 13/4 | 13/4 | 13/4 | 13/4 | 13/4 | 13/4 | 13/4 | 13/4  | 13/4 | 13/4  | 1¾    |  |
|                           | f <sub>cmin</sub> | 0.65 | 0.65 | 0.69 | 0.65 | 0.65 | 0.59 | 0.48 | 0.48 | 0.64  | 0.48 | 0.48  | 0.57  |  |
| 13/4                      |                   | 0.65 | 0.65 | 0.69 | 0.65 | 0.65 | 0.59 | 0.48 | 0.48 | 0.64  | 0.48 | 0.48  | 0.57  |  |
| 2                         |                   | 0.75 | 0.68 | 0.71 | 0.71 | 0.67 | 0.60 | 0.55 | 0.50 | 0.65  | 0.52 | 0.50  | 0.58  |  |
| 3                         |                   | 1.00 | 0.78 | 0.77 | 0.95 | 0.74 | 0.66 | 0.81 | 0.59 | 0.68  | 0.68 | 0.56  | 0.61  |  |
| 4                         |                   |      | 0.88 | 0.83 | 1.00 | 0.82 | 0.72 | 1.00 | 0.68 | 0.71  | 0.83 | 0.62  | 0.63  |  |
| 5                         |                   |      | 0.98 | 0.89 |      | 0.90 | 0.77 |      | 0.77 | 0.73  | 0.99 | 0.68  | 0.66  |  |
| 6                         |                   |      | 1.00 | 0.95 |      | 0.97 | 0.83 |      | 0.86 | 0.76  | 1.00 | 0.74  | 0.69  |  |
| 7                         |                   |      |      | 1.00 |      | 1.00 | 0.89 |      | 0.95 | 0.79  |      | 0.81  | 0.72  |  |
| 8                         |                   |      |      |      |      |      | 0.94 |      | 1.00 | 0.82  |      | 0.87  | 0.75  |  |
| 9                         |                   |      |      |      |      |      | 1.00 |      |      | 0.85  |      | 0.93  | 0.78  |  |
| 10                        |                   |      |      |      |      |      |      |      |      | 0.88  |      | 0.99  | 0.80  |  |
| 11                        |                   |      |      |      |      |      |      |      |      | 0.91  |      | 1.00  | 0.83  |  |
| 12                        |                   |      |      |      |      |      |      |      |      | 0.94  |      |       | 0.86  |  |
| 14                        |                   |      |      |      |      |      |      |      |      | 1.00  |      |       | 0.92  |  |
| 16                        |                   |      |      |      |      |      |      |      |      |       |      |       | 0.98  |  |
| 17                        |                   |      |      |      |      |      |      |      |      |       |      |       | 1.00  |  |

See notes on the next page.

### Edge Distance Tension (f<sub>c</sub>) (continued)

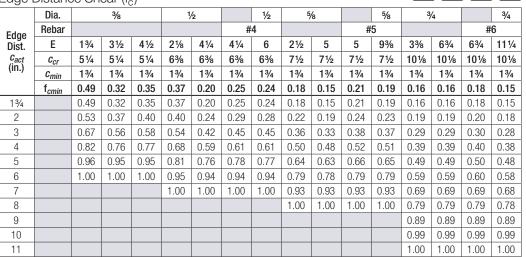


|       | Dia.              |      | 7/8  | , (   | ,    | 1    |       |      | 11/8  |      |      | 11/4  |       |       |       |
|-------|-------------------|------|------|-------|------|------|-------|------|-------|------|------|-------|-------|-------|-------|
| Edge  | Rebar             |      | #    | 7     |      | #    | 8     |      | #     | 9    |      | #1    | 0     | #1    | 11    |
| Dist. | Е                 | 37/8 | 73/4 | 131/8 | 41/2 | 9    | 15    | 51/8 | 101/8 | 16%  | 5%   | 111/4 | 18¾   | 12%   | 20%   |
| Cact  | c <sub>cr</sub>   | 57/8 | 11%  | 19%   | 6¾   | 13½  | 221/2 | 7¾   | 151/4 | 25%  | 81/2 | 16%   | 281/8 | 281/8 | 281/8 |
| (in.) | C <sub>min</sub>  | 13/4 | 13/4 | 13/4  | 1¾   | 1¾   | 13/4  | 2¾   | 2¾    | 23/4 | 2¾   | 2¾    | 2¾    | 23/4  | 2¾    |
|       | f <sub>cmin</sub> | 0.48 | 0.48 | 0.52  | 0.48 | 0.48 | 0.47  | 0.58 | 0.58  | 0.51 | 0.58 | 0.58  | 0.51  | 0.58  | 0.51  |
| 13/4  |                   | 0.48 | 0.48 | 0.52  | 0.48 | 0.48 | 0.47  |      |       |      |      |       |       |       |       |
| 2¾    |                   | 0.61 | 0.53 | 0.55  | 0.58 | 0.52 | 0.50  | 0.58 | 0.58  | 0.51 | 0.58 | 0.58  | 0.51  | 0.58  | 0.51  |
| 4     |                   | 0.77 | 0.60 | 0.58  | 0.71 | 0.58 | 0.53  | 0.69 | 0.62  | 0.54 | 0.67 | 0.62  | 0.53  | 0.61  | 0.53  |
| 6     |                   | 1.00 | 0.70 | 0.63  | 0.92 | 0.67 | 0.58  | 0.85 | 0.69  | 0.58 | 0.82 | 0.68  | 0.57  | 0.67  | 0.57  |
| 8     |                   |      | 0.81 | 0.69  | 1.00 | 0.76 | 0.63  | 1.00 | 0.76  | 0.62 | 0.97 | 0.74  | 0.61  | 0.72  | 0.61  |
| 10    |                   |      | 0.91 | 0.74  |      | 0.85 | 0.68  |      | 0.82  | 0.67 | 1.00 | 0.80  | 0.65  | 0.77  | 0.65  |
| 12    |                   |      | 1.00 | 0.80  |      | 0.93 | 0.73  |      | 0.89  | 0.71 |      | 0.86  | 0.69  | 0.82  | 0.69  |
| 14    |                   |      |      | 0.85  |      | 1.00 | 0.78  |      | 0.96  | 0.75 |      | 0.91  | 0.73  | 0.88  | 0.73  |
| 16    |                   |      |      | 0.90  |      |      | 0.83  |      | 1.00  | 0.80 |      | 0.97  | 0.77  | 0.93  | 0.77  |
| 18    |                   |      |      | 0.96  |      |      | 0.89  |      |       | 0.84 |      | 1.00  | 0.80  | 0.98  | 0.81  |
| 20    |                   |      |      | 1.00  |      |      | 0.94  |      |       | 0.88 |      |       | 0.84  | 1.00  | 0.84  |
| 24    |                   |      |      |       |      |      | 1.00  |      |       | 0.97 |      |       | 0.92  |       | 0.92  |
| 28    |                   |      |      |       |      |      |       |      |       | 1.00 |      |       | 1.00  |       | 1.00  |

<sup>\*</sup> See p. 13 for an explanation of the load table icons.



SET Allowable Load-Adjustment Factors in Normal-Weight Concrete: Edge Distance, Shear Load


### How to use these charts

- 1. The following tables are for reduced edge distance.
- 2. Locate the anchor size to be used for either a tension and/or shear load application.
- 3. Locate the embedment (E) at which the anchor is to be installed.
- 4. Locate the edge distance  $(c_{act})$  at which the anchor is to be installed.
- 5. The load-adjustment factor (f<sub>c</sub>) is the intersection of the row and column.
- 6. Multiply the allowable load by the applicable load-adjustment factor.
- 7. Reduction factors for multiple edges are multiplied together.
- 8. Adjustment factors do not apply to allowable steel strength values.

IBC 🔁 🥽 💯 💯

9. Adjustment factors are to be applied to allowable shear load based on concrete edge distance values only.

### Edge Distance Shear (f<sub>c</sub>)



See notes below.

C-A-2018 @2018 SIMPSON STRONG-TIE COMPANY INC.

### Edge Dietones Cheer (f.) (continued)

| Edge Distance Shear (f <sub>c</sub> ) (continued) |                   |      |      |      |       |      |      |      |      |       |       |       |      |       |      |      |      |
|---------------------------------------------------|-------------------|------|------|------|-------|------|------|------|------|-------|-------|-------|------|-------|------|------|------|
|                                                   | Dia.              | 7/8  |      |      | 7/8   | 1    |      |      | 1    | 11/8  |       |       | 11/4 |       |      |      |      |
| Edge                                              | Rebar             |      |      | #7   |       |      |      | #8   |      |       | #9    |       |      | #10   |      | #11  |      |
| Dist.                                             | E                 | 3%   | 73/4 | 7¾   | 131/8 | 41/2 | 9    | 9    | 15   | 51/8  | 101/8 | 16%   | 5%   | 111/4 | 18¾  | 12%  | 20%  |
| c <sub>act</sub> (in.)                            | Ccr               | 11%  | 11%  | 11%  | 11%   | 13½  | 13½  | 13½  | 13½  | 151/4 | 151/4 | 151/4 | 16%  | 16%   | 16%  | 18%  | 18%  |
| (111.)                                            | C <sub>min</sub>  | 13/4 | 1¾   | 1¾   | 1¾    | 13/4 | 1¾   | 1¾   | 1¾   | 2¾    | 23/4  | 2¾    | 23/4 | 2¾    | 23/4 | 23/4 | 23/4 |
|                                                   | f <sub>cmin</sub> | 0.14 | 0.13 | 0.14 | 0.10  | 0.14 | 0.10 | 0.12 | 0.10 | 0.17  | 0.16  | 0.12  | 0.17 | 0.16  | 0.12 | 0.16 | 0.12 |
| 13/4                                              |                   | 0.14 | 0.13 | 0.14 | 0.10  | 0.14 | 0.10 | 0.12 | 0.10 |       |       |       |      |       |      |      |      |
| 23/4                                              |                   | 0.23 | 0.22 | 0.23 | 0.19  | 0.21 | 0.18 | 0.19 | 0.18 | 0.17  | 0.16  | 0.12  | 0.17 | 0.16  | 0.12 | 0.16 | 0.12 |
| 3                                                 |                   | 0.25 | 0.24 | 0.25 | 0.21  | 0.23 | 0.20 | 0.21 | 0.20 | 0.19  | 0.18  | 0.14  | 0.18 | 0.17  | 0.14 | 0.17 | 0.13 |
| 4                                                 |                   | 0.34 | 0.33 | 0.34 | 0.31  | 0.30 | 0.27 | 0.29 | 0.27 | 0.25  | 0.24  | 0.21  | 0.24 | 0.23  | 0.20 | 0.23 | 0.19 |
| 5                                                 |                   | 0.42 | 0.42 | 0.42 | 0.40  | 0.38 | 0.35 | 0.36 | 0.35 | 0.32  | 0.31  | 0.28  | 0.30 | 0.29  | 0.26 | 0.28 | 0.24 |
| 6                                                 |                   | 0.51 | 0.50 | 0.51 | 0.49  | 0.45 | 0.43 | 0.44 | 0.43 | 0.39  | 0.38  | 0.35  | 0.36 | 0.35  | 0.32 | 0.33 | 0.30 |
| 7                                                 |                   | 0.60 | 0.59 | 0.60 | 0.58  | 0.52 | 0.50 | 0.51 | 0.50 | 0.45  | 0.45  | 0.42  | 0.42 | 0.41  | 0.38 | 0.38 | 0.36 |
| 8                                                 |                   | 0.68 | 0.68 | 0.68 | 0.67  | 0.60 | 0.58 | 0.59 | 0.58 | 0.52  | 0.51  | 0.49  | 0.48 | 0.47  | 0.45 | 0.44 | 0.41 |
| 9                                                 |                   | 0.77 | 0.77 | 0.77 | 0.76  | 0.67 | 0.66 | 0.66 | 0.66 | 0.59  | 0.58  | 0.56  | 0.54 | 0.53  | 0.51 | 0.49 | 0.47 |
| 10                                                |                   | 0.86 | 0.86 | 0.86 | 0.85  | 0.74 | 0.73 | 0.74 | 0.73 | 0.65  | 0.65  | 0.63  | 0.60 | 0.59  | 0.57 | 0.54 | 0.52 |
| 11                                                |                   | 0.95 | 0.94 | 0.95 | 0.94  | 0.82 | 0.81 | 0.81 | 0.81 | 0.72  | 0.71  | 0.70  | 0.65 | 0.65  | 0.63 | 0.60 | 0.58 |
| 12                                                |                   | 1.00 | 1.00 | 1.00 | 1.00  | 0.89 | 0.89 | 0.89 | 0.89 | 0.78  | 0.78  | 0.77  | 0.71 | 0.71  | 0.70 | 0.65 | 0.63 |
| 13                                                |                   |      |      |      |       | 0.96 | 0.96 | 0.96 | 0.96 | 0.85  | 0.85  | 0.84  | 0.77 | 0.77  | 0.76 | 0.70 | 0.69 |
| 14                                                |                   |      |      |      |       | 1.00 | 1.00 | 1.00 | 1.00 | 0.92  | 0.92  | 0.91  | 0.83 | 0.83  | 0.82 | 0.76 | 0.74 |
| 15                                                |                   |      |      |      |       |      |      |      |      | 0.98  | 0.98  | 0.98  | 0.89 | 0.89  | 0.88 | 0.81 | 0.80 |
| 16                                                |                   |      |      |      |       |      |      |      |      | 1.00  | 1.00  | 1.00  | 0.95 | 0.95  | 0.95 | 0.86 | 0.85 |
| 17                                                |                   |      |      |      |       |      |      |      |      |       |       |       | 1.00 | 1.00  | 1.00 | 0.91 | 0.91 |
| 18%                                               |                   |      |      |      |       |      |      |      |      |       |       |       |      |       |      | 1.00 | 1.00 |

- 1. E = Embedment depth (inches).
- $2. c_{act} = actual edge distance at which anchor is installed (inches).$
- 3.  $c_{cr}$  = critical edge distance for 100% load (inches).
- 4. c<sub>min</sub> = minimum edge distance for reduced load (inches).
- 5.  $f_c$  = adjustment factor for allowable load at actual edge distance.

<sup>6.</sup> f<sub>ccr</sub> = adjustment factor for allowable load at critical edge distance. f<sub>ccr</sub> is always = 1.00.

<sup>7.</sup> f<sub>cmin</sub> = adjustment factor for allowable load at minimum edge distance.

<sup>8.</sup>  $f_c = f_{cmin} + [(1 - f_{cmin}) (c_{act} - c_{min}) / (c_{cr} - c_{min})].$ 

<sup>\*</sup> See p. 13 for an explanation of the load table icons.

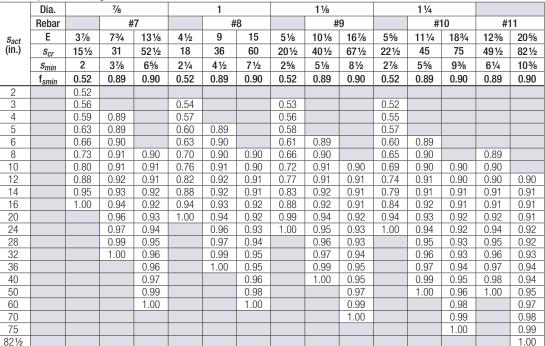
# C-A-2018 @ 2018 SIMPSON STRONG-TIE COMPANY INC.

# **SET** Design Information — Concrete



SET Allowable Load-Adjustment Factors in Normal-Weight Concrete: Spacing, Tension Load

### How to use these charts


- 1. The following tables are for reduced spacing.
- Locate the anchor size to be used for either a tension and/or shear load application.
- 3. Locate the embedment (E) at which the anchor is to be installed.
- 4. Locate the spacing  $(s_{act})$  at which the anchor is to be installed.
- 5. The load-adjustment factor (f  $_{\! \rm S}$  ) is the intersection of the row and column.
- 6. Multiply the allowable load by the applicable load-adjustment factor.
- 7. Reduction factors for multiple spacings are multiplied together.
- 8. Adjustment factors do not apply to allowable steel strength values.
- Adjustment factors are to be applied to allowable tension load based on bond strength values only.

### Spacing Tension (f<sub>s</sub>)



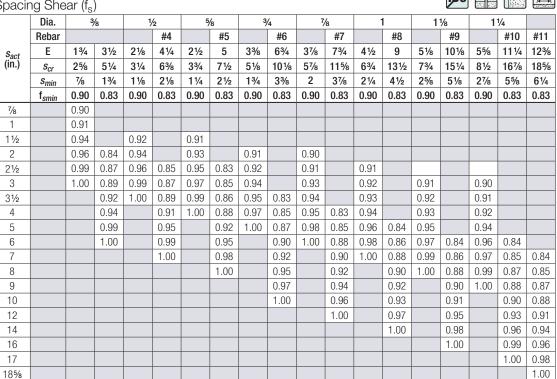
- 1. E = Embedment depth (inches).
- $2.\,s_{act}$  = actual spacing distance at which anchors are installed (inches).
- 3. s<sub>cr</sub> = critical spacing distance for 100% load (inches).
- 4. s<sub>min</sub> = minimum spacing distance for reduced load (inches).
- 5.  $f_s$  = adjustment factor for allowable load at actual spacing distance.
- f<sub>scr</sub> = adjustment factor for allowable load at critical spacing distance. f<sub>scr</sub> is always = 1.00.
- 7. f<sub>smin</sub> = adjustment factor for allowable load at minimum spacing distance.
- 8.  $f_s = f_{smin} + [(1 f_{smin}) (s_{act} s_{min}) / (s_{cr} s_{min})]$

### Spacing Tension (f<sub>s</sub>) (continued)



See notes above.

<sup>\*</sup> See p. 13 for an explanation of the load table icons




SET Allowable Load-Adjustment Factors in Normal-Weight Concrete: Spacing, Shear Load

### How to use these charts

- 1. The following tables are for reduced spacing.
- 2. Locate the anchor size to be used for either a tension and/or shear load application.
- 3. Locate the embedment (E) at which the anchor is to be installed.
- 4. Locate the spacing (s<sub>act</sub>) at which the anchor is to be installed.
- 5. The load-adjustment factor ( $f_{\rm s}$ ) is the intersection of the row and column.
- 6. Multiply the allowable load by the applicable load-adjustment factor.
- 7. Reduction factors for multiple spacings are multiplied together.
- 8. Adjustment factors do not apply to allowable steel strength values.
- 9. Adjustment factors are to be applied to allowable shear load based on concrete edge distance values only.

### Spacing Shear (f<sub>s</sub>)



<sup>1.</sup> E = Embedment depth (inches).

<sup>2.</sup> s<sub>act</sub> = actual spacing distance at which anchors are installed (inches).

<sup>3.</sup>  $s_{cr}$  = critical spacing distance for 100% load (inches).

<sup>4.</sup> s<sub>min</sub> = minimum spacing distance for reduced load (inches).

 $<sup>5.</sup> f_s = adjustment factor for allowable load at actual spacing distance.$ 

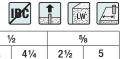
<sup>6.</sup> f<sub>scr</sub> = adjustment factor for allowable load at critical spacing distance. f<sub>scr</sub> is always = 1.00.

<sup>7.</sup> f<sub>smin</sub> = adjustment factor for allowable load at minimum spacing distance.

<sup>8.</sup>  $f_s = f_{smin} + [(1 - f_{smin}) (s_{act} - s_{min}) / (s_{cr} - s_{min})].$ 

<sup>\*</sup> See p. 13 for an explanation of the load table icons.




SET Allowable Load-Adjustment Factors in Sand-Lightweight Concrete: Edge Distance, Tension and Shear Loads **How to use these charts** 

- 1. The following tables are for reduced edge distance only.
- Locate the anchor size to be used for either a tension and/or shear load application.
- 3. Locate the embedment (E) at which the anchor is to be installed.
- 4. Locate the edge distance ( $\mathbf{c}_{\mathit{act}}$ ) at which the anchor is to be installed.
- 5. The load-adjustment factor (f  $_{\!\scriptscriptstyle C}$  ) is the intersection of the row and column.
- 6. Multiply the allowable load by the applicable load-adjustment factor.
- 7. Reduction factors for multiple edges are multiplied together.

Edge Distance Shear (f<sub>c</sub>)

- 8. Adjustment factors do not apply to allowable steel strength values.
- Adjustment factors are to be applied to allowable tension load based on bond strength values or allowable shear load based on concrete edge distance values only.

### Edge Distance Tension (f<sub>c</sub>)



|                           | Dia.              | 3,   | /8   |      | <b>/</b> 2 | 5,   | 5/8  |  |
|---------------------------|-------------------|------|------|------|------------|------|------|--|
| Edge                      | Е                 | 13/4 | 31/2 | 21/8 | 41/4       | 21/2 | 5    |  |
| Dist.<br>C <sub>act</sub> | c <sub>cr</sub>   | 25/8 | 51/4 | 31/8 | 6%         | 3¾   | 71/2 |  |
| (in.)                     | C <sub>min</sub>  | 1¾   | 13/4 | 13/4 | 1¾         | 1¾   | 13/4 |  |
|                           | f <sub>cmin</sub> | 0.65 | 0.65 | 0.65 | 0.65       | 0.48 | 0.48 |  |
| 13⁄4                      |                   | 0.65 | 0.65 | 0.65 | 0.65       | 0.48 | 0.48 |  |
| 2                         |                   | 0.75 | 0.68 | 0.71 | 0.67       | 0.55 | 0.50 |  |
| 21/4                      |                   | 0.85 | 0.70 | 0.78 | 0.69       | 0.61 | 0.53 |  |
| 21/2                      |                   | 0.95 | 0.73 | 0.84 | 0.71       | 0.68 | 0.55 |  |
| 2¾                        |                   | 1.00 | 0.75 | 0.90 | 0.73       | 0.74 | 0.57 |  |
| 3                         |                   |      | 0.78 | 0.97 | 0.74       | 0.81 | 0.59 |  |
| 31/4                      |                   |      | 0.80 | 1.00 | 0.76       | 0.87 | 0.62 |  |
| 31/2                      |                   |      | 0.83 |      | 0.78       | 0.94 | 0.64 |  |
| 3¾                        |                   |      | 0.85 |      | 0.80       | 1.00 | 0.66 |  |
| 4                         |                   |      | 0.88 |      | 0.82       |      | 0.68 |  |
| 41/4                      |                   |      | 0.90 |      | 0.84       |      | 0.71 |  |
| 41/2                      |                   |      | 0.93 |      | 0.86       |      | 0.73 |  |
| 43/4                      |                   |      | 0.95 |      | 0.88       |      | 0.75 |  |
| 5                         |                   |      | 0.98 |      | 0.90       |      | 0.77 |  |
| 51/4                      |                   |      | 1.00 |      | 0.91       |      | 0.80 |  |
| 5½                        |                   |      |      |      | 0.93       |      | 0.82 |  |
| 5¾                        |                   |      |      |      | 0.95       |      | 0.84 |  |
| 6                         |                   |      |      |      | 0.97       |      | 0.86 |  |
| 61/4                      |                   |      |      |      | 0.99       |      | 0.89 |  |
| 6½                        |                   |      |      |      | 1.00       |      | 0.91 |  |
| 6¾                        |                   |      |      |      |            |      | 0.93 |  |
| 7                         |                   |      |      |      |            |      | 0.95 |  |
| 71/4                      |                   |      |      |      |            |      | 0.98 |  |
| 7½                        |                   |      |      |      |            |      | 1.00 |  |

|               | Dia.              | 3,   | /8   | 1,   | /2   | 5/8  |      |  |
|---------------|-------------------|------|------|------|------|------|------|--|
| Edge          | E                 | 13/4 | 31/2 | 21/8 | 41/4 | 21/2 | 5    |  |
| Dist.<br>Cact | C <sub>cr</sub>   | 2%   | 51/4 | 31/8 | 6%   | 3¾   | 71/2 |  |
| (in.)         | Cmin              | 13/4 | 13/4 | 13/4 | 13/4 | 13/4 | 1¾   |  |
|               | f <sub>cmin</sub> | 0.25 | 0.25 | 0.20 | 0.20 | 0.15 | 0.15 |  |
| 13/4          |                   | 0.25 | 0.25 | 0.20 | 0.20 | 0.15 | 0.15 |  |
| 2             |                   | 0.46 | 0.30 | 0.35 | 0.24 | 0.26 | 0.19 |  |
| 21/4          |                   | 0.68 | 0.36 | 0.49 | 0.29 | 0.36 | 0.22 |  |
| 21/2          |                   | 0.89 | 0.41 | 0.64 | 0.33 | 0.47 | 0.26 |  |
| 23/4          |                   | 1.00 | 0.46 | 0.78 | 0.37 | 0.58 | 0.30 |  |
| 3             |                   |      | 0.52 | 0.93 | 0.42 | 0.68 | 0.33 |  |
| 31/4          |                   |      | 0.57 | 1.00 | 0.46 | 0.79 | 0.37 |  |
| 31/2          |                   |      | 0.63 |      | 0.50 | 0.89 | 0.41 |  |
| 3¾            |                   |      | 0.68 |      | 0.55 | 1.00 | 0.45 |  |
| 4             |                   |      | 0.73 |      | 0.59 |      | 0.48 |  |
| 41/4          |                   |      | 0.79 |      | 0.63 |      | 0.52 |  |
| 41/2          |                   |      | 0.84 |      | 0.68 |      | 0.56 |  |
| 43/4          |                   |      | 0.89 |      | 0.72 |      | 0.59 |  |
| 5             |                   |      | 0.95 |      | 0.76 |      | 0.63 |  |
| 51/4          |                   |      | 1.00 |      | 0.81 |      | 0.67 |  |
| 5½            |                   |      |      |      | 0.85 |      | 0.70 |  |
| 5¾            |                   |      |      |      | 0.89 |      | 0.74 |  |
| 6             |                   |      |      |      | 0.94 |      | 0.78 |  |
| 61/4          |                   |      |      |      | 0.98 |      | 0.82 |  |
| 61/2          |                   |      |      |      | 1.00 |      | 0.85 |  |
| 6¾            |                   |      |      |      |      |      | 0.89 |  |
| 7             |                   |      |      |      |      |      | 0.93 |  |
| 71/4          |                   |      |      |      |      |      | 0.96 |  |
| 71/2          |                   |      |      |      |      |      | 1.00 |  |

<sup>1.</sup> E = Embedment depth (inches).

 $<sup>2.</sup> c_{act} = \text{actual edge distance at which anchor is installed (inches)}.$ 

<sup>3.</sup>  $c_{cr}$  = critical edge distance for 100% load (inches).

 $<sup>4.</sup> c_{min} = minimum edge distance for reduced load (inches).$ 

<sup>5.</sup>  $f_{\rm C}$  = adjustment factor for allowable load at actual edge distance.

<sup>6.</sup>  $f_{ccr}$  = adjustment factor for allowable load at critical edge distance.  $f_{ccr}$  is always = 1.00.

<sup>7.</sup>  $f_{cmin}$  = adjustment factor for allowable load at minimum edge distance.

<sup>8.</sup>  $f_c = f_{cmin} + [(1 - f_{cmin}) (c_{act} - c_{min}) / (c_{cr} - c_{min})].$ 

SET Allowable Load-Adjustment Factors in Face of Wall Installation in 8" Grout-Filled CMU: End/Edge Distance and Spacing, Tension and Shear Loads

#### How to use these charts

- 1. The following tables are for reduced end and edge distance and spacing.
- 2. Locate the anchor size to be used for either a tension and/or shear load application.
- 3. Locate the embedment (E) at which the anchor is to be installed.
- Locate the end or edge distance (c<sub>act</sub>) or spacing (s<sub>act</sub>) at which the anchor is to be installed.
- 5. The load-adjustment factor (f  $_{\rm C}$  or f  $_{\rm S}$ ) is the intersection of the row and column.
- 6. Multiply the allowable load by the applicable load-adjustment factor.
- 7. Reduction factors for multiple edges or spacing are multiplied together.
- 8. Adjustment factors do not apply to allowable steel strength values.
- Adjustment factors are to be applied to allowable tension or shear load based on CMU strength values only.

#### End Distance Tension (f<sub>c</sub>)

|                           |                   |      | ( ( ) |        |             |
|---------------------------|-------------------|------|-------|--------|-------------|
|                           | Dia.              | 1/2  | 5/8   | 3/4    | IBC         |
| _                         | E                 | 41/4 | 5     | 6¾     |             |
| c <sub>act</sub><br>(in.) | C <sub>cr</sub>   | 17   | 20    | 27     | <b>1</b>    |
| (111.)                    | C <sub>min</sub>  | 4    | 4     | 4      | 202 83      |
|                           | f <sub>cmin</sub> | 1.00 | 0.84  | 0.54** | ( = = ( =   |
| 4                         |                   | 1.00 | 0.84  | 0.54   |             |
| 8                         |                   | 1.00 | 0.88  | 0.62   |             |
| 12                        |                   | 1.00 | 0.92  | 0.70   | <b>/→</b> i |
| 16                        |                   | 1.00 | 0.96  | 0.78   |             |
| 17                        |                   | 1.00 | 0.97  | 0.80   |             |
| 20                        |                   |      | 1.00  | 0.86   |             |
| 24                        |                   |      |       | 0.94   |             |
| 27                        |                   |      |       | 1.00   | ]           |
|                           |                   |      |       |        |             |

See notes below.

#### Edge Distance Tension (f<sub>c</sub>)

|                           | Dia.              | 1/2  | 5/8  | 3/4    |
|---------------------------|-------------------|------|------|--------|
| _                         | E                 | 41/4 | 5    | 6¾     |
| c <sub>act</sub><br>(in.) | c <sub>cr</sub>   | 17   | 20   | 27     |
| (111.)                    | C <sub>min</sub>  | 4    | 4    | 4      |
|                           | f <sub>cmin</sub> | 1.00 | 0.84 | 0.54** |
| 4                         |                   | 1.00 | 0.84 | 0.54   |
| 8                         |                   | 1.00 | 0.88 | 0.62   |
| 12                        |                   | 1.00 | 0.92 | 0.70   |
| 16                        |                   | 1.00 | 0.96 | 0.78   |
| 17                        |                   | 1.00 | 0.97 | 0.80   |
| 20                        |                   |      | 1.00 | 0.86   |
| 24                        |                   |      |      | 0.94   |
| 27                        |                   |      |      | 1.00   |

See notes below.

**IBC** 

\*\* The allowable tension load reduction factor is permitted to equal 1.0 provided both of the following conditions are met: (a) The anchor is installed with a minimum end distance, *C<sub>min</sub>*, between 4 inches and 8 inches; and (b) a masonry return wall of identical construction is on the opposite side (such as two masonry walls intersecting at a building corner).

#### End and Edge Distance Shear (f<sub>c</sub>) Shear Load Perpendicular to End or Edge

| Dia.              | 1/2                  | 5/8                                                                                   | 3/4                                                                                                                                                                                                                                                                         |
|-------------------|----------------------|---------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Ε                 | 41/4                 | 5                                                                                     | 6¾                                                                                                                                                                                                                                                                          |
| C <sub>cr</sub>   | 17                   | 20                                                                                    | 27                                                                                                                                                                                                                                                                          |
| Cmin              | 4                    | 4                                                                                     | 4                                                                                                                                                                                                                                                                           |
| f <sub>cmin</sub> | 0.43                 | 0.25                                                                                  | 0.25                                                                                                                                                                                                                                                                        |
|                   | 0.43                 | 0.25                                                                                  | 0.25                                                                                                                                                                                                                                                                        |
|                   | 0.61                 | 0.44                                                                                  | 0.38                                                                                                                                                                                                                                                                        |
|                   | 0.78                 | 0.63                                                                                  | 0.51                                                                                                                                                                                                                                                                        |
|                   | 0.96                 | 0.81                                                                                  | 0.64                                                                                                                                                                                                                                                                        |
|                   | 1.00                 | 0.86                                                                                  | 0.67                                                                                                                                                                                                                                                                        |
|                   |                      | 1.00                                                                                  | 0.77                                                                                                                                                                                                                                                                        |
|                   |                      |                                                                                       | 0.90                                                                                                                                                                                                                                                                        |
|                   |                      |                                                                                       | 1.00                                                                                                                                                                                                                                                                        |
|                   | E<br>c <sub>cr</sub> | E 4½ C <sub>Cr</sub> 17 C <sub>min</sub> 4 f <sub>cmin</sub> 0.43 0.43 0.61 0.78 0.96 | E         41/4         5           C <sub>Cr</sub> 17         20           C <sub>min</sub> 4         4         4           f <sub>cmin</sub> 0.43         0.25           0.61         0.44         0.78         0.63           0.96         0.81         1.00         0.86 |

#### End and Edge Distance Shear (f<sub>c</sub>) Shear Load Parallel to End or Edge

|                           | Dia.              | 1/2  | 5/8  | 3/4  |
|---------------------------|-------------------|------|------|------|
|                           | E                 | 41/4 | 5    | 6¾   |
| c <sub>act</sub><br>(in.) | C <sub>cr</sub>   | 17   | 20   | 27   |
| ()                        | Cmin              | 4    | 4    | 4    |
|                           | f <sub>cmin</sub> | 0.95 | 0.51 | 0.45 |
| 4                         |                   | 0.95 | 0.51 | 0.45 |
| 8                         |                   | 0.97 | 0.63 | 0.55 |
| 12                        |                   | 0.98 | 0.76 | 0.64 |
| 16                        |                   | 1.00 | 0.88 | 0.74 |
| 17                        |                   | 1.00 | 0.91 | 0.76 |
| 20                        |                   |      | 1.00 | 0.83 |
| 24                        |                   |      |      | 0.93 |
| 27                        |                   |      |      | 1.00 |



- 1. E = Embedment depth (inches).
- 2.  $c_{act}$  = actual end or edge distance at which anchor is installed (inches).
- 3.  $c_{cr}$  = critical end or edge distance for 100% load (inches).
- 4. c<sub>min</sub> = minimum end or edge distance for reduced load (inches).
- 5.  $f_C$  = adjustment factor for allowable load at actual end or edge distance.
- 6. f<sub>ccr</sub> = adjustment factor for allowable load at critical end or edge distance. f<sub>ccr</sub> is always = 1.00.
- 7. f<sub>cmin</sub> = adjustment factor for allowable load at minimum end or edge distance.
- 8.  $f_c = f_{cmin} + [(1 f_{cmin}) (c_{act} c_{min}) / (c_{cr} c_{min})].$

#### Spacing Tension (f.)

C-A-2018 @2018 SIMPSON STRONG-TIE COMPANY INC.

| Spacin                 | g rensi           | OH (I <sub>S</sub> ) |      |      | _   |
|------------------------|-------------------|----------------------|------|------|-----|
|                        | Dia.              | 1/2                  | 5/8  | 3/4  | ı   |
|                        | E                 | 41/4                 | 5    | 6¾   | ם ן |
| s <sub>act</sub> (in.) | Scr               | 17                   | 20   | 27   |     |
| (111.)                 | S <sub>min</sub>  | 8                    | 8    | 8    |     |
|                        | f <sub>smin</sub> | 0.89                 | 0.81 | 0.59 |     |
| 8                      |                   | 0.89                 | 0.81 | 0.59 |     |
| 12                     |                   | 0.94                 | 0.87 | 0.68 | F   |
| 16                     |                   | 0.99                 | 0.94 | 0.76 | Ţ   |
| 17                     |                   | 1.00                 | 0.95 | 0.78 |     |
| 20                     |                   |                      | 1.00 | 0.85 |     |
| 24                     |                   |                      |      | 0.94 |     |
| 27                     |                   |                      |      | 1.00 |     |

#### Spacing Shear (f<sub>s</sub>)

|                           | J                 | (3)     |              |            |  |
|---------------------------|-------------------|---------|--------------|------------|--|
|                           | Dia.              | 1/2     | 3/4          |            |  |
| _                         | E                 | 41/4    | 5            | 6¾         |  |
| s <sub>act</sub><br>(in.) | Scr               | 17      | 20           | 27         |  |
| (111.)                    | Smin              | 8       | 8            | 8          |  |
|                           | f <sub>smin</sub> | 1.00    | 1.00         | 1.00       |  |
| 8                         |                   |         |              |            |  |
| 12                        |                   |         |              |            |  |
| 16                        |                   |         |              |            |  |
| 17                        |                   | 1.00 fo | r all spacin | ıg ≥ 8 in. |  |
| 20                        |                   |         |              |            |  |
| 24                        |                   |         |              |            |  |
| 27                        |                   |         |              |            |  |





- 1. E = Embedment depth (inches).
- 2. s<sub>act</sub> = actual spacing distance at which anchors are installed (inches).
- $3.s_{cr}$  = critical spacing distance for 100% load (inches).
- 4. s<sub>min</sub> = minimum spacing distance for reduced load (inches).
- $5. f_s = adjustment factor for allowable load at actual spacing distance.$
- 6. f<sub>scr</sub> = adjustment factor for allowable load at critical spacing distance. f<sub>scr</sub> is always = 1.00.
- 7. f<sub>smin</sub> = adjustment factor for allowable load at minimum spacing distance.
- 8.  $f_s = f_{smin} + [(1 f_{smin}) (s_{act} s_{min}) / (s_{cr} s_{min})].$



# C-A-2018 @ 2018 SIMPSON STRONG-TIE COMPANY INC.

# AT-XP® High-Strength Acrylic Adhesive



Formulated for high-strength anchorage of threaded rod and rebar into cracked and uncracked concrete and masonry under a wide range of conditions, AT-XP adhesive dispenses easily in cold or warm environments and in below-freezing temperatures with no need to warm the cartridge. When mixed properly, this low-odor formula is a dark teal color for easy post-installation identification.

#### **Features**

- Passed the demanding ICC-ES AC308 adverse-condition tests pertaining to reduced and elevated temperatures and long-term sustained loads
- Tested per ACI 355.4 and AC308
- Code listed under the IBC/IRC for cracked and uncracked concrete per IAPMO UES ER-263 and City of L.A. RR25960
- Code listed under the IBC/IRC for masonry per IAPMO UES ER-281 and City of L.A. RR25966
- AT-XP is code listed for installation with the Speed Clean™ DXS system without any further cleaning (AT-XP: IAPMO-UES ER-263)
- 10:1 two-component high-strength, acrylic-based anchoring adhesive
- Suitable for use under static and seismic loading conditions in cracked and uncracked concrete as well as masonry
- Easy hole-cleaning procedure no power-brushing required
- Suitable for use in dry or water-saturated concrete
- For best results, store between 14°F (-10°C) and 80°F (27°C)
- Cures in substrate temperatures as low as 14°F (-10°C) in 24 hours or less
- Available in 9.4 oz., 12.5 oz. and 30 oz. cartridges for application versatility
- Volatile Organic Compound (VOC) 30 g/L
- · Manufactured in the USA using global materials

#### **Applications**

- Threaded rod anchoring and rebar doweling into concrete and masonry
- Suitable for horizontal, vertical and overhead applications

#### Codes

IAPMO UES ER-263 (concrete); IAPMO UES ER-281 (masonry); City of L.A. RR25960 (concrete), RR25966 (masonry); FL-16230.1; NSF/ANSI Standard 61 (43.2 in.²/1,000 gal.); AASHTO M-235 and ASTM C881 (Type I and IV, Grade 3, Class C — except AT-XP is a non-epoxy formulated for fast cure time)

#### Chemical Resistance

See pp. 252-253

#### Installation and Application Instructions

(See also pp. 100-105)

- Surfaces to receive adhesive must be clean.
- Base material temperature must be 14°F or above at the time of installation. For best results, material should be 14°F (-10°C) to 80°F (27°C) at time of application.
- To warm cold material, store cartridges in a warm, uniformly heated area or storage container. Do not immerse cartridges in water or use microwave to facilitate warming.
- Mixed material in nozzle can harden in 3–4 minutes at temperatures of 70°F (21°C) and above.



AT-XP Adhesive

#### Suggested Specifications

See strongtie.com for more information.

# AT-XP® High-Strength Acrylic Adhesive



#### AT-XP Adhesive Cartridge System

| Model No.            | Capacity ounces<br>(cubic in.) | Cartridge Type | Carton Qty. | Dispensing Tool                   | Mixing Nozzle |
|----------------------|--------------------------------|----------------|-------------|-----------------------------------|---------------|
| AT-XP10⁵             | 9.4<br>(16.9)                  | Coaxial        | 6           | CDT10S                            |               |
| AT-XP13 <sup>4</sup> | 12.5<br>(22.5)                 | Side-by-side   | 10          | ADT813S                           | AMN19Q        |
| AT-XP30⁴             | 30<br>(54)                     | Side-by-side   | 5           | ADT30S<br>ADTA30P or<br>ADTA30CKT |               |

- 1. Cartridge estimation guidelines are available at strongtie.com/apps.
- Detailed information on dispensing tools, mixing nozzles and other adhesive accessories is available at strongtie.com.
- 3. Use only Simpson Strong-Tie® mixing nozzles in accordance with Simpson Strong-Tie instructions. Modification or improper use of mixing nozzle may impair AT-XP adhesive performance.
- 4. One AMN19Q mixing nozzle and one nozzle extension are supplied with each cartridge.
- 5. Two AMN19Q mixing nozzles and two nozzle extensions are supplied with each cartridge.

#### Cure Schedule

| Base Material Temperature |     | Gel Time  | Cure Time |  |
|---------------------------|-----|-----------|-----------|--|
| °F                        | °C  | (minutes) | (hrs.)    |  |
| 14                        | -10 | 30        | 24        |  |
| 32                        | 0   | 15        | 8         |  |
| 50                        | 10  | 7         | 3         |  |
| 68                        | 20  | 4         | 1         |  |
| 86                        | 30  | 1½        | 30 min.   |  |
| 100                       | 38  | 1         | 20 min.   |  |

For water-saturated concrete, the cure times must be doubled.

#### **Test Criteria**

Anchors installed with AT-XP adhesive have been tested in accordance with ICC-ES Acceptance Criteria for Post-Installed Adhesive Anchors in Masonry Elements (AC58) and Adhesive Anchors in Concrete Elements (AC308).

| Property                                | Test Method | Result*                                   |
|-----------------------------------------|-------------|-------------------------------------------|
| Consistency                             | ASTM C881   | Passed, non-sag                           |
| Heat deflection                         | ASTM D648   | 253°F (123°C)                             |
| Bond strength (moist cure, 60°F)        | ASTM C882   | 3,227 psi (2 days)<br>3,560 psi (14 days) |
| Water absorption                        | ASTM D570   | 0.10% (24 hours)                          |
| Compressive yield strength (cured 60°F) | ASTM D695   | 18,860 psi                                |
| Compressive modulus (cured 60°F)        | ASTM D695   | 718,250 psi                               |
| Gel time                                | ASTM C881   | 5 minutes                                 |
| Shrinkage coefficient                   | ASTM D2566  | 0.002 in./in.                             |

<sup>\*</sup>Material and curing conditions: 73  $\pm$  2°F, unless otherwise noted.

#### Design Information -Concrete



AT-XP Installation Information and Additional Data for Threaded Rod and Rebar in Normal-Weight Concrete<sup>1</sup>

|     | <br> |  |
|-----|------|--|
| IBC |      |  |

| Characteristic                               |         | Cumahal           | Haita       | Nominal Anchor Diameter da (in.) / Rebar Size |                        |       |          |        |        |            |
|----------------------------------------------|---------|-------------------|-------------|-----------------------------------------------|------------------------|-------|----------|--------|--------|------------|
|                                              |         | Symbol            | Units       | % / #3                                        | % / #3 1/2 / #4 % / #5 |       | 3/4 / #6 | ½ / #7 | 1 / #8 | 11/4 / #10 |
|                                              |         |                   | Installatio | n Informatio                                  | n                      |       |          |        |        |            |
| Drill Bit Diameter for Threaded Rod          |         | d <sub>hole</sub> | in.         | 7/16                                          | 9/16                   | 11/16 | 13/16    | 1      | 1 1/8  | 13/8       |
| Drill Bit Diameter for Rebar                 |         | d <sub>hole</sub> | in.         | 1/2                                           | 5/8                    | 3/4   | 7/8      | 1      | 1 1/8  | 13/8       |
| Maximum Tightening Torque                    |         | T <sub>inst</sub> | ftlb.       | 10                                            | 20                     | 30    | 45       | 60     | 80     | 125        |
| Dayseitted Englanderant Dayth Dayse2         | Minimum | h <sub>ef</sub>   | in.         | 23/8                                          | 23/4                   | 31/8  | 31/2     | 3¾     | 4      | 5          |
| Permitted Embedment Depth Range <sup>2</sup> | Maximum | h <sub>ef</sub>   | in.         | 71/2                                          | 10                     | 12½   | 15       | 17½    | 20     | 25         |
| Minimum Concrete Thickness                   |         | h <sub>min</sub>  | in.         | $h_{ef} + 5d_{hole}$                          |                        |       |          |        |        |            |
| Critical Edge Distance <sup>2</sup>          |         | C <sub>ac</sub>   | in.         | See foonote 2                                 |                        |       |          |        |        |            |
| Minimum Edge Distance                        |         | C <sub>min</sub>  | in.         | 13/4                                          |                        |       | 23/4     |        |        |            |
| Minimum Anchor Spacing                       |         | S <sub>min</sub>  | in.         |                                               |                        | ;     | 3        |        |        | 6          |

<sup>1.</sup> The information presented in this table is to be used in conjunction with the design criteria of ACI 318-14 and ACI 318-11.

 $[h/h_{ef}] \le 2.4$ 

 $\tau_{k,uncr}$  = the characteristic bond strength in uncracked concrete, given in the tables that follow  $\leq k_{uncr} ((h_{ef} \times f_c')^{0.5}/(\pi \times d_e))$ 

h =the member thickness (inches)

 $h_{ef}$  = the embedment depth (inches)

76

 $<sup>2.</sup> c_{ac} = h_{ef} (\tau_{k,uncr}/1,160)^{0.4} \times [3.1 - 0.7(h/h_{ef})], \text{ where:}$ 



#### AT-XP Tension Strength Design Data for Threaded Rod in Normal-Weight Concrete<sup>1</sup>

| IBC 1 |  |  |
|-------|--|--|
|-------|--|--|

|                                        | Characteristic                                                                      | Symbol           | Units                  |            | Nominal Anchor Diameter d <sub>a</sub> (in.) |                        |                   |            |        |        |                 |
|----------------------------------------|-------------------------------------------------------------------------------------|------------------|------------------------|------------|----------------------------------------------|------------------------|-------------------|------------|--------|--------|-----------------|
|                                        | GHALAGIGHSUG                                                                        |                  | Syllibol               | Uillia     | 3/8                                          | 1/2                    | 5/8               | 3/4        | 7/8    | 1      | 11/4            |
|                                        |                                                                                     | Stee             | Strength               | in Tensio  | n                                            |                        |                   |            |        |        |                 |
|                                        | Minimum Tensile Stress Area                                                         |                  | Ase                    | in.²       | 0.078                                        | 0.142                  | 0.226             | 0.334      | 0.462  | 0.606  | 0.969           |
|                                        | Tension Resistance of Steel — ASTM F1554                                            | 4, Grade 36      |                        |            | 4,525                                        | 8,235                  | 13,110            | 19,370     | 26,795 | 35,150 | 56,200          |
|                                        | Tension Resistance of Steel — ASTM A193,                                            | Grade B7         |                        |            | 9,750                                        | 17,750                 | 28,250            | 41,750     | 57,750 | 75,750 | 121,125         |
| Threaded<br>Rod                        | Threaded Rod Tension Resistance of Steel — Type 410 Stainless (ASTM A193, Grade B6) |                  |                        |            | 8,580                                        | 15,620                 | 24,860            | 36,740     | 50,820 | 66,660 | 106,590         |
|                                        | Tension Resistance of Steel — Type 304 an<br>(ASTM A193, Grade B8 and B8M)          | d 316 Stainless  |                        |            | 4,445                                        | 8,095                  | 12,880            | 19,040     | 26,335 | 34,540 | 55,235          |
|                                        | Strength Reduction Factor — Steel Failure                                           |                  | φ                      | _          |                                              |                        |                   | $0.75^{6}$ |        |        |                 |
|                                        | Concrete I                                                                          | Breakout Streng  | th in Tens             | ion (2,500 | 0 psi ≤ f' <sub>c</sub>                      | ≤ 8,000 ps             | i)                |            |        |        |                 |
| Effectiveness                          | Factor — Uncracked Concrete                                                         |                  | K <sub>uncr</sub>      | _          |                                              |                        |                   | 24         |        |        |                 |
| Effectiveness                          | Factor — Cracked Concrete                                                           |                  | <i>k</i> <sub>cr</sub> | _          | 17                                           |                        |                   |            |        |        |                 |
| Strength Redu                          | ıction Factor — Breakout Failure                                                    |                  | φ                      | _          | 0.65 <sup>8</sup>                            |                        |                   |            |        |        |                 |
|                                        | Bor                                                                                 | nd Strength in T | ension (2,5            | 500 psi ≤  | f' <sub>c</sub> ≤ 8,000                      | ) psi)                 |                   |            |        |        |                 |
|                                        | Characteristic Bond Strength                                                        |                  | $	au_{k,uncr}$         | psi        | 1,390                                        | 1,590                  | 1,715             | 1,770      | 1,750  | 1,655  | 1,250           |
| Uncracked<br>Concrete <sup>2,3,4</sup> | 0 31 15 1 1 10 11 0                                                                 | Minimum          |                        |            | 2%                                           | 23/4                   | 31/8              | 3½         | 3¾     | 4      | 5               |
|                                        | Permitted Embedment Depth Range                                                     | Maximum          | h <sub>ef</sub>        | in.        | 71/2                                         | 10                     | 12½               | 15         | 17½    | 20     | 25              |
|                                        | Characteristic Bond Strength <sup>9,10,11</sup>                                     |                  | $	au_{k,cr}$           | psi        | 1,085                                        | 1,035                  | 980               | 950        | 815    | 800    | 700             |
| Cracked<br>Concrete <sup>2,3,4</sup>   | D 311 15 1 1 1 1 D 11 D                                                             | Minimum          |                        |            | 3                                            | 3                      | 31/8              | 3½         | 3¾     | 4      | 5               |
| 00.101010                              | Permitted Embedment Depth Range                                                     | Maximum          | h <sub>ef</sub>        | in.        | 7½                                           | 10                     | 12½               | 15         | 17½    | 20     | 25              |
|                                        | Bond Strength in Tension                                                            | — Bond Streng    | gth Reduct             | tion Facto | ors for Con                                  | tinuous S <sub>l</sub> | oecial Insp       | ection     | '      |        |                 |
| Strength Redu                          | uction Factor — Dry Concrete                                                        |                  | φ <sub>dry</sub>       | _          |                                              |                        | 0.657             |            |        | 0.8    | 55 <sup>7</sup> |
| Strength Redu                          | uction Factor — Water-Saturated Concrete                                            |                  | φ <sub>sat</sub>       | _          |                                              |                        |                   | 0.457      |        |        |                 |
| Additional Fac                         | tor for Water-Saturated Concrete                                                    |                  | K <sub>sat</sub>       | _          | 0.5                                          | 54 <sup>5</sup>        |                   | 0.775      |        | 0.0    | 965             |
|                                        | Bond Strength in Tensio                                                             | n — Bond Stre    | ngth Redu              | ction Fac  | tors for Pe                                  | eriodic Spe            | cial Inspe        | ction      |        |        |                 |
| Strength Redu                          | uction Factor — Dry Concrete                                                        |                  | $\phi_{dry}$           | _          |                                              |                        | 0.55 <sup>7</sup> |            |        | 0.4    | 45 <sup>7</sup> |
| Strength Redu                          | uction Factor — Water-Saturated Concrete                                            |                  | $\phi_{sat}$           | _          |                                              |                        |                   | 0.457      |        | 1      |                 |
| Additional Fac                         | tor for Water-Saturated Concrete                                                    |                  | K <sub>sat</sub>       | _          | 0.4                                          | 16 <sup>5</sup>        |                   | 0.655      |        | 0.0    | B1 <sup>5</sup> |

- The information presented in this table is to be used in conjunction with the design criteria of ACI 318-14 and ACI 318-11.
- Temperature Range: Maximum short-term temperature of 180°F. Maximum long-term temperature of 110°F.
- Short-term concrete temperatures are those that occur over short intervals (diurnal cycling).
- Long-term concrete temperatures are constant temperatures over a significant time period.
- 5. In water-saturated concrete, multiply  $\tau_{k,uncr}$  and  $\tau_{k,cr}$  by  $\textit{K}_{\text{sat}}$ .
- 6. The value of  $\phi$  applies when the load combinations of ACI 318-14 5.3 or ACI 318-11 Section 9.2 are used. If the load combinations of ACI 318 Appendix C are used, refer to ACI 318-11 D.4.4 to determine the appropriate value of  $\phi$ .
- 7. The value of  $\phi$  applies when both the load combinations of ACI 318-14 5.3 or ACI 318-11 Section 9.2 are used and the requirements of ACI 318-14 17.3.3 or ACI 318-11 D.4.3 (c) for Condition B are met. If the load combinations of ACI 318 Appendix C are used, refer to ACI 318-11 D.4.4 to determine the appropriate value of  $\phi$ .
- 8. The value of  $\phi$  applies when both the load combinations of ACI 318-14 5.3 or ACI 318-11 Section 9.2 are used and the requirements of ACI 318-14 17.3.3 or ACI 318-11 D.4.3 (c) for Condition B are met. If the load combinations of ACI 318 Section 9.2 are used and the requirements of ACI 318-11 D.4.3 (c) for Condition A are met, refer to ACI 318-11 D.4.4 to determine the appropriate value of  $\phi$ . If the load combinations of ACI 318 Appendix C are used, refer to ACI 318-11 D.4.4 to determine the appropriate value of  $\phi$ .
- 9. For anchors installed in regions assigned to Seismic Design Category C, D, E or F, the bond strength values for ½", %", %" and 1" anchors must be multiplied by  $\alpha_{N,seis} = 0.85$ .
- 10. For anchors installed in regions assigned to Seismic Design Category C, D, E or F, the bond strength values for 1½" anchors must be multiplied by  $\alpha_{N,\text{Seis}} = 0.75$ .
- 11. For anchors installed in regions assigned to Seismic Design Category C, D, E or F, the bond strength values for 7/8" anchors must be multiplied by  $\alpha_{N,seis} = 0.59$ .

C-A-2018 @2018 SIMPSON STRONG-TIE COMPANY INC.

<sup>\*</sup> See p. 13 for an explanation of the load table icons.

# C-A-2018 @ 2018 SIMPSON STRONG-TIE COMPANY INC.

# **AT-XP®** Design Information — Concrete



#### AT-XP Tension Strength Design Data for Rebar in Normal-Weight Concrete<sup>1</sup>



|                             | Characteristic                                       |                                                             |                   |                 |                          |                         |                   | Rebar Size | ;      |        |                 |
|-----------------------------|------------------------------------------------------|-------------------------------------------------------------|-------------------|-----------------|--------------------------|-------------------------|-------------------|------------|--------|--------|-----------------|
|                             | Characteristic                                       | Symbol                                                      | Units             | #3              | #4                       | #5                      | #6                | #7         | #8     | #10    |                 |
|                             |                                                      | ;                                                           | Steel Stren       | gth in Ten      | sion                     |                         |                   |            |        |        |                 |
|                             | Minimum Tensile Stress                               | Area                                                        | A <sub>se</sub>   | in.²            | 0.11                     | 0.2                     | 0.31              | 0.44       | 0.6    | 0.79   | 1.27            |
| Rebar                       | Tension Resistance of S<br>(ASTM A615 Grade 60)      | Tension Resistance of Steel — Rebar<br>(ASTM A615 Grade 60) |                   |                 | 9,900                    | 18,000                  | 27,900            | 39,600     | 54,000 | 71,100 | 114,300         |
| Repai                       | Tension Resistance of S<br>(ASTM A706 Grade 60)      | teel — Rebar                                                | - N <sub>sa</sub> | lb.             | 8,800                    | 16,000                  | 24,800            | 35,200     | 48,000 | 63,200 | 101,600         |
|                             | φ                                                    | _                                                           |                   |                 |                          | $0.75^{6}$              |                   |            |        |        |                 |
|                             | Co                                                   | ncrete Breakout St                                          | trength in T      | ension (2       | ,500 psi ≤               | f' <sub>c</sub> ≤ 8,000 | psi)              |            |        |        |                 |
| Effectiveness Factor — Ur   | ncracked Concrete                                    |                                                             | k <sub>uncr</sub> | _               |                          |                         |                   | 24         |        |        |                 |
| Effectiveness Factor — Cr   | acked Concrete                                       |                                                             | k <sub>cr</sub>   |                 |                          |                         |                   | 17         |        |        |                 |
| Strength Reduction Factor   | — Breakout Failure                                   |                                                             | φ                 | _               |                          |                         |                   | 0.658      |        |        |                 |
|                             |                                                      | Bond Strength                                               | in Tension        | (2,500 ps       | $si \leq f'_{c} \leq 8,$ | 000 psi)                |                   |            |        |        |                 |
|                             | Characteristic Bond Strength                         |                                                             | $	au_{k,uncr}$    | psi             | 1,010                    | 990                     | 970               | 955        | 935    | 915    | 875             |
| Uncracked Concrete 2,3,4    | Permitted Embedment                                  | nt Minimum                                                  |                   |                 | 2%                       | 2¾                      | 31/8              | 3½         | 3¾     | 4      | 5               |
|                             | Depth Range                                          | Maximum                                                     | h <sub>ef</sub>   | in.             | 71/2                     | 10                      | 12½               | 15         | 17½    | 20     | 25              |
|                             | Characteristic Bo                                    | nd Strength                                                 | $	au_{k,cr}$      | psi             | 340                      | 770                     | 780               | 790        | 795    | 795    | 820             |
| Cracked Concrete 2,3,4      | Permitted Embedment                                  | Minimum                                                     |                   |                 | 3                        | 3                       | 31/8              | 3½         | 3¾     | 4      | 5               |
|                             | Depth Range                                          | Maximum                                                     | h <sub>ef</sub>   | in.             | 71/2                     | 10                      | 121/2             | 15         | 17½    | 20     | 25              |
|                             | Bond Strength in                                     | Tension — Bond S                                            | trength Re        | duction F       | actors for (             | Continuous              | Special In        | spection   |        |        |                 |
| Strength Reduction Factor   | — Dry Concrete                                       |                                                             | $\phi_{dry}$      | _               |                          |                         | 0.65 <sup>7</sup> |            |        | 0.9    | 55 <sup>7</sup> |
| Strength Reduction Factor   | — Water-Saturated Concr                              | ete                                                         | $\phi_{sat}$      | _               |                          |                         |                   | 0.457      |        |        |                 |
| Additional Factor for Water | K <sub>sat</sub>                                     | _                                                           | 0.8               | 54 <sup>5</sup> |                          | 0.775                   |                   | 0.0        | 965    |        |                 |
|                             | Strength R                                           | eduction                                                    | Factors for       | r Periodic S    | pecial Insp              | ection                  |                   |            |        |        |                 |
| Strength Reduction Factor   | Strength Reduction Factor — Dry Concrete             |                                                             |                   |                 |                          |                         | 0.55 <sup>7</sup> |            |        | 0.4    | 45 <sup>7</sup> |
| Strength Reduction Factor   | Strength Reduction Factor — Water-Saturated Concrete |                                                             |                   |                 |                          |                         |                   | 0.457      |        |        |                 |
| Additional Factor for Water | -Saturated Concrete                                  |                                                             | K <sub>sat</sub>  | _               | 0.4                      | 46 <sup>5</sup>         |                   | 0.655      |        | 0.0    | 31 <sup>5</sup> |

- The information presented in this table is to be used in conjunction with the design criteria of ACI 318-14 and ACI 318-11.
- 2. Temperature Range: Maximum short-term temperature of 180°F. Maximum long-term temperature of 110°F.
- 3. Short-term concrete temperatures are those that occur over short intervals (diurnal cycling).
- Long-term concrete temperatures are constant temperatures over a significant time period.
- 5. In water-saturated concrete, multiply  $au_{\textit{k,uncr}}$  and  $au_{\textit{k,cr}}$  by  $extit{K}_{\textit{sat.}}$
- 6. The value of  $\phi$  applies when the load combinations of ACI 318-14 5.3 or ACI 318-11 Section 9.2 are used. If the load combinations of ACI 318 Appendix C are used, refer to ACI 318-11 D.4.4 to determine the appropriate value of  $\phi$ .
- 7. The value of  $\phi$  applies when both the load combinations of ACI 318-14 5.3 or ACI 318-11 Section 9.2 are used and the requirements of ACI 318-14 17.3.3 or ACI 318-11 D.4.3 (c) for Condition B are met. If the load combinations of ACI 318 Appendix C are used, refer to ACI 318-11 D.4.4 to determine the appropriate value of  $\phi$ .
- 8. The value of φ applies when both the load combinations of ACI 318-14 5.3 or ACI 318-11 Section 9.2 are used and the requirements of ACI 318-14 17.3.3 or ACI 318-11 D.4.3 (c) for Condition B are met. If the load combinations of ACI 318 Section 9.2 are used and the requirements of ACI 318-11 D.4.3 (c) for Condition A are met, refer to ACI 318-11 D.4.4 to determine the appropriate value of φ. If the load combinations of ACI 318 Appendix C are used, refer to ACI 318-11 D.4.4 to determine the appropriate value of φ.

<sup>\*</sup> See p. 13 for an explanation of the load table icons.

AT-XP Shear Strength Design Data for Threaded Rod in Normal-Weight Concrete<sup>1</sup>

# SIMPSON Strong-Tie

**Adhesive** Anchors

# **AT-XP®** Design Information — Concrete

IBC

| ^ | <b>→</b> |  |
|---|----------|--|
| b | 530 530  |  |

|                 | Characteristic                                                                          | Symbol Units          |                  | Nominal Anchor Diameter (in.)                         |        |        |                 |        |        |        |  |
|-----------------|-----------------------------------------------------------------------------------------|-----------------------|------------------|-------------------------------------------------------|--------|--------|-----------------|--------|--------|--------|--|
|                 | Characteristic                                                                          | Syllibol              | UIIILS           | 3/8                                                   | 1/2    | 5/8    | 3/4             | 7/8    | 1      | 11/4   |  |
|                 | Si                                                                                      | teel Streng           | th in She        | ear                                                   |        |        |                 |        |        |        |  |
|                 | Minimum Shear Stress Area                                                               | Ase                   | in. <sup>2</sup> | 0.078                                                 | 0.142  | 0.226  | 0.334           | 0.462  | 0.606  | 0.969  |  |
|                 | Shear Resistance of Steel — ASTM F1554, Grade 36                                        |                       |                  | 2,260                                                 | 4,940  | 7,865  | 11,625          | 16,080 | 21,090 | 33,720 |  |
|                 | Shear Resistance of Steel — ASTM A193, Grade B7                                         |                       |                  | 4,875                                                 | 10,650 | 16,950 | 25,050          | 34,650 | 45,450 | 72,675 |  |
|                 | Shear Resistance of Steel — Type 410 Stainless (ASTM A193, Grade B6)                    | V <sub>sa</sub>       | lb.              | 4,290                                                 | 9,370  | 14,910 | 22,040          | 30,490 | 40,000 | 63,955 |  |
| Threaded        | Shear Resistance of Steel — Type 304 and 316<br>Stainless (ASTM A193, Grade B8 and B8M) |                       |                  | 2,225                                                 | 4,855  | 7,730  | 11,425          | 15,800 | 20,725 | 33,140 |  |
| Rod             | Reduction for Seismic Shear — ASTM F1554, Grade 36                                      |                       |                  |                                                       |        |        | 0.85            |        |        |        |  |
|                 | Reduction for Seismic Shear — ASTM A193, Grade B7                                       |                       |                  |                                                       |        |        | 0.85            |        |        |        |  |
|                 | Reduction for Seismic Shear — Type 410 Stainless (ASTM A193, Grade B6)                  | $lpha_{V\!,seis}{}^5$ | _                | 0.85                                                  |        |        | 0.75            |        |        | 0.85   |  |
|                 | Reduction for Seismic Shear — Type 304 and 316 Stainless (ASTM A193, Grade B8 and B8M)  |                       |                  | 0.85                                                  |        |        | 0.75            |        |        | 0.85   |  |
|                 | Strength Reduction Factor — Steel Failure                                               | φ                     | _                |                                                       |        |        | $0.65^{2}$      |        |        |        |  |
|                 | Concrete                                                                                | Breakout              | Strength         | in Shear                                              |        |        |                 |        |        |        |  |
| Diameter of Ar  | nchor                                                                                   | da                    | in.              | 0.375                                                 | 0.5    | 0.625  | 0.75            | 0.875  | 1      | 1.25   |  |
| Load-Bearing    | Length of Anchor in Shear                                                               | $\ell_e$              | in.              |                                                       |        |        | h <sub>ef</sub> |        |        |        |  |
| Strength Redu   | φ                                                                                       | _                     |                  |                                                       |        | 0.703  |                 |        |        |        |  |
|                 | Conc                                                                                    |                       |                  | in Shear                                              |        |        |                 |        |        |        |  |
| Coefficient for | Pryout Strength                                                                         | k <sub>cp</sub>       | _                | 1.0 for $h_{ef}$ < 2.50"; 2.0 for $h_{ef} \ge 2.50$ " |        |        |                 |        |        |        |  |
| Strength Redu   | ction Factor — Pryout Failure                                                           | φ                     | _                |                                                       |        |        | 0.704           |        |        |        |  |
| ou engui neuu   | otion ractor rryout railure                                                             | Ψ                     |                  |                                                       |        |        | 0.70            |        |        |        |  |

- 1. The information presented in this table is to be used in conjunction with the design criteria of ACI 318-14 and ACI 318-11.
- 2. The value of  $\phi$  applies when the load combinations of ACI 318-14 5.3 or ACI 318-11 Section 9.2 are used. If the load combinations of ACI 318 Appendix C are used, refer to ACI 318-11 D.4.4 to determine the appropriate value of  $\phi$ .
- 3. The value of  $\phi$  applies when both the load combinations of ACI 318-14 5.3 or ACI 318-11 Section 9.2 are used and the requirements of ACI 318-14 17.3.3 or ACI 318-11 D.4.3 (c) for Condition B are met. If the load combinations of ACI 318 Section 9.2 are used and the requirements of ACI 318-11 D.4.3 (c) for Condition A are met, refer to ACI 318-11 D.4.4 to determine the appropriate value of  $\phi$ . If the load combinations of ACI 318 Appendix C are used, refer to ACI 318-11 D.4.4 to determine the appropriate value of  $\phi$ .
- 4. The value of  $\phi$  applies when both the load combinations of ACI 318-14 5.3 or ACI 318-15 Section 9.2 are used and the requirements of ACI 318-14 17.3.3 or ACI 318-11 D.4.3 (c) for Condition B are met. If the load combinations of ACI 318 Appendix C are used, refer to ACI 318-11 D.4.4 to determine the appropriate value of  $\phi$ .
- 5. The values of V<sub>sa</sub> are applicable for both cracked concrete and uncracked concrete. For anchors installed in regions assigned to Seismic Design Category C, D, E or F, V<sub>sa</sub> must be multiplied by α<sub>V,seis</sub> for the corresponding anchor steel type.

C-A-2018 @2018 SIMPSON STRONG-TIE COMPANY INC.

<sup>\*</sup> See p. 13 for an explanation of the load table icons.

# C-A-2018 @ 2018 SIMPSON STRONG-TIE COMPANY INC.

# **AT-XP®** Design Information — Concrete







| Characteristic  |                                                             | Symbol                | Units            |                                                      |        |        | Rebar Size        | Rebar Size |        |        |  |
|-----------------|-------------------------------------------------------------|-----------------------|------------------|------------------------------------------------------|--------|--------|-------------------|------------|--------|--------|--|
|                 | GildiaGleiiSuc                                              | Syllibol              | UIIILS           | #3                                                   | #4     | #5     | #6                | #7         | #8     | #10    |  |
|                 |                                                             | Steel Stre            | ngth in S        | hear                                                 |        |        |                   |            |        |        |  |
|                 | Minimum Shear Stress Area                                   | A <sub>se</sub>       | in. <sup>2</sup> | 0.11                                                 | 0.2    | 0.31   | 0.44              | 0.6        | 0.79   | 1.27   |  |
|                 | Shear Resistance of Steel — Rebar (ASTM A615 Grade 60)      |                       |                  | 4,950                                                | 10,800 | 16,740 | 23,760            | 32,400     | 42,660 | 68,580 |  |
| Rebar           | Shear Resistance of Steel — Rebar<br>(ASTM A706 Grade 60)   | $V_{sa}$              | lb.              | 4,400                                                | 9,600  | 14,880 | 21,120            | 28,800     | 37,920 | 60,960 |  |
| Repai           | Reduction for Seismic Shear — Rebar<br>(ASTM A615 Grade 60) | Q 5                   |                  |                                                      | 0.56   |        |                   | 0.8        | 30     |        |  |
|                 | Reduction for Seismic Shear — Rebar<br>(ASTM A706 Grade 60) | $\alpha_{V,seis}^{5}$ |                  |                                                      | 0.56   |        |                   | 0.8        | 30     |        |  |
|                 | Strength Reduction Factor — Steel Failure                   | φ                     |                  |                                                      |        |        | 0.652             |            |        |        |  |
|                 | Conc                                                        | crete Breako          | ut Streng        | th in Shear                                          |        |        |                   |            |        |        |  |
| Diameter of Ar  | nchor                                                       | da                    | in.              | 0.375                                                |        |        |                   | 1          | 1.25   |        |  |
| Load-Bearing    | Length of Anchor in Shear                                   | $\ell_e$              | in.              |                                                      |        |        | h <sub>ef</sub>   |            |        |        |  |
| Strength Redu   | Strength Reduction Factor — Breakout Failure                |                       |                  |                                                      |        |        | 0.70 <sup>3</sup> |            |        |        |  |
|                 | C                                                           |                       |                  | h in Shear                                           |        |        |                   |            |        |        |  |
| Coefficient for | Coefficient for Pryout Strength                             |                       |                  | 1.0 for $h_{ef}$ < 2.50"; 2.0 for $h_{ef} \ge$ 2.50" |        |        |                   |            |        |        |  |
| Strength Redu   | ction Factor — Pryout Failure                               | φ                     | _                |                                                      |        |        | 0.704             |            |        |        |  |

- 1. The information presented in this table is to be used in conjunction with the design criteria of ACI 318-14 and ACI 318-11.
- 2. The value of  $\phi$  applies when the load combinations of ACI 318-14 5.3 or ACI 318-11 Section 9.2 are used. If the load combinations of ACI 318 Appendix C are used, refer to ACI 318-11 D.4.4 to determine the appropriate value of  $\phi$ .
- 3. The value of  $\phi$  applies when both the load combinations of ACI 318-14 5.3 or ACI 318-11 Section 9.2 are used and the requirements of ACI 318-14 17.3.3 or ACI 318-11 D.4.3 (c) for Condition B are met. If the load combinations of ACI 318 Section 9.2 are used and the requirements of ACI 318-11 D.4.3 (c) for Condition A are met, refer to ACI 318-11 D.4.4 to determine the appropriate value of  $\phi$ . If the load combinations of ACI 318 Appendix C are used, refer to ACI 318-11 D.4.4 to determine the appropriate value of  $\phi$ .
- 4. The value of  $\phi$  applies when both the load combinations of ACI 318-14 5.3 or ACI 318-11 Section 9.2 are used and the requirements of ACI 318-14 17.3.3 or ACI 318-11 D.4.3 (c) for Condition B are met. If the load combinations of ACI 318 Appendix C are used, refer to ACI 318-11 D.4.4 to determine the appropriate value of  $\phi$ .
- 5. The values of  $V_{\rm Sa}$  are applicable for both cracked concrete and uncracked concrete. For anchors installed in regions assigned to Seismic Design Category C, D, E or F,  $V_{\rm Sa}$  must be multiplied by  $\alpha_{V_{\rm Seis}}$  for the corresponding anchor steel type.

For additional load tables, visit **strongtie.com/atxp**.



# Anchor Designer<sup>™</sup> Software for ACI 318, ETAG and CSA

Simpson Strong-Tie® Anchor Designer software accurately analyzes existing design or suggests anchor solutions based on user-defined design elements in cracked and uncracked concrete conditions.

# AT-XP® Design Information — Masonry



AT-XP Allowable Tension and Shear Loads for Threaded Rod and Rebar in the Face of Fully Grouted CMU Wall Construction<sup>1, 3, 4, 5, 6, 8, 9, 10, 11</sup>

| IBC |         | <b>→</b> |           | , <b>, ,</b> , | * |
|-----|---------|----------|-----------|----------------|---|
|     | 252 252 | 252 252  | <b>注注</b> |                |   |

| Diameter (in.)       | Drill Bit Diameter | Minimum Embedment <sup>2</sup>              | Allowable Load Based on Bond Strength <sup>7</sup> |            |  |  |
|----------------------|--------------------|---------------------------------------------|----------------------------------------------------|------------|--|--|
| or<br>Rebar Size No. | (in.)              | (in.)                                       | Tension Load                                       | Shear Load |  |  |
|                      |                    | Threaded Rod Installed in the Face of CMU W | all                                                |            |  |  |
| 3/8                  | 1/2                | 3%                                          | 1,265                                              | 1,135      |  |  |
| 1/2                  | 5/8                | 41/2                                        | 1,910                                              | 1,660      |  |  |
| 5/8                  | 3/4                | 5%                                          | 2,215                                              | 1,810      |  |  |
| 3/4                  | 7/8                | 6½                                          | 2,260                                              | 1,810      |  |  |
|                      |                    | Rebar Installed in the Face of CMU Wall     |                                                    |            |  |  |
| #3                   | 1/2                | 3%                                          | 1,180                                              | 1,315      |  |  |
| #4                   | 5/8                | 41/2                                        | 1,720                                              | 1,565      |  |  |
| #5                   | 3/4                | 5%                                          | 1,835                                              | 1,565      |  |  |

- Allowable load shall be the lesser of the bond values shown in this table and steel values, shown on p. 83.
- 2. Embedment depth shall be measured from the outside face of masonry wall.
- Critical and minimum edge distance and spacing shall comply with the information on p. 82. Figure 2 on p. 82 illustrates critical and minimum edge and end distances.
- 4. Minimum allowable nominal width of CMU wall shall be 8". No more than one anchor shall be permitted per masonry cell.
- Anchors shall be permitted to be installed at any location in the face of the fully grouted masonry wall construction (cell, web, bed joint), except anchors shall not be installed within 1½ inches of the head joint, as show in Figure 2 on p. 82.
- Tabulated allowable load values are for anchors installed in fully grouted masonry walls.
- 7. Tabulated allowable loads are based on a safety factor of 5.0.
- Tabulated allowable load values shall be adjusted for increased base material temperatures in accordance with Figure 1 below, as applicable.
- 9. Threaded rod and rebar installed in fully grouted masonry walls are permitted to resist dead, live, seismic and wind loads.
- Threaded rod shall meet or exceed the tensile strength of ASTM F1554, Grade 36 steel, which is 58,000 psi.
- 11. For installations exposed to severe, moderate or negligible exterior weathering conditions, as defined in Figure 1 of ASTM C62, allowable tension loads shall be multiplied by 0.80.

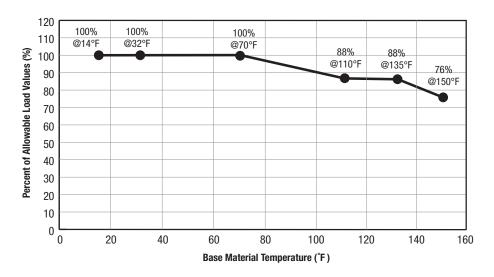



Figure 1. Load Capacity Based on In-Service Temperature for AT-XP® Adhesive in the Face of Fully Grouted CMU Wall Construction

C-A-2018 @ 2018 SIMPSON STRONG-TIE COMPANY INC.

<sup>\*</sup> See p. 13 for an explanation of the load table icons.

# **AT-XP®** Design Information — Masonry



AT-XP Edge Distance and Spacing Requirements and Allowable Load Reduction Factors — Threaded Rod and Rebar in the Face of Fully Grouted CMU Wall Construction<sup>7</sup>

| IBC |           | () () () () () () () () () () () () () ( |       | 7 |
|-----|-----------|------------------------------------------|-------|---|
|     | 950000000 | Photography or a                         | E 458 |   |

|                                           |                                     |                                                               |                                          | Edge or Edge                                                  | e Distance <sup>1,8</sup>             |                     |                                               | Spacing <sup>2,9</sup>                   |                                                   |                     |         |        |  |
|-------------------------------------------|-------------------------------------|---------------------------------------------------------------|------------------------------------------|---------------------------------------------------------------|---------------------------------------|---------------------|-----------------------------------------------|------------------------------------------|---------------------------------------------------|---------------------|---------|--------|--|
|                                           |                                     | Crit<br>(Full Ancho                                           | ical<br>r Capacity)³                     | (F                                                            | Minimum<br>(Reduced Anchor Capacity)⁴ |                     |                                               | ical<br>r Capacity)⁵                     | Minimum<br>(Reduced Anchor Capacity) <sup>6</sup> |                     |         |        |  |
| Rod Dia.<br>(in.)<br>or Rebar<br>Size No. | Minimum<br>Embed.<br>Depth<br>(in.) | Critical<br>Edge or End<br>Distance,<br>C <sub>cr</sub> (in.) | Allowable<br>Load<br>Reduction<br>Factor | Minimum<br>Edge or End<br>Distance,<br>C <sub>min</sub> (in.) | Allowable Load<br>Reduction Factor    |                     | Critical<br>Spacing,<br>S <sub>cr</sub> (in.) | Allowable<br>Load<br>Reduction<br>Factor | Minimum<br>Spacing,<br>S <sub>min</sub> (in.)     | Allowat<br>Reductio |         |        |  |
|                                           |                                     | Load D                                                        | irection                                 |                                                               | Load D                                | Load Direction      |                                               | Load D                                   | irection                                          | Load Direction      |         |        |  |
|                                           |                                     | Tension or                                                    | Tension or                               | Tension or                                                    | Tension                               | Shear <sup>10</sup> |                                               | Tension or                               | Tension or                                        | Tension or          | Tension | Shear  |  |
|                                           |                                     | Shear                                                         | Shear                                    | Shear                                                         | 161191011                             | Perp.               | Para.                                         | Shear                                    | Shear                                             | Shear               | ICHSIOH | Sileai |  |
| 3/8                                       | 3%                                  | 12                                                            | 1.00                                     | 4                                                             | 1.00                                  | 0.76                | 0.94                                          | 8                                        | 1.00                                              | 4                   | 1.00    | 1.00   |  |
| 1/2                                       | 41/2                                | 12                                                            | 1.00                                     | 4                                                             | 0.90                                  | 0.57                | 0.94                                          | 8                                        | 1.00                                              | 4                   | 1.00    | 1.00   |  |
| 5/8                                       | 5%                                  | 12                                                            | 1.00                                     | 4                                                             | 0.72                                  | 0.47                | 0.94                                          | 8                                        | 1.00                                              | 4                   | 1.00    | 1.00   |  |
| 3/4                                       | 6½                                  | 12                                                            | 1.00                                     | 4                                                             | 0.72                                  | 0.47                | 0.94                                          | 8                                        | 1.00                                              | 4                   | 1.00    | 1.00   |  |
| #3                                        | 3%                                  | 12                                                            | 1.00                                     | 4                                                             | 1.00                                  | 0.62                | 0.95                                          | 8                                        | 1.00                                              | 4                   | 1.00    | 1.00   |  |
| #4                                        | 41/2                                | 12                                                            | 1.00                                     | 4                                                             | 1.00                                  | 0.37                | 0.82                                          | 8                                        | 1.00                                              | 4                   | 1.00    | 0.89   |  |
| #5                                        | 5%                                  | 12                                                            | 1.00                                     | 4                                                             | 1.00                                  | 0.37                | 0.82                                          | 8                                        | 1.00                                              | 4                   | 1.00    | 0.89   |  |

- Edge distance (C<sub>cr</sub> or C<sub>min</sub>) is the distance measured from anchor centerline to edge or end of CMU masonry wall. Refer to Figure 2 below for an illustration showing critical and minimum edge and end distances.
- 2. Anchor spacing  $(S_{\rm cr} \, {\rm or} \, S_{\rm min})$  is the distance measured from centerline to centerline of two anchors.
- 3. Critical edge distance,  $C_{cr}$ , is the least edge distance at which tabulated allowable load of an anchor is achieved where a load reduction factor equals 1.0 (no load reduction).
- 4. Minimum edge distance,  $C_{min}$ , is the least edge distance where an anchor has an allowable load capacity which shall be determined by multiplying the allowable loads assigned to anchors installed at critical edge distance,  $C_{cn}$  by the load reduction factors shown above.
- 5. Critical spacing,  $S_{cr}$ , is the least anchor spacing at which tabulated allowable load of an anchor is achieved such that anchor performance is not influenced by adjacent anchors.
- 6. Minimum spacing,  $S_{min}$ , is the least spacing where an anchors has an allowable load capacity , which shall be determined by multiplying the allowable loads assigned to anchors installed at critical spacing distance,  $S_{Cr}$ , by the load reduction factors shown above.
- Reduction factors are cumulative. Multiple reduction factors for more than one spacing or edge or end distance shall be calculated separately and multiplied.
- Load reduction factor for anchors loaded in tension or shear with edge distances between critical and minimum shall be obtained by linear interpolation.
- Load reduction factor for anchors loaded in tension with spacing between critical and minimum shall be obtained by linear interpolation.
- 10. Perpendicular shear loads act towards the edge or end. Parallel shear loads act parallel to the edge or end (see Figure 3 below). Perpendicular and parallel shear load reduction factors are cumulative when the anchor is located between the critical minimum edge and end distance.

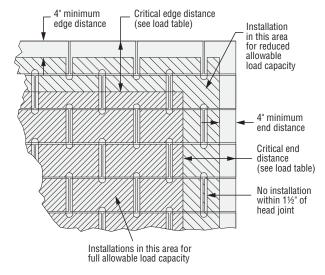



Figure 2. Allowable Anchor Locations for Full and Reduced Load Capacity When Installation Is in the Face of Fully Grouted CMU Masonry Wall Construction

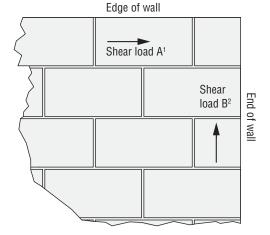



Figure 3. Direction of Shear Load in Relation to Edge and End of Wall

- 1. Direction of Shear Load A is parallel to edge of wall and perpendicular to end of wall.
- 2. Direction of Shear Load B is parallel to end of wall and perpendicular to edge of wall.

<sup>\*</sup> See p. 13 for an explanation of the load table icons.

# **AT-XP®** Design Information — Steel



#### AT-XP Allowable Tension and Shear Loads — Threaded Rod Based on Steel Strength<sup>1</sup>

| IBC |  | <b>→</b> |  |
|-----|--|----------|--|
|-----|--|----------|--|

|                   |                       | Tension                 | Load Based o                       | n Steel Stren                      | gth² (lb.)                                     | Shea                       | ar Load Bas                           | ed on Steel Strength³ (lb.)        |                                                |  |  |
|-------------------|-----------------------|-------------------------|------------------------------------|------------------------------------|------------------------------------------------|----------------------------|---------------------------------------|------------------------------------|------------------------------------------------|--|--|
| Threaded<br>Rod   | Tensile               |                         |                                    | Stainle                            | ss Steel                                       | ACTRA                      | ACTA                                  | Stair                              | lless Steel                                    |  |  |
| Diameter<br>(in.) | Stress Area<br>(in.²) | ASTM F1554<br>Grade 36⁴ | ASTM A193<br>Grade B7 <sup>6</sup> | ASTM A193<br>Grade B6 <sup>5</sup> | ASTM A193<br>Grades B8<br>and B8M <sup>7</sup> | ASTM<br>F1554<br>Grade 36⁴ | ASTM<br>A193<br>Grade B7 <sup>6</sup> | ASTM A193<br>Grade B6 <sup>5</sup> | ASTM A193<br>Grades<br>B8 and B8M <sup>7</sup> |  |  |
| 3/8               | 0.078                 | 1,495                   | 3,220                              | 2,830                              | 1,930                                          | 770                        | 1,660                                 | 1,460                              | 995                                            |  |  |
| 1/2               | 0.142                 | 2,720                   | 5,860                              | 5,155                              | 3,515                                          | 1,400                      | 3,020                                 | 2,655                              | 1,810                                          |  |  |
| 5/8               | 0.226                 | 4,325                   | 9,325                              | 8,205                              | 5,595                                          | 2,230                      | 4,805                                 | 4,225                              | 2,880                                          |  |  |
| 3/4               | 0.334                 | 6,395                   | 13,780                             | 12,125                             | 8,265                                          | 3,295                      | 7,100                                 | 6,245                              | 4,260                                          |  |  |

- 1. Allowable load shall be the lesser of bond values given on p. 81 and steel values in the table above.
- 2. Allowable Tension Steel Strength is based on the following equation:  $F_v = 0.33 \times F_u \times Tensile Stress Area$ .
- 3. Allowable Shear Steel Strength is based on the following equation:  $F_v = 0.17 \times F_u \times Tensile Stress Area.$
- 4. Minimum specified tensile strength ( $F_u = 58,000 \text{ psi}$ ) of ASTM F1554, Grade 36 used to calculate allowable steel strength.
- 5. Minimum specified tensile strength ( $F_u = 110,000 \text{ psi}$ ) of ASTM A193, Grade B6 used to calculate allowable steel strength.
- 6. Minimum specified tensile strength ( $F_u = 125,000 \text{ psi}$ ) of ASTM A193, Grade B7 used to calculate allowable steel strength.
- 7. Minimum specified tensile strength ( $F_U = 75,000 \text{ psi}$ ) of ASTM A193, Grades B8 and B8M used to calculate allowable steel strength.

#### AT-XP Allowable Tension and Shear Loads — Deformed Reinforcing Bar Based on Steel Strength<sup>1</sup>







| Drill Bit Diameter |                                   | Tension                                                                  | Load (lb.)   | Shear L                              | oad (lb.)                            |  |
|--------------------|-----------------------------------|--------------------------------------------------------------------------|--------------|--------------------------------------|--------------------------------------|--|
|                    | Minimum<br>Embedment <sup>2</sup> | Based on St                                                              | eel Strength | Based on Steel Strength              |                                      |  |
| (in.)              | (in.)                             | (in.) ASTM A615 ASTM A615<br>Grade 40 <sup>2</sup> Grade 60 <sup>3</sup> |              | ASTM A615<br>Grade 40 <sup>4,5</sup> | ASTM A615<br>Grade 60 <sup>4,6</sup> |  |
| #3                 | 0.11                              | 2,200                                                                    | 2,640        | 1,310                                | 1,685                                |  |
| #4                 | 0.20                              | 4,000                                                                    | 4,800        | 2,380                                | 3,060                                |  |
| #5                 | 0.31                              | 6,200                                                                    | 7,400        | 3,690                                | 4,745                                |  |

- 1. Allowable load shall be the lesser of bond values given on p. 81 and steel values in the table above.
- 2. Allowable Tension Steel Strength is based on AC58 Section 3.3.3 (20,000 psi x tensile stress area) for Grade 40 rebar.
- 3. Allowable Tension Steel Strength is based on AC58 Section 3.3.3 (24,000 psi x tensile stress area) for Grade 60 rebar.

C-A-2018 @ 2018 SIMPSON STRONG-TIE COMPANY INC.

- 4. Allowable Shear Steel Strength is based on AC58 Section 3.3.3  $(F_{\rm V}=0.17~{\rm x}~F_{\rm u}~{\rm x}$  Tensile Stress Area).
- 5.  $F_{\rm u} = 70,000$  psi for Grade 40 rebar.
- 6.  $F_{IJ} = 90,000$  psi for Grade 60 rebar

<sup>\*</sup> See p. 13 for an explanation of the load table icons.

# **AT** Acrylic Adhesive

AT is a high-strength, acrylic-based adhesive anchoring system, formulated for use as a high-strength anchor-grouting material in a wide range of temperature conditions. It is a two-part system, with the resin and initiator being simultaneously dispensed and mixed through the mixing nozzle.

#### **Features**

- Code listed under the IBC/IRC for URM per ICC-ES ESR-1958
- Cure times 24 hours at 0°F (-18°C), 1 hour at 60°F (16°C)
- Non-sag gel formulation ideal for horizontal, vertical and overhead applications
- Easy hole-cleaning procedure no power-brushing required
- Suitable for use in damp or wet anchor sites
- · When properly mixed, adhesive will be a uniform gray color
- · Available in 12.5 oz. and 30 oz. cartridges for application versatility
- Manufactured in the USA using global materials

#### **Applications**

- Threaded rod anchoring and rebar doweling into concrete, masonry and URM (red brick)
- Multiple DOT listings refer to **strongtie.com/DOT** for current approvals

#### Codes

ICC-ES ESR-1958 (URM); AASHTO M-235 and ASTM C881 (Type I and IV, Grade 3, Class A, B and C - except AT adhesive is a non-epoxy formulated for fast cure time); multiple DOT listings (refer to strongtie.com/DOT).

#### Chemical Resistance

See pp. 252-253

#### Installation and Application Instructions

(See also pp. 100-105)

- Surfaces to receive adhesive must be clean.
- Base material temperature must be 0°F (-18°C) or above at the time of installation.
- For information on installations below 0°F (-18°C), contact Simpson Strong-Tie.
- Mixed material in nozzle can harden in 5-7 minutes at temperatures of 70°F (21°C) and above.

#### Suggested Specifications

See strongtie.com for more information.



**AT Adhesive** 

## **AT** Acrylic Adhesive



#### **Test Criteria**

Anchors installed with AT adhesive have been tested in accordance with ICC-ES Acceptance Criteria for Anchors in Unreinforced Masonry Elements (AC60).

| Property                                | Test Method | Result*                                   |
|-----------------------------------------|-------------|-------------------------------------------|
| Consistency                             | ASTM C881   | Non-sag/thixotropic paste                 |
| Heat deflection                         | ASTM D648   | 142°F (61°C)                              |
| Bond strength (moist cure, 60°F)        | ASTM C882   | 2,960 psi (2 days)<br>3,567 psi (14 days) |
| Water absorption                        | ASTM D570   | 0.25% (24 hours)                          |
| Compressive yield strength (cured 60°F) | ASTM D695   | 10,930 psi (7 days)                       |
| Compressive modulus (cured 60°F)        | ASTM D695   | 502,330 psi (7 days)                      |
| Shore D hardness                        | ASTM D2240  | 91                                        |
| Gel time                                | ASTM C881   | 5 minutes                                 |
| VOC                                     | ASTM D2369  | 25 g/L                                    |
| Shrinkage coefficient                   | ASTM D2566  | 0.004 in./in.                             |

<sup>\*</sup>Material and curing conditions: 73  $\pm$  2°F, unless otherwise noted.

#### AT Adhesive Cartridge Systems

| Model<br>No.      | Capacity<br>(ounces) | Cartridge Type | Carton<br>Quantity | Dispensing<br>Tools          | Mixing<br>Nozzle |
|-------------------|----------------------|----------------|--------------------|------------------------------|------------------|
| AT13 <sup>4</sup> | 12.5                 | Side-by-side   | 10                 | ADT813S                      |                  |
| AT30⁴             | 30                   | Side-by-side   | 5                  | ADT30S, ADTA30CKT<br>ADTA30P | AMN19Q           |

- 1. Cartridge estimation guidelines are available at strongtie.com/apps.
- Detailed information on dispensing tools, mixing nozzles and other adhesive accessories is available at strongtie.com.
- Use only Simpson Strong-Tie mixing nozzles in accordance with Simpson Strong-Tie instructions. Modification or improper use of mixing nozzle may impair AT adhesive performance.
- 4. One AMN19Q mixing nozzle and one nozzle extension are supplied with each cartridge.

#### In-Service Temperature Sensitivity

| Base Materia | l Temperature | Percent<br>Allowable Load for | Percent<br>Allowable Load for |
|--------------|---------------|-------------------------------|-------------------------------|
| °F           | °C            | TEMP <sub>inst</sub> = 0°F    | TEMP <sub>inst</sub> ≥ 70°F   |
| 0            | -18           | 100%                          | 100%                          |
| 32           | 0             | 100%                          | 100%                          |
| 70           | 21            | 100%                          | 100%                          |
| 110          | 43            | 82%                           | 82%                           |
| 135          | 57            | 74%                           | 82%                           |
| 150          | 66            | 38%                           | 65%                           |
| 180          | 82            | 22%                           | 28%                           |

- Refer to in-service temperature sensitivity chart for allowable bond strength reduction for in-service temperature. See p. 251.
- 2. *TEMP*<sub>inst</sub> is the base material temperature during installation and curing of the adhesive.
- 3. Percent allowable load for  $TEMP_{inst}=0$ °F (-18°C) is to be used for  $TEMP_{inst}$  between 0°F (-18°C) and 70°F (21°C).
- Percent allowable load may be linearly interpolated for intermediate base material in-service temperatures.
- 5. °C = (°F-32) / 1.8

#### Cure Schedule

| Base Materia | Base Material Temperature |         |  |  |  |  |  |  |
|--------------|---------------------------|---------|--|--|--|--|--|--|
| °F           | °C                        | (hrs.)  |  |  |  |  |  |  |
| 0            | -18                       | 24      |  |  |  |  |  |  |
| 25           | -4                        | 8       |  |  |  |  |  |  |
| 40           | 4                         | 4       |  |  |  |  |  |  |
| 60           | 16                        | 1       |  |  |  |  |  |  |
| 70           | 21                        | 30 min. |  |  |  |  |  |  |
| 100          | 38                        | 20 min. |  |  |  |  |  |  |



AT Allowable Tension Loads for Threaded Rod Anchors in Normal-Weight Concrete (continued on next page)

|        | $\overline{}$ | <u></u> | <b>*</b> |
|--------|---------------|---------|----------|
| ID     | 📭             |         |          |
| المورا | 257 252       |         |          |

| Rod              | Drill               | Embed.                | Critical             | Critical                | Base                  | Tension Load<br>d on Bond Str                      |                       | Tension Load<br>Based on Steel Strength |                       |                       |
|------------------|---------------------|-----------------------|----------------------|-------------------------|-----------------------|----------------------------------------------------|-----------------------|-----------------------------------------|-----------------------|-----------------------|
| Dia.<br>in.      | Bit<br>Dia.         | Depth<br>in.          | th Dist.             | Spacing<br>Dist.<br>in. |                       | f' <sub>c</sub> ≥ 2,000 psi<br>(13.8 MPa) Concrete |                       |                                         | A193 GR B7            | F593<br>304SS         |
| (mm)             | in.                 | (mm)                  | (mm)                 | (mm)                    | Ultimate<br>lb. (kN)  | Std. Dev.<br>lb. (kN)                              | Allowable<br>lb. (kN) | Allowable<br>lb. (kN)                   | Allowable<br>lb. (kN) | Allowable<br>lb. (kN) |
|                  |                     | <b>1</b> 3/4<br>(44)  | <b>25/8</b> (67)     | <b>7</b> (178)          | <b>3,362</b> (15.0)   | <b>99</b> (0.4)                                    | <b>840</b> (3.7)      |                                         |                       |                       |
| <b>3/8</b> (9.5) | 7/16                | <b>3½</b> (89)        | <b>5½</b> (133)      | <b>6</b> 1/8<br>(156)   | <b>8,937</b> (39.8)   | <b>314</b> (1.4)                                   | <b>2,235</b> (9.9)    | <b>2,105</b> (9.4)                      | <b>4,535</b> (20.2)   | <b>3,630</b> (16.1)   |
|                  |                     | <b>4½</b> (114)       | <b>6¾</b> (171)      | <b>18</b> (457)         | <b>10,411</b> (46.3)  | <b>525</b> (2.3)                                   | <b>2,605</b> (11.6)   |                                         |                       |                       |
|                  |                     | <b>2½</b><br>(54)     | <b>33/16</b> (81)    | <b>8½</b> (216)         | <b>5,252</b> (23.4)   | <b>501</b> (2.2)                                   | <b>1,315</b> (5.8)    |                                         | <b>8,080</b> (35.9)   | <b>6,470</b> (28.8)   |
| <b>½</b> (12.7)  | 9/16                | <b>4½</b> (108)       | <b>6</b> % (162)     | <b>7½</b> (191)         | <b>16,668</b> (74.1)  | <b>822</b> (3.7)                                   | <b>4,165</b> (18.5)   | <b>3,750</b> (16.7)                     |                       |                       |
|                  |                     | <b>6</b> (152)        | <b>9</b> (229)       | <b>24</b> (610)         | <b>19,182</b> (85.3)  | <b>331</b> (1.5)                                   | <b>4,795</b> (21.3)   |                                         |                       |                       |
|                  |                     | <b>2½</b> (64)        | <b>3¾</b> (95)       | <b>10</b> (254)         | <b>8,495</b> (37.8)   | <b>561</b> (2.5)                                   | <b>2,125</b> (9.5)    |                                         |                       |                       |
|                  |                     | <b>4</b> (102)        | <b>5</b> % (143)     | <b>16</b> (406)         | _                     | <b>4,315</b> (19.2)                                |                       |                                         |                       |                       |
| <b>5%</b> (15.9) | 11/16               | <b>5½</b> (140)       | <b>7½</b> (191)      | <b>95/8</b> (244)       | <b>26,025</b> (115.8) | <b>1,866</b> (8.3)                                 | <b>6,505</b> (28.9)   | <b>5,875</b> (26.1)                     | <b>12,660</b> (56.3)  | <b>10,120</b> (45.0)  |
|                  |                     | <b>7</b> ½16<br>(189) | <b>10</b> %<br>(276) | <b>29¾</b> (756)        |                       |                                                    | <b>7,215</b> (32.1)   |                                         |                       |                       |
|                  | <b>9</b> %<br>(238) | <b>14</b> 1/8 (359)   | <b>37½</b> (953)     | <b>31,683</b> (140.9)   | <b>1,571</b> (7.0)    | <b>7,920</b> (35.2)                                |                       |                                         |                       |                       |

See notes on next page.

3/4"-11/4" diameters on next page



C-A-2018 @2018 SIMPSON STRONG-TIE COMPANY INC.

## **AT** Design Information — Concrete

SIMPSON
Strong-Tie

AT Allowable Tension Loads for Threaded Rod Anchors in Normal-Weight Concrete (continued from previous page)

|      |         | (EST) |      |
|------|---------|-------|------|
| IRC: |         |       |      |
|      | 252 252 |       | 1000 |

|                     |             | Embed.                                     | Critical                                     | Critical                                      |                        | Tension Load<br>d on Bond Str              |                       | Tension Load<br>Based on Steel Strength |                       |                       |
|---------------------|-------------|--------------------------------------------|----------------------------------------------|-----------------------------------------------|------------------------|--------------------------------------------|-----------------------|-----------------------------------------|-----------------------|-----------------------|
| Dia.<br>in.         | Bit<br>Dia. | Depth<br>in.                               | Edge<br>Dist.<br>in.                         | Spacing<br>Dist.<br>in.                       |                        | f' <sub>c</sub> ≥ 2,000 ps<br>.8 MPa) Conc |                       | F1554<br>Grade 36                       | A193 GR B7            | F593<br>304SS         |
| (mm)                | in.         | (mm)                                       | (mm)                                         | (mm)                                          | Ultimate<br>lb. (kN)   | Std. Dev.<br>lb. (kN)                      | Allowable<br>lb. (kN) | Allowable<br>lb. (kN)                   | Allowable<br>lb. (kN) | Allowable<br>lb. (kN) |
|                     |             | <b>3</b> %<br>(86)                         | <b>5½</b> 6 (129)                            | <b>13½</b> (343)                              | <b>12,991</b> (57.8)   | <b>725</b> (3.2)                           | <b>3,250</b> (14.5)   |                                         |                       |                       |
|                     |             | <b>5½</b> 6 (129)                          | <b>7</b> 5/8<br>(194)                        | <b>20</b> 1/4<br>(514)                        | _                      | _                                          | <b>6,330</b> (28.2)   |                                         |                       | <b>12,400</b> (55.2)  |
| <b>3/4</b> (19.1)   | 13/16       | <b>6¾</b> (171)                            | <b>10</b> 1/8<br>(257)                       | <b>11</b> % (302)                             | <b>37,616</b> (167.3)  | <b>1,817</b> (8.1)                         | <b>9,405</b> (41.8)   | <b>8,460</b> (37.6)                     | <b>18,230</b> (81.1)  |                       |
|                     |             | <b>9</b> (229)                             | 13½<br>(343)                                 | <b>36</b> (914)                               |                        | _                                          | <b>10,000</b> (44.5)  |                                         |                       |                       |
|                     |             | <b>11</b> 1/4 (286)                        | <b>16</b> % (429)                            | <b>45</b> (1,143)                             | <b>42,381</b> (188.5)  | <b>683</b> (3.0)                           | <b>10,595</b> (47.1)  |                                         |                       |                       |
|                     |             | <b>3</b> 7/8<br>(98)                       | <b>5</b> <sup>13</sup> / <sub>16</sub> (148) | <b>15½</b> (394)                              | <b>14,206</b> (63.2)   | <b>457</b> (2.0)                           | <b>3,550</b> (15.8)   |                                         |                       |                       |
|                     |             | <b>5 <sup>13</sup>/<sub>16</sub></b> (148) | <b>8¾</b> (222)                              | <b>23</b> 1/4 (591)                           | -                      | _                                          | <b>7,130</b> (31.7)   |                                         |                       |                       |
| 7/8<br>(22.2)       | 1           | <b>7</b> 3/4<br>(197)                      | <b>11%</b> (295)                             | <b>13</b> %<br>(346)                          | <b>42,848</b> (190.6)  | <b>3,155</b> (14.0)                        | <b>10,710</b> (47.6)  | <b>11,500</b> (51.2)                    | <b>24,785</b> (110.2) | <b>16,860</b> (75.0)  |
|                     |             | <b>10</b> 7/ <sub>16</sub> (265)           | <b>15</b> %<br>(397)                         | <b>41</b> <sup>3</sup> ⁄ <sub>4</sub> (1,060) | _                      | _                                          | <b>12,250</b> (54.5)  |                                         |                       |                       |
|                     |             | <b>13</b> % (333)                          | <b>19</b> %<br>(498)                         | <b>52½</b> (1,334)                            | <b>55,148</b> (245.3)  | <b>5,673</b> (25.2)                        | <b>13,785</b> (61.3)  |                                         |                       |                       |
|                     |             | <b>4½</b> (114)                            | <b>6¾</b> (171)                              | <b>18</b> (457)                               | <b>20,797</b> (92.5)   | <b>1,763</b> (7.8)                         | <b>5,200</b> (23.1)   |                                         | <b>32,380</b> (144.0) | <b>22,020</b> (97.9)  |
|                     |             | <b>6¾</b> (171)                            | <b>10</b> 1/8<br>(257)                       | <b>27</b> (686)                               | _                      | _                                          | <b>10,165</b> (45.2)  | <b>15,025</b> (66.8)                    |                       |                       |
| <b>1</b> (25.4)     | 1 1/16      | <b>9</b> (229)                             | <b>13½</b> (343)                             | <b>15¾</b> (400)                              | <b>60,504</b> (269.1)  | <b>2,065</b> (9.2)                         | <b>15,125</b> (67.3)  |                                         |                       |                       |
|                     |             | <b>12</b> (305)                            | <b>18</b> (457)                              | <b>48</b> (1,219)                             | _                      | _                                          | <b>17,880</b> (79.5)  |                                         |                       |                       |
|                     |             | <b>15</b> (381)                            | <b>22½</b> (572)                             | <b>60</b> (1,524)                             | <b>82,529</b> (367.1)  | <b>5,146</b> (22.9)                        | <b>20,630</b> (91.8)  |                                         |                       |                       |
|                     |             | <b>5</b> 1/8<br>(130)                      | <b>73/4</b> (197)                            | <b>20½</b> (521)                              | <b>26,600</b> (118.3)  | _                                          | <b>6,650</b> (29.6)   |                                         |                       |                       |
|                     |             | <b>7</b> 5/8<br>(194)                      | <b>11½</b> (292)                             | <b>30½</b> (775)                              | _                      | _                                          | <b>11,780</b> (52.4)  |                                         |                       |                       |
| <b>1 1/8</b> (28.6) | 13/16       | <b>10</b> % (257)                          | <b>15</b> 1/4<br>(387)                       | <b>17¾</b> (451)                              | <b>67,600</b> (300.7)  | _                                          | <b>16,900</b> (75.2)  | <b>19,025</b> (84.6)                    | <b>41,000</b> (182.4) | <b>27,880</b> (124.0) |
|                     |             | 13½<br>(343)                               | <b>201/4</b> (514)                           | <b>54</b> (1,372)                             | _                      | _                                          | <b>21,385</b> (95.1)  |                                         |                       |                       |
|                     |             | <b>16</b> % (429)                          | <b>25</b> % (645)                            | <b>67½</b> (1,715)                            | <b>103,460</b> (460.2) | _                                          | <b>25,865</b> (115.1) |                                         |                       |                       |
|                     |             | <b>5</b> %<br>(143)                        | <b>87/</b> 16 (214)                          | <b>22½</b> (572)                              | <b>32,368</b> (144.0)  | <b>2,054</b> (9.1)                         | <b>8,090</b> (36.0)   |                                         |                       |                       |
|                     |             | <b>87/</b> 16 (214)                        | <b>12¾</b> (324)                             | <b>33¾</b> (857)                              | _                      | _                                          | <b>13,090</b> (58.2)  |                                         |                       |                       |
| <b>1 1/4</b> (31.8) | 1 5/16      | <b>11</b> 1/4 (286)                        | <b>16</b> % (429)                            | <b>19¾</b> (502)                              | <b>72,363</b> (321.9)  | <b>7,457</b> (33.2)                        | <b>18,090</b> (80.5)  |                                         | <b>50,620</b> (225.2) | <b>34,420</b> (153.1) |
|                     |             | <b>15</b> (381)                            | <b>22½</b> (572)                             | <b>60</b> (1,524)                             | _                      | _                                          | <b>24,860</b> (110.6) |                                         |                       |                       |
|                     |             | <b>18¾</b> (476)                           | <b>28</b> 1/8<br>(714)                       | <b>75</b> (1,905)                             | <b>126,500</b> (562.7) | <b>15,813</b> (70.3)                       | <b>31,625</b> (140.7) |                                         |                       |                       |

<sup>1.</sup> Reference p. 250 for oversize holes.

<sup>2.</sup> Allowable load must be the lesser of the bond or steel strength.

<sup>3.</sup> The allowable loads listed under allowable bond are based on a safety factor of 4.0.

<sup>4.</sup> Refer to allowable load-adjustment factors for spacing and edge distance on pp. 95, 97 and 98.

<sup>5.</sup> Refer to in-service temperature sensitivity chart for allowable load adjustment for temperature.

<sup>6.</sup> Anchors are permitted to be used within fire-resistive construction, provided the anchors resist wind or seismic loads only. For use in fire-resistive construction, the anchors can also be permitted to be used to resist gravity loads, provided special consideration has been given to fire-exposure conditions.

Anchors are not permitted to resist tension forces in overhead or wall installations unless proper consideration is given to fire-exposure and elevated-temperature conditions.

<sup>\*</sup> See p. 13 for an explanation of the load table icons.

# C-A-2018 @2018 SIMPSON STRONG-TIE COMPANY INC.

# **AT** Design Information — Concrete

AT Allowable Shear Loads for Threaded Rod Anchors in Normal-Weight Concrete









| Rod                 | Drill       | Embed.                | Critical               | Critical                | Based on              | Shear Load<br>Based on Concrete Edge Distance |                       | Shear Load<br>Based on Steel Strength |                       |                       |  |
|---------------------|-------------|-----------------------|------------------------|-------------------------|-----------------------|-----------------------------------------------|-----------------------|---------------------------------------|-----------------------|-----------------------|--|
| Dia.<br>in.         | Bit<br>Dia. | Depth<br>in.<br>(mm)  | Edge<br>Dist.<br>in.   | Spacing<br>Dist.<br>in. | (13                   | f', ≥ 2,000 psi<br>(13.8 MPa) Concrete        |                       | F1554<br>Grade 36                     | A193 GR B7            | F593<br>304SS         |  |
| (mm)                | (mm) in.    |                       | (mm)                   | (mm)                    | Ultimate<br>lb. (kN)  | Std. Dev.<br>lb. (kN)                         | Allowable<br>lb. (kN) | Allowable<br>lb. (kN)                 | Allowable<br>lb. (kN) | Allowable<br>lb. (kN) |  |
|                     |             | <b>13/4</b> (44)      |                        | <b>2</b> 5/8<br>(67)    | <b>4,869</b> (21.7)   | <b>369</b> (1.6)                              | <b>1,215</b> (5.4)    |                                       |                       |                       |  |
| <b>3/8</b> (9.5)    | 7/16        | <b>3½</b> (89)        | <b>5</b> 1⁄4<br>(133)  | <b>5½</b> (133)         | <b>5,540</b> (24.6)   | <b>620</b> (2.8)                              | <b>1,385</b> (6.2)    | <b>1,085</b> (4.8)                    | <b>2,340</b> (10.4)   | <b>1,870</b> (8.3)    |  |
|                     |             | <b>4½</b> (114)       |                        | <b>5</b> ½ (133)        | _                     | _                                             | <b>1,385</b> (6.2)    |                                       |                       |                       |  |
|                     |             | <b>2</b> 1/8<br>(54)  |                        | <b>31/4</b> (83)        | <b>8,318</b> (37.0)   | <b>643</b> (2.9)                              | <b>2,080</b> (9.3)    |                                       |                       |                       |  |
| <b>½</b> (12.7)     | 9/16        | <b>4 ½</b> (108)      | <b>6</b> % (162)       | <b>6</b> % (162)        | <b>9,998</b> (44.5)   | <b>522</b> (2.3)                              | <b>2,500</b> (11.1)   | <b>1,930</b> (8.6)                    | <b>4,160</b> (18.5)   | <b>3,330</b> (14.8)   |  |
|                     |             | <b>6</b> (152)        |                        | <b>6</b> %<br>(162)     | _                     | _                                             | <b>2,500</b> (11.1)   |                                       |                       |                       |  |
|                     |             | <b>2½</b> (64)        |                        | <b>3¾</b> (95)          | <b>14,806</b> (65.9)  | <b>728</b> (3.2)                              | <b>3,700</b> (16.5)   |                                       |                       |                       |  |
| <b>5%</b> (15.9)    | 11/16       | <b>5½</b> (140)       | <b>7½</b> (191)        | <b>81/4</b> (210)       | <b>15,692</b> (69.8)  | <b>305</b> (1.4)                              | <b>3,925</b> (17.5)   | <b>3,025</b> (13.5)                   | <b>6,520</b> (29.0)   | <b>5,220</b> (23.2)   |  |
|                     |             | <b>9</b> % (238)      |                        | <b>81/4</b> (210)       | _                     | _                                             | <b>3,925</b> (17.5)   |                                       |                       |                       |  |
|                     |             | <b>3</b> % (86)       |                        | <b>5</b> 1/8<br>(130)   | <b>20,350</b> (90.5)  | _                                             | <b>5,090</b> (22.6)   |                                       | <b>9,390</b> (41.8)   |                       |  |
| <b>3/4</b> (19.1)   | 13/16       | <b>6¾</b> (171)       | <b>10</b> 1/8<br>(257) | <b>10</b> 1/8<br>(257)  | <b>20,350</b> (90.5)  | <b>1,521</b> (6.8)                            | <b>5,090</b> (22.6)   | <b>4,360</b> (19.4)                   |                       | <b>6,385</b> (28.4)   |  |
|                     |             | <b>111/4</b> (286)    |                        | <b>10</b> 1/8 (257)     | _                     | _                                             | <b>5,090</b> (22.6)   |                                       |                       |                       |  |
|                     |             | <b>37/8</b> (98)      |                        | <b>5</b> % (149)        | <b>27,475</b> (122.2) | <b>1,655</b> (7.4)                            | <b>6,870</b> (30.6)   |                                       |                       |                       |  |
| 7/8<br>(22.2)       | 1           | <b>7</b> 3/4<br>(197) | <b>11%</b> (295)       | <b>11%</b> (295)        | <b>30,876</b> (137.3) | <b>1,714</b> (7.6)                            | <b>7,720</b> (34.3)   | <b>5,925</b> (26.4)                   | <b>12,770</b> (56.8)  | <b>8,685</b> (38.6)   |  |
|                     |             | 131/8<br>(333)        |                        | <b>11%</b> (295)        | _                     | _                                             | <b>7,720</b> (34.3)   |                                       |                       |                       |  |
|                     |             | <b>4½</b> (114)       |                        | <b>6¾</b> (171)         | <b>32,687</b> (145.4) | <b>2,287</b> (10.2)                           | <b>8,170</b> (36.3)   |                                       |                       |                       |  |
| <b>1</b> (25.4)     | 1 ½16       | <b>9</b> (229)        | <b>13½</b> (343)       | <b>13½</b> (343)        | <b>33,858</b> (150.6) | <b>2,035</b> (9.1)                            | <b>8,465</b> (37.7)   | <b>7,740</b> (34.4)                   | <b>16,680</b> (74.2)  | <b>11,345</b> (50.5)  |  |
|                     |             | <b>15</b> (381)       |                        | 13½<br>(343)            | _                     | _                                             | <b>8,465</b> (37.7)   |                                       |                       |                       |  |
|                     |             | <b>5</b> 1/8<br>(130) |                        | <b>7</b> 3/4<br>(197)   | <b>41,536</b> (184.8) | _                                             | <b>10,385</b> (46.2)  |                                       |                       |                       |  |
| <b>1 1/8</b> (28.6) | 13/16       | <b>10</b> 1/8 (257)   | <b>151/4</b> (387)     | <b>151⁄4</b> (387)      | <b>49,812</b> (221.6) | _                                             | <b>12,455</b> (55.4)  | <b>9,800</b> (43.6)                   | <b>21,125</b> (94.0)  | <b>14,365</b> (63.9)  |  |
|                     |             | <b>16</b> % (429)     |                        | <b>151/4</b> (387)      | _                     | _                                             | <b>12,455</b> (55.4)  |                                       |                       |                       |  |
|                     |             | <b>5</b> % (143)      |                        | <b>8½</b> (216)         | <b>50,385</b> (224.1) | <b>1,090</b> (4.8)                            | <b>12,595</b> (56.0)  |                                       |                       |                       |  |
| <b>1 1/4</b> (31.8) | 15/16       | <b>111/4</b> (286)    | <b>16</b> % (429)      | <b>16</b> % (429)       | <b>65,765</b> (292.5) | <b>4,636</b> (20.6)                           | <b>16,440</b> (73.1)  | <b>12,100</b> (53.8)                  | <b>26,075</b> (116.0) | <b>17,730</b> (78.9)  |  |
|                     |             | <b>18¾</b> (476)      |                        | <b>16</b> % (429)       | _                     | _                                             | <b>16,440</b> (73.1)  |                                       |                       |                       |  |

<sup>1.</sup> Allowable load must be the lesser of the load based on concrete edge distance or steel strength.

<sup>2.</sup> The allowable loads based on concrete edge distance are based on a safety factor of 4.0.

<sup>3.</sup> Refer to allowable load-adjustment factors for spacing and edge distance on pp. 96 and 98.

<sup>4.</sup> Refer to in-service temperature sensitivity chart for allowable load adjustment for temperature.

<sup>5.</sup> Anchors are permitted to be used within fire-resistive construction, provided the anchors resist wind or seismic loads only. For use in fire-resistive construction, the anchors can also be permitted to be used to resist gravity loads, provided special consideration has been given to fire-exposure conditions.

Strong-1

AT Allowable Tension Loads for Rebar Dowels in Normal-Weight Concrete

| -2 | 1   | -   | ì |
|----|-----|-----|---|
| RC | 200 | 250 |   |





| ſ   | $\overline{}$ |  |
|-----|---------------|--|
| 1   |               |  |
| - 1 |               |  |

| Rebar             | Drill       | Embed.              | Critical             | Critical                |                       | Tension Load Based on Bond Strength      |                       |                        |                                          |                       |                             |
|-------------------|-------------|---------------------|----------------------|-------------------------|-----------------------|------------------------------------------|-----------------------|------------------------|------------------------------------------|-----------------------|-----------------------------|
| Size<br>No.       | Bit<br>Dia. | Depth<br>in.        | Edge<br>Dist.<br>in. | Spacing<br>Dist.<br>in. | f<br>(13.             | ' <sub>c</sub> ≥ 2,000 ps<br>8 MPa) Cond | si<br>crete           | f<br>(27.              | ' <sub>c</sub> ≥ 4,000 ps<br>6 MPa) Cond | si<br>erete           | ASTM A615<br>Grade 60 Rebar |
| (mm)              | in.         | (mm)                | (mm)                 | (mm)                    | Ultimate<br>lb. (kN)  | Std. Dev.<br>lb. (kN)                    | Allowable<br>lb. (kN) | Ultimate<br>lb. (kN)   | Std. Dev.<br>lb. (kN)                    | Allowable<br>lb. (kN) | Allowable<br>lb. (kN)       |
| #3                | 1/2         | <b>3½</b> (89)      | <b>5</b> ½ (133)     | <b>6</b> 1/8<br>(156)   | <b>8,245</b> (36.7)   | <b>849</b> (3.8)                         | <b>2,060</b> (9.2)    | _                      | _                                        | <b>2,060</b> (9.2)    | 2,640                       |
| (9.5)             | /2          | <b>4½</b> (114)     | <b>5</b> ½ (133)     | <b>6</b> 1/8<br>(156)   | _                     | _                                        | <b>2,060</b> (9.2)    | _                      | _                                        | <b>2,060</b> (9.2)    | (11.7)                      |
|                   |             | <b>4½</b> (108)     | <b>6</b> % (162)     | <b>7½</b> (191)         | <b>12,743</b> (56.7)  | <b>1,760</b> (7.8)                       | <b>3,185</b> (14.2)   | _                      | _                                        | <b>3,185</b> (14.2)   |                             |
| <b>#4</b> (12.7)  | 9/16        | <b>5</b> 7/8 (149)  | <b>8</b> 7/8 (225)   | <b>23½</b> (597)        | _                     | _                                        | <b>3,185</b> (14.2)   | _                      | _                                        | <b>3,985</b> (17.7)   | <b>4,800</b> (21.4)         |
|                   |             | <b>7½</b> (191)     | <b>11</b> ½ (286)    | <b>30</b> (762)         | _                     | _                                        | <b>3,185</b> (14.2)   | <b>19,124</b> (85.1)   | <b>854</b> (3.8)                         | <b>4,780</b> (21.3)   |                             |
|                   |             | <b>5½</b> (140)     | <b>7½</b> (191)      | <b>9</b> 5/8<br>(244)   | <b>20,396</b> (90.7)  | <b>1,412</b> (6.3)                       | <b>5,100</b> (22.7)   | _                      | _                                        | <b>5,100</b> (22.7)   |                             |
| <b>#5</b> (15.9)  | 3/4         | <b>7½</b> (184)     | <b>10</b> % (276)    | <b>29</b> (737)         | _                     | _                                        | <b>5,100</b> (22.7)   | _                      | _                                        | <b>6,095</b> (27.1)   | <b>7,440</b> (33.1)         |
|                   |             | <b>9</b> %<br>(191) | <b>14</b> % (359)    | <b>37½</b> (953)        | _                     | _                                        | <b>5,100</b> (22.7)   | <b>28,115</b> (125.1)  | <b>1,496</b> (6.7)                       | <b>7,030</b> (31.3)   |                             |
|                   |             | <b>6¾</b> (171)     | <b>10</b> % (257)    | <b>11</b> % (302)       | <b>31,839</b> (141.6) | <b>1,454</b> (6.5)                       | <b>7,960</b> (35.4)   | _                      | _                                        | <b>7,960</b> (35.4)   |                             |
| <b>#6</b> (19.1)  | 7/8         | <b>9</b> (229)      | <b>13½</b> (343)     | <b>36</b> (914)         | _                     | _                                        | <b>7,960</b> (35.4)   | _                      | _                                        | <b>8,730</b> (38.8)   | <b>10,560</b> (47.0)        |
|                   |             | <b>11</b> ½ (286)   | <b>16</b> % (429)    | <b>45</b> (1,143)       | _                     | _                                        | <b>7,960</b> (35.4)   | <b>37,992</b> (169.0)  | <b>1,999</b> (8.9)                       | <b>9,500</b> (42.3)   |                             |
|                   |             | <b>73/4</b> (197)   | <b>11%</b> (295)     | 135%<br>(346)           | <b>35,250</b> (156.8) | <b>2,693</b> (12.0)                      | <b>8,815</b> (39.2)   | _                      | _                                        | <b>8,815</b> (39.2)   |                             |
| <b>#7</b> (22.2)  | 1           | <b>10½</b> (267)    | <b>15¾</b> (400)     | <b>42</b> (1,067)       | _                     | _                                        | <b>8,815</b> (39.2)   | _                      | _                                        | <b>10,815</b> (48.1)  | <b>14,400</b> (64.1)        |
|                   |             | <b>13</b> 1% (333)  | <b>19%</b> (498)     | <b>52½</b> (1,334)      | _                     | _                                        | <b>8,815</b> (39.2)   | <b>50,889</b> (226.4)  | <b>3,717</b> (16.5)                      | <b>12,720</b> (56.6)  |                             |
|                   |             | <b>9</b> (229)      | <b>13½</b> (343)     | <b>15¾</b> (400)        | <b>49,973</b> (222.3) | <b>5,023</b> (22.3)                      | <b>12,495</b> (55.6)  | _                      | _                                        | <b>12,495</b> (55.6)  |                             |
| <b>#8</b> (25.4)  | 11/8        | <b>12</b> (305)     | <b>18</b> (457)      | <b>48</b> (1,219)       | _                     | _                                        | <b>12,495</b> (55.6)  |                        | <b>18,960</b> (84.3)                     |                       |                             |
|                   |             | <b>15</b> (381)     | <b>22½</b> (572)     | <b>60</b> (1,524)       | _                     | _                                        | <b>12,495</b> (55.6)  | <b>80,598</b> (358.5)  | <b>2,195</b> (9.8)                       | <b>20,150</b> (89.6)  |                             |
| <b>#9</b> (28.6)  | 11/4        | <b>16</b> % (429)   | <b>25</b> % (645)    | <b>67½</b> (1,715)      |                       | _                                        | _                     | <b>96,096</b> (427.5)  | <b>489</b> (2.2)                         | <b>24,025</b> (106.9) | <b>24,000</b> (106.8)       |
| <b>#10</b> (31.8) | 1%          | <b>18¾</b> (476)    | <b>28</b> 1/8 (714)  | <b>75</b> (1,905)       | _                     | _                                        | _                     | <b>124,031</b> (551.7) | <b>2,447</b> (10.9)                      | <b>31,010</b> (137.9) | <b>30,480</b> (135.6)       |
| <b>#11</b> (34.9) | 1%          | <b>20</b> 5/8 (524) | <b>31</b> (787)      | <b>82½</b> (2,096)      | _                     | _                                        | _                     | <b>166,059</b> (738.7) | <b>4,222</b> (18.8)                      | <b>41,515</b> (184.7) | <b>37,440</b> (166.5)       |

<sup>1.</sup> Allowable load must be the lesser of the bond or steel strength.

C-A-2018 @2018 SIMPSON STRONG-TIE COMPANY INC.

<sup>2.</sup> The allowable loads listed under allowable bond are based on a safety factor of 4.0.

<sup>3.</sup> Refer to allowable load-adjustment factors for spacing and edge distance on pp. 95, 97 and 98.

<sup>4.</sup> Refer to in-service temperature sensitivity chart for allowable load adjustment for temperature.

<sup>5.</sup> Anchors are permitted to be used within fire-resistive construction, provided the anchors resist wind or seismic loads only. For use in fire-resistive construction, the anchors can also be permitted to be used to resist gravity loads, provided special consideration has been given to fire-exposure conditions.

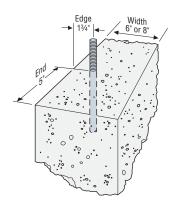
<sup>6.</sup> Anchors are not permitted to resist tension forces in overhead or wall installations unless proper consideration is given to fire-exposure and elevated-temperature conditions.

<sup>\*</sup> See p. 13 for an explanation of the load table icons.



# AT Allowable Shear Loads for Rebar Dowels in Normal-Weight Concrete

| IBC | <b>→</b> |      | *     |
|-----|----------|------|-------|
|     | 200 200  | ് ന് | 30.00 |


|                      |                          | Embad                  | ed. Edge             | Critical                |                         | ar Load Base<br>rete Edge Dis |                             | Shear Load Based on Steel Strength |
|----------------------|--------------------------|------------------------|----------------------|-------------------------|-------------------------|-------------------------------|-----------------------------|------------------------------------|
| Rebar<br>Size<br>No. | Drill Bit<br>Dia.<br>in. | Embed.<br>Depth<br>in. | Edge<br>Dist.<br>in. | Spacing<br>Dist.<br>in. | f' <sub>c</sub> ≥ 2,000 | a) Concrete                   | ASTM A615<br>Grade 60 Rebar |                                    |
| (mm)                 |                          | (mm)                   | (mm)                 | (mm)                    | Ultimate<br>lb. (kN)    | Std. Dev.<br>lb. (kN)         | Allowable<br>lb. (kN)       | Allowable<br>lb. (kN)              |
| #3                   | 1/2                      | <b>3½</b> (89)         | 6                    | 51/4                    | <b>8,294</b> (36.9)     | <b>515</b> (2.3)              | <b>2,075</b> (9.2)          | 1,680                              |
| (9.5)                | 72                       | <b>4½</b> (114)        | (152)                | (133)                   | _                       | _                             | <b>2,075</b> (9.2)          | (7.5)                              |
| #4                   | 9/16                     | <b>4½</b> (108)        | 8                    | 6%                      | <b>11,012</b> (49.0)    | <b>383</b> (1.7)              | <b>2,755</b> (12.3)         | 3,060                              |
| (12.7)               | 716                      | <b>7½</b> (191)        | (203)                | (162)                   | _                       | _                             | <b>2,755</b> (12.3)         | (13.6)                             |
| #5                   | 3/4                      | <b>5½</b> (140)        | 10                   | 81/4                    | <b>15,758</b> (70.1)    | <b>1,154</b> (5.1)            | <b>3,940</b> (17.5)         | 4,740                              |
| (15.9)               | 94                       | <b>9</b> %<br>(238)    | (254)                | (210)                   | _                       | _                             | <b>3,940</b> (17.5)         | (21.1)                             |
| #6                   | 7/8                      | <b>6¾</b> (171)        | 12                   | 101/8                   | <b>23,314</b> (103.7)   | <b>1,494</b> (6.6)            | <b>5,830</b> (25.9)         | 6,730                              |
| (19.1)               | '/8                      | <b>111/4</b> (286)     | (305)                | (257)                   | _                       | _                             | <b>5,830</b> (25.9)         | (29.9)                             |
| #7                   | 1                        | <b>7</b> 3/4<br>(197)  | 14                   | 115/8                   | <b>32,662</b> (145.3)   | <b>5,588</b> (24.9)           | <b>8,165</b> (36.3)         | 9,180                              |
| (22.2)               | I I                      | <b>13</b> 1/8<br>(333) | (356)                | (295)                   | _                       | _                             | <b>8,165</b> (36.3)         | (40.8)                             |
| #8                   | 11/8                     | <b>9</b> (229)         | 16                   | 13½                     | <b>33,428</b> (148.7)   | <b>2,319</b> (10.3)           | <b>8,360</b> (37.2)         | 12,085                             |
| (25.4)               | 1 78                     | <b>15</b> (381)        | (406)                | (343)                   | _                       | _                             | <b>8,360</b> (37.2)         | (53.8)                             |

- 1. Allowable load must be the lesser of the load based on concrete edge distance or steel strength.
- 2. The allowable loads based on concrete edge distance are based on a safety factor of 4.0.
- 3. Refer to allowable load-adjustment factors for spacing and edge distance on pp. 96 and 98.
- 4. Refer to in-service temperature sensitivity chart for allowable load adjustment for temperature.
- 5. Anchors are permitted to be used within fire-resistive construction, provided the anchors resist wind or seismic loads only. For use in fire-resistive construction, the anchors can also be permitted to be used to resist gravity loads, provided special consideration has been given to fire-exposure conditions.

# AT Allowable Tension Loads for Threaded Rod Anchors in Normal-Weight Concrete Stemwall

| III INOITTI             | ai-vveigi                | IL CONC           | rete Steri       | iwaii                |                     |                                                             | ,                       |                                         |  |
|-------------------------|--------------------------|-------------------|------------------|----------------------|---------------------|-------------------------------------------------------------|-------------------------|-----------------------------------------|--|
|                         |                          | Embed.            | Stemwall         | Min.                 | Min.                |                                                             | ad Based on<br>Strength | Tension Load Based on<br>Steel Strength |  |
| Rod Dia.<br>in.<br>(mm) | Drill Bit<br>Dia.<br>in. | Depth<br>in.      | Width<br>in.     | Edge<br>Dist.<br>in. | End<br>Dist.<br>in. | $f_{c}^{\prime} \geq 2,500 \text{ psi}$ (17.2 MPa) Concrete |                         | F1554<br>Grade 36                       |  |
| ()                      |                          | (mm)              | (mm)             | (mm)                 |                     | Ultimate<br>lb. (kN)                                        | Allowable<br>lb. (kN)   | Allowable<br>lb. (kN)                   |  |
| <b>5%</b> (15.9)        | 11/16                    | <b>10</b> (254.0) | <b>6</b> (152.4) | <b>13/4</b> (44.5)   | <b>5</b> (127.0)    | <b>12,913</b> (57.4)                                        | <b>3,230</b> (14.4)     | <b>5,875</b> (26.1)                     |  |
| <b>7/8</b> (22.2)       | 1                        | <b>15</b> (381.0) | <b>8</b> (203.2) | <b>13/4</b> (44.5)   | <b>5</b> (127.0)    | <b>21,838</b> (97.1)                                        | <b>5,460</b> (24.3)     | <b>11,500</b> (51.2)                    |  |

- 1. Allowable load must be the lesser of the bond or steel strength.
- 2. The allowable loads listed under allowable bond are based on a safety factor of 4.0.
- 3. Refer to in-service temperature sensitivity chart for allowable load adjustment for temperature.
- 4. Anchors are permitted to be used within fire-resistive construction, provided the anchors resist wind or seismic loads only. For use in fire-resistive construction, the anchors can also be permitted to be used to resist gravity loads, provided special consideration has been given to fire-exposure conditions.



Edge and End Distances for Threaded Rod in Concrete Foundation Stemwall Corner Installation

<sup>\*</sup> See p. 13 for an explanation of the load table icons

# C-A-2018 @ 2018 SIMPSON STRONG-TIE COMPANY INC.

### **AT** Design Information — Concrete

# SIMPSON Strong-Tie

# AT Allowable Tension Loads for Threaded Rod Anchors in Sand-Lightweight Concrete

| ın San      | Sand-Lightweight Concrete |                      |                    |                 |                                                         |                               |                       |                       |                                   |               |  |  |  |  |
|-------------|---------------------------|----------------------|--------------------|-----------------|---------------------------------------------------------|-------------------------------|-----------------------|-----------------------|-----------------------------------|---------------|--|--|--|--|
| Rod         | Drill                     | Embed.               | Critical           | Critical        |                                                         | ion Load Bas<br>Bond Strengtl |                       |                       | sion Load Based<br>Steel Strength | on            |  |  |  |  |
| Dia.<br>in. | Bit<br>Dia.               | Depth<br>in.         | epth Dist. Dist.   |                 | st. Lightweight Concrete                                |                               |                       | F1554<br>Grade 36     | A193 GR B7                        | F593<br>304SS |  |  |  |  |
| (mm)        | in.                       | (mm)                 | (mm)               | (mm)            | Ultimate Std. Dev. Allowable lb. (kN) lb. (kN) lb. (kN) |                               | Allowable<br>lb. (kN) | Allowable<br>lb. (kN) | Allowable<br>lb. (kN)             |               |  |  |  |  |
| 3/8         | 7/16                      | <b>13/4</b> (44)     | <b>2</b> % (67)    | <b>3½</b> (89)  | <b>2,842</b> (12.6)                                     | <b>226</b> (1.0)              | <b>710</b> (3.2)      | 2,105                 | 4,535                             | 3,630         |  |  |  |  |
| (9.5)       | 7/16                      | <b>3½</b> (89)       | <b>5</b> 1/4 (133) | <b>7</b> (178)  | <b>5,132</b> (22.8)                                     | <b>762</b> (3.4)              | <b>1,280</b> (5.7)    | (9.4)                 | (20.2)                            | (16.1)        |  |  |  |  |
| 1/2         | 9/                        | <b>2</b> 1/8<br>(54) | <b>3</b> 1/8 (79)  | <b>4½</b> (108) | <b>4,415</b> (19.6)                                     | <b>454</b> (2.0)              | <b>1,100</b> (4.9)    | 3,750                 | 8,080                             | 6,470         |  |  |  |  |
| (12.7)      | 9/16                      | <b>4½</b> (108)      | <b>6</b> % (162)   | <b>8½</b> (216) | <b>6,709</b> (29.8)                                     | <b>1,002</b> (4.5)            | <b>1,675</b> (7.5)    | (16.7)                | (35.9)                            | (28.8)        |  |  |  |  |
| 5%          | 11/                       | <b>2½</b> (64)       | <b>3¾</b> (95)     | <b>5</b> (127)  | <b>5,568</b> (24.8)                                     | <b>498</b> (2.2)              | <b>1,390</b> (6.2)    | 5,875                 | 12,660                            | 10,120        |  |  |  |  |
| (15.9)      | 11/16                     | 5                    | 71/2               | 10              | 6,298                                                   | 1,155                         | 1,575                 | (26.1) (56.3)         | (56.3)                            | (45.0)        |  |  |  |  |

(5.1)

(7.0)

1. Allowable load must be the lesser of the bond or steel strength.

(127)

2.100% of the allowable load is permitted at critical spacing. No reduction in spacing is allowed.

(254)

3. Refer to allowable load-adjustment factors for edge distance on p. 99.

(191)

- 4. Refer to in-service temperature sensitivity chart for allowable load adjustment for temperature.
- 5. Anchors are permitted to be used within fire-resistive construction, provided the anchors resist wind or seismic loads only. For use in fire-resistive construction, the anchors can also be permitted to be used to resist gravity loads, provided special consideration has been given to fire-exposure conditions.
- Anchors are not permitted to resist tension forces in overhead or wall installations unless proper consideration is given to fire-exposure and elevated-temperature conditions.

(28.0)

7. The allowable loads listed under allowable bond are based on a safety factor of 4.0.

# AT Allowable Shear Loads for Threaded Rod Anchors in Sand-Lightweight Concrete



| Rod         | Drill       | Embed.               | Critical             | Critical                |                                                                | ar Load Base<br>rete Edge Dis |                       | Shear Load Based on<br>Steel Strength |                       |               |  |
|-------------|-------------|----------------------|----------------------|-------------------------|----------------------------------------------------------------|-------------------------------|-----------------------|---------------------------------------|-----------------------|---------------|--|
| Dia.<br>in. | Bit<br>Dia. | Depth<br>in.         | Edge<br>Dist.<br>in. | Spacing<br>Dist.<br>in. | f' <sub>c</sub> ≥ 3,000 psi (20.7 MPa)<br>Lightweight Concrete |                               |                       | F1554<br>Grade 36                     | A193 GR B7            | F593<br>304SS |  |
| (mm)        | in.         | (mm)                 | (mm)                 | (mm)                    | Ultimate Std. Dev. Allowable lb. (kN) lb. (kN)                 |                               | Allowable<br>lb. (kN) | Allowable<br>lb. (kN)                 | Allowable<br>lb. (kN) |               |  |
| 3/8         | 7/          | <b>1</b> 3/4 (44)    | <b>25/8</b> (67)     | <b>3½</b> (89)          | <b>3,042</b> (13.5)                                            | <b>249</b> (1.1)              | <b>760</b> (3.4)      | 1,085                                 | 2,340                 | 1,870         |  |
| (9.5)       | 7/16        | <b>3½</b> (89)       | <b>5</b> 1/4 (133)   | <b>7</b> (178)          | <b>5,320</b> (23.7)                                            | <b>187</b> (0.8)              | <b>1,330</b> (5.9)    | (4.8)                                 | (10.4)                | (8.3)         |  |
| 1/2         | 9/          | <b>2</b> 1/8<br>(54) | <b>3</b> 1/8<br>(79) | <b>4½</b> (108)         | <b>4,076</b> (18.1)                                            | <b>458</b> (2.0)              | <b>1,020</b> (4.5)    | 1,930                                 | 4,160                 | 3,330         |  |
| (12.7)      | 9/16        | <b>4½</b> (108)      | <b>6</b> % (162)     | <b>8½</b> (216)         | <b>9,838</b> (43.8)                                            | <b>625</b> (2.8)              | <b>2,460</b> (10.9)   | (8.6)                                 | (18.5)                | (14.8)        |  |
| 5/8         | 11/         | <b>2½</b> (64)       | <b>3¾</b> (95)       | <b>5</b> (127)          | <b>5,360</b> (23.8)                                            | <b>351</b> (1.6)              | <b>1,340</b> (6.0)    | 3,025                                 | 6,520                 | 5,220         |  |
| (15.9)      | 11/16       | <b>5</b> (127)       | <b>7½</b> (191)      | <b>10</b> (254)         | <b>12,430</b> (55.3)                                           | <b>518</b> (2.3)              | <b>3,105</b> (13.8)   | (13.5)                                | (29.0)                | (23.2)        |  |

- 1. Allowable load must be the lesser of the load based on concrete edge distance or steel strength.
- 2. The allowable loads based on concrete edge distance are based on a safety factor of 4.0.
- 3. Refer to allowable load-adjustment factors for edge distance on p. 99.
- 4. Refer to in-service temperature sensitivity chart for allowable load adjustment for temperature.
- 5. Anchors are permitted to be used within fire-resistive construction, provided the anchors resist wind or seismic loads only. For use in fire-resistive construction, the anchors can also be permitted to be used to resist gravity loads, provided special consideration has been given to fire-exposure conditions.
- 6.100% of the allowable load is permitted at critical spacing. No reduction in spacing is allowed.

<sup>\*</sup> See p. 13 for an explanation of the load table icons.

### **AT** Design Information — Masonry



AT Allowable Tension and Shear Loads for Threaded Rod BC Threa

| Ancho                                         | rs in 6      | 6- and 8-       | -Inch No        | ormal-W         | /eight Gr       | out-Filled (                         | CMU E                 |                                                                     |                       |  |  |  |
|-----------------------------------------------|--------------|-----------------|-----------------|-----------------|-----------------|--------------------------------------|-----------------------|---------------------------------------------------------------------|-----------------------|--|--|--|
| Rod<br>Dia.                                   | Drill<br>Bit | Embed.<br>Depth | Min.<br>Edge    | Min.<br>End     | Min.<br>Spacing | 6-Inch Grou<br>Allowable L<br>on CMU |                       | 8-Inch Grout-Filled CMU<br>Allowable Loads Based<br>on CMU Strength |                       |  |  |  |
| in.                                           | Dia.         | iń.             | Dist.<br>in.    | Dist.<br>in.    | Dist.<br>in.    | Tension                              | Shear                 | Tension                                                             | Shear                 |  |  |  |
| (mm)                                          | in.          | (mm)            | (mm)            | (mm)            | (mm)            | Allowable<br>lb. (kN)                | Allowable<br>lb. (kN) | Allowable<br>lb. (kN)                                               | Allowable<br>lb. (kN) |  |  |  |
| Anchor Installed in Face Shell (See Figure 1) |              |                 |                 |                 |                 |                                      |                       |                                                                     |                       |  |  |  |
| <b>½</b> (12.7)                               | 9/16         | <b>4½</b> (108) | <b>12</b> (305) | <b>12</b> (305) | <b>17</b> (432) | <b>770</b> (3.4)                     | <b>1,325</b> (5.9)    | <b>770</b> (3.4)                                                    | <b>1,325</b> (5.9)    |  |  |  |
| 3/4                                           | 13/16        | 63/4            | 12              | <b>4</b> (102)  | <b>27</b> (686) | _                                    | _                     | <b>1,375</b> (6.1)                                                  | _                     |  |  |  |
| (19.1)                                        | 19/16        | (171)           | (305)           | <b>12</b> (305) | <b>27</b> (686) | _                                    | _                     | _                                                                   | <b>2,670</b> (11.9)   |  |  |  |
|                                               |              |                 | Anch            | or Installe     | d in Mortar     | "T" Joint (See                       | Figure 2)             |                                                                     |                       |  |  |  |
| 3/4                                           | 13/46        | 6¾              | 16              | 8               | 27              |                                      |                       |                                                                     | 1,030                 |  |  |  |

See notes 1-7 below.

13/16



Figure 1. Allowable Anchor Placement in Grouted CMU Face Shell

(4.6)

AT Allowable Tension and Shear Loads for Threaded Rod IBC Anchors in 6- and 8-Inch Normal-Weight Grout-Filled CMU

(203)

(686)

(406)

| Rod                                                           | Drill       | Embed.          | Min.<br>Edge         | Min.<br>End         | Min.                    | 6- and 8-Inch Grout-Filled CMU<br>Allowable Loads Based on CMU Strength |                                     |                                |  |  |  |
|---------------------------------------------------------------|-------------|-----------------|----------------------|---------------------|-------------------------|-------------------------------------------------------------------------|-------------------------------------|--------------------------------|--|--|--|
| Dia.<br>in.                                                   | Bit<br>Dia. | Depth<br>in.    | Eage<br>Dist.<br>in. | End<br>Dist.<br>in. | Spacing<br>Dist.<br>in. | Tension                                                                 | Shear<br>Perpendicular <sup>8</sup> | Shear<br>Parallel <sup>9</sup> |  |  |  |
| (mm)                                                          | in.         | (mm)            | (mm)                 | (mm)                | (mm)                    | Allowable<br>lb. (kN)                                                   | Allowable<br>lb. (kN)               | Allowable<br>lb. (kN)          |  |  |  |
| Anchor Installed in Cell Opening (Top-of-Wall) (See Figure 3) |             |                 |                      |                     |                         |                                                                         |                                     |                                |  |  |  |
| 1/2<br>(12.7)                                                 | 9/16        | <b>4½</b> (108) | 13/4<br>(44)         | <b>11</b> (279)     | <b>17</b> (432)         | <b>650</b> (2.9)                                                        | <b>285</b> (1.3)                    | <b>705</b> (3.1)               |  |  |  |
| 5/8                                                           | 11/16       | <b>5</b> (127)  | 13/4<br>(44)         | <b>11</b> (279)     | <b>20</b> (508)         | <b>815</b><br>3.6                                                       | <b>330</b> (1.5)                    | <b>755</b> (3.4)               |  |  |  |
| (15.9)                                                        | ' '/16      | <b>12</b> (305) | 13/4<br>(44)         | <b>11</b> (279)     | <b>48</b> (1,219)       | <b>1,120</b> (5.0)                                                      | <b>410</b> (1.8)                    | <b>815</b> (3.6)               |  |  |  |
| 7/8<br>(22.2)                                                 | 1           | <b>12</b> (305) | 13/4<br>(44)         | <b>11</b> (279)     | <b>48</b> (1,219)       | <b>1,385</b> (6.2)                                                      | <b>290</b> (1.3)                    | <b>1,030</b> (4.6)             |  |  |  |

- 1. Threaded rods must comply with ASTM F1554 Grade 36 minimum.
- 2. Values for 6- and 8-inch wide concrete masonry units (CMU) with a minimum specified compressive strength of masonry, f'<sub>m</sub>, at 28 days is 1,500 psi.
- 3. Embedment depth is measured from the outside face of the concrete masonry unit for installations through a face shell.
- 4. Allowable loads may be increased 331/3% for short-term loading due to wind or seismic forces where permitted by code.
- 5. Refer to in-service temperature sensitivity chart for allowable load adjustment for temperature.
- 6. The tabulated allowable loads are based on a safety factor of 5.0.
- 7. Anchors must be spaced a minimum distance of four times the anchor embedment.
- 8. Shear load applied perpendicular to edge of
- 9. Shear load applied parallel to edge of CMU wall.

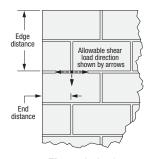



Figure 2. Anchor Placement in Grouted CMU Mortar "T" Joint

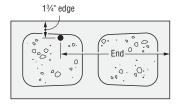



Figure 3. Anchor Installed in Cell Opening (Top of Wall)

AT Allowable Tension and Shear Loads for Threaded Rod Anchors in Lightweight. Medium-Weight and Normal-Weight Hollow CMU

| Wiedlam Volgne and Volgne Floriov Civic |                                                                                                   |                 |                   |                       |                                                                   |                       |                      |                       |  |  |  |  |
|-----------------------------------------|---------------------------------------------------------------------------------------------------|-----------------|-------------------|-----------------------|-------------------------------------------------------------------|-----------------------|----------------------|-----------------------|--|--|--|--|
| Rod                                     | Drill                                                                                             | Embed.          | Depth Dist. Dist. |                       | 6- and 8-Inch Hollow CMU Allowable Loads<br>Based on CMU Strength |                       |                      |                       |  |  |  |  |
| Dia.<br>in.                             | Bit<br>Dia.                                                                                       |                 |                   |                       | Ten                                                               | sion                  | Shear                |                       |  |  |  |  |
| (mm)                                    | in.                                                                                               | (mm)            | in.<br>(mm)       | in.<br>(mm)           | Ultimate<br>lb. (kN)                                              | Allowable<br>lb. (kN) | Ultimate<br>lb. (kN) | Allowable<br>lb. (kN) |  |  |  |  |
| An                                      | Anchor Installed in Face Shell with Simpson Stong-Tie® Stainless-Steel Screen Tube (See Figure 4) |                 |                   |                       |                                                                   |                       |                      |                       |  |  |  |  |
| <b>3/8</b> (9.5)                        | 9/16                                                                                              | 3½<br>(88.9)    | <b>4</b> (101.6)  | <b>4</b> % (117.5)    | <b>1,400</b> (6.2)                                                | <b>280</b> (1.2)      | <b>1,326</b> (5.9)   | <b>265</b> (1.2)      |  |  |  |  |
| 1/2<br>(12.7)                           | 11/16                                                                                             | 3½<br>(88.9)    | <b>4</b> (101.6)  | <b>45%</b> (117.5)    | _                                                                 | <b>280</b> (1.2)      | _                    | <b>265</b> (1.2)      |  |  |  |  |
| <b>5%</b> (15.9)                        | 7/8                                                                                               | <b>3</b> (76.2) | <b>4</b> (101.6)  | <b>4</b> %<br>(117.5) | _                                                                 | <b>280</b> (1.2)      | _                    | <b>265</b> (1.2)      |  |  |  |  |

1. See notes 1, 2, 3, 5, 6, 7 above.

2. Set drill to rotation-only mode when drilling into hollow CMU.



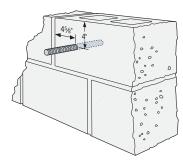
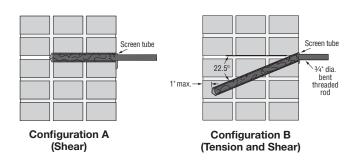
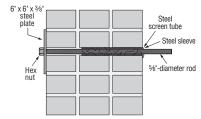



Figure 4. Anchor Installed in Face Shell with Screen Tube in Hollow Cell

# **AT** Design Information — Masonry





AT Allowable Tension and Shear Loads for Installations in Unreinforced Brick Masonry Walls — Minimum URM Wall Thickness is 13" (3 wythes thick)

| IBC | <b>1</b>     | <b>→</b>     | Heteleter |       | * |
|-----|--------------|--------------|-----------|-------|---|
|     | CA 4   C C 4 | CA 4   C C 4 | LE3       | SILLO |   |

| Rod/Rebar<br>Dia./Size<br>in.<br>(mm) | Drill<br>Bit<br>Dia.<br>in.                                    | Embed.<br>Depth<br>in.<br>(mm) | Min.<br>Edge/End<br>Dist.<br>in.<br>(mm) | Min.<br>Vertical<br>Spacing<br>Dist.<br>in.<br>(mm) | Min.<br>Horiz.<br>Spacing<br>Dist.<br>in.<br>(mm) | Tension Load Based<br>on URM Strength<br>Minimum Net Mortar<br>Strength = 50 psi<br>Allowable lb. (kN) | Shear Load Based<br>on URM Strength<br>Minimum Net Mortar<br>Strength = 50 psi<br>Allowable lb. (kN) |  |  |  |  |  |
|---------------------------------------|----------------------------------------------------------------|--------------------------------|------------------------------------------|-----------------------------------------------------|---------------------------------------------------|--------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|--|--|--|--|--|
|                                       | Configuration A (Simpson Strong-Tie® ATS Screen Tube Required) |                                |                                          |                                                     |                                                   |                                                                                                        |                                                                                                      |  |  |  |  |  |
| <b>3/4</b> (19.1)                     | 1                                                              | <b>8</b> (203)                 | <b>24</b> (610)                          | <b>18</b> (457)                                     | <b>18</b> (457)                                   | _                                                                                                      | <b>1,000</b> (4.4)                                                                                   |  |  |  |  |  |
| <b>#5</b> (15.9)                      | 1                                                              | <b>8</b> (203)                 | <b>24</b> (610)                          | <b>18</b> (457)                                     | <b>18</b> (457)                                   | _                                                                                                      | <b>750</b> (3.3)                                                                                     |  |  |  |  |  |
| <b>#6</b> (19.1)                      | 1                                                              | <b>8</b> (203)                 | <b>24</b> (610)                          | <b>18</b> (457)                                     | <b>18</b> (457)                                   | _                                                                                                      | <b>1,000</b> (4.4)                                                                                   |  |  |  |  |  |
|                                       |                                                                |                                | Configuration                            | n B (Simpson S                                      | Strong-Tie ATS                                    | Screen Tube Required)                                                                                  |                                                                                                      |  |  |  |  |  |
| <b>3/4</b> (19.1)                     | 1                                                              | 13<br>(330)                    | <b>16</b> (406)                          | <b>18</b> (457)                                     | <b>24</b> (610)                                   | <b>1,200</b> (5.3)                                                                                     | <b>1,000</b> (4.4)                                                                                   |  |  |  |  |  |
|                                       |                                                                | Configura                      | tion C (Simpso                           | n Strong-Tie A                                      | ATS Screen Tub                                    | e and AST Steel Sleeve Requir                                                                          | red)                                                                                                 |  |  |  |  |  |
| <b>5%</b><br>(15.9)                   | 1                                                              | **                             | <b>24</b> (610)                          | <b>18</b> (457)                                     | <b>18</b> (457)                                   | <b>1,200</b> (5.3)                                                                                     | <b>750</b> (3.3)                                                                                     |  |  |  |  |  |

- 1. Threaded rods must comply with ASTM F1554 Grade 36 minimum.
- 2. All holes are drilled with a 1" diameter carbide-tipped drill bit with the drill set in the rotation-only mode.
- 3. The unreinforced brick walls must have a minimum thickness of 13 inches (three wythes of brick).
- 4. The allowable load is applicable only where in-place shear tests indicate minimum net mortar strength of 50 psi.
- 5. The allowable load for Configuration B and C anchors subjected to a combined tension and shear load is determined by assuming a straight-line relationship between allowable tension and shear.
- 6. The anchors installed in unreinforced brick walls are limited to resisting seismic or wind forces only.
- Configuration A has a straight threaded rod or rebar embedded 8 inches into the wall with a 31/22" diameter by 8-inch long screen tube (part # ATS758). This configuration is designed to resist shear loads only.
- 8. Configuration B has a ¾" threaded rod bent and installed at a 22.5-degree angle and installed 13 inches into the wall, to within 1-inch (maximum) of the exterior wall surface. This configuration is designed to resist tension and shear loads. The pre-bent threaded rod is installed with a <sup>3</sup>½" diameter by 13-inch long screen tube (part # ATS7513).
- 9. Configuration C is designed to resist tension and shear forces. It consists of a 5%" diameter, ASTM F1554 Grade 36 threaded rod and an 8" long steel sleeve (part # AST800) and a 31½" diameter by 8-inch long screen tube (part # ATS758). The steel sleeve has a plastic plug in one end. A 6" by 6" by 3%" thick ASTM A 36 steel plate is located on the back face of the wall.
- 10. Special inspection requirements are determined by local jurisdiction and must be confirmed by the local building official.
- 11. Refer to in-service temperature sensitivity chart for allowable load adjustment for temperature.



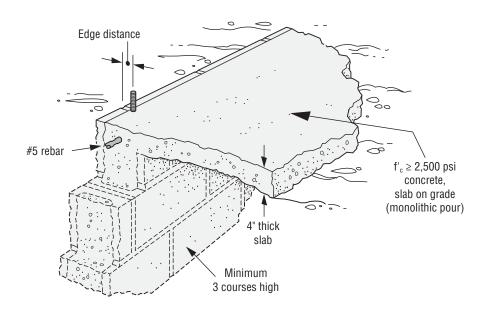


# Configuration C (Tension and Shear)

#### Installation Instructions for Configuration C

- 1. Drill hole perpendicular to the wall to a depth of 8" with a 1"-diameter carbide-tipped drill bit (rotation only mode).
- 2. Clean hole with oil-free compressed air and a nylon brush.
- 3. Fill 8" steel screen tube with mixed adhesive and insert into hole.
- Insert steel sleeve slowly into screen tube (adhesive will displace).
- 5. Allow adhesive to cure (see cure schedule).
- 6. Drill through plastic plug in (inside) end of steel sleeve with 5%" bit.
- 7. Drill completely through the wall with %" carbide tipped concrete drill bit (rotation mode only).
- 8. Insert %" rod through hole and attach metal plate and nut.

<sup>\*</sup> See p. 13 for an explanation of the load table icons.


### **AT** Design Information — Masonry

AT Allowable Tension Loads for Threaded Rod Anchors in 8-inch Lightweight, Medium-Weight and Normal-Weight CMU Chair Blocks Filled with Normal-Weight Concrete



|                         |                          | Min.                | Min.               | Critical             | 8-inch Concrete-Filled<br>CMU Chair Block        |                       |  |
|-------------------------|--------------------------|---------------------|--------------------|----------------------|--------------------------------------------------|-----------------------|--|
| Rod Dia.<br>in.<br>(mm) | Drill Bit<br>Dia.<br>in. | Embed. Depth<br>in. | Edge Dist.<br>in.  | Spacing Dist.<br>in. | Allowable Tension Loads<br>Based on CMU Strength |                       |  |
| ()                      |                          | (mm)                | (mm)               | (mm)                 | Ultimate<br>lb. (kN)                             | Allowable<br>lb. (kN) |  |
|                         |                          | <b>4½</b> (114)     | <b>13/4</b> (44.5) | <b>18</b><br>(457)   | <b>3,540</b> (15.7)                              | <b>710</b> (3.2)      |  |
| ½<br>(12.7)             |                          | <b>7</b> (178)      | <b>13/4</b> (44.5) | <b>28</b> (711)      | <b>6,285</b> (28.0)                              | <b>1,255</b> (5.6)    |  |
|                         |                          | <b>12</b> (305)     | <b>13/4</b> (44.5) | <b>48</b> (1,220)    | <b>18,950</b> (84.3)                             | <b>3,750</b> (16.7)   |  |
|                         |                          | <b>4½</b> (114)     | <b>13/4</b> (44.5) | <b>18</b> (457)      | <b>4,775</b> (21.2)                              | <b>955</b> (4.2)      |  |
| 5/8                     | 11/ <sub>16</sub>        | <b>7</b> (178)      | <b>13/4</b> (44.5) | <b>28</b> (711)      | <b>7,960</b> (35.4)                              | <b>1,590</b> (7.1)    |  |
| (15.9)                  | ' //16                   | <b>12</b> (305)     | <b>13/4</b> (44.5) | <b>48</b> (1,219)    | _                                                | <b>3,400</b> (15.1)   |  |
|                         |                          | <b>15</b> (381)     | <b>13/4</b> (44.5) | <b>60</b> (1,524)    | <b>22,425</b> (99.8)                             | <b>4,485</b> (20.0)   |  |

- 1. Threaded rods must comply with ASTM F1554 Grade 36 minimum.
- 2. Values are for 8-inch wide concrete masonry units CMU filled with concrete with minimum compressive strength of 2,500 psi and poured monolithically with the floor slab.
- 3. Center #5 rebar in CMU cell and concrete slab as shown.
- 4. The tabulated allowable loads are based on a safety factor of 5.0.



<sup>\*</sup> See p. 13 for an explanation of the load table icons.



**Adhesive** Anchors

#### AT Allowable Load Adjustment Factors in Normal-Weight Concrete: Edge Distance, Tension Load

#### How to use these charts

- 1. The following tables are for reduced edge distance.
- Locate the anchor size to be used for either a tension and/or shear load application.
- 3. Locate the embedment (E) at which the anchor is to be installed.
- 4. Locate the edge distance ( $c_{act}$ ) at which the anchor is to be installed.
- 5. The load-adjustment factor ( $f_c$ ) is the intersection of the row and column.
- 6. Multiply the allowable load by the applicable load-adjustment factor.
- 7. Reduction factors for multiple edges are multiplied together.
- 8. Adjustment factors do not apply to allowable steel strength values.
- Adjustment factors are to be applied to allowable tension load based on bond strength values only.

#### Edge Distance Tension (f<sub>c</sub>)

|       | Dia.              |      | 3/8  |      |       | 1/2  |      |       |      | 5/8  |       |       | 3/4   |       |
|-------|-------------------|------|------|------|-------|------|------|-------|------|------|-------|-------|-------|-------|
| Edge  | Rebar             |      | #    | 3    |       | #4   |      | #4    |      | #    | 5     |       | #     | 6     |
| Dist. | E                 | 13/4 | 31/2 | 41/2 | 21/8  | 41/4 | 6    | 71/2  | 21/2 | 51/2 | 9%    | 3%    | 63/4  | 111/4 |
| cact  | C <sub>cr</sub>   | 2%   | 51/4 | 6¾   | 33/16 | 6%   | 9    | 111/4 | 3¾   | 71/2 | 141/8 | 51/16 | 101/8 | 16%   |
| (in.) | C <sub>min</sub>  | 13/4 | 13/4 | 13/4 | 13/4  | 13/4 | 13/4 | 13/4  | 13/4 | 13/4 | 13/4  | 13/4  | 13/4  | 13/4  |
|       | f <sub>cmin</sub> | 0.59 | 0.59 | 0.65 | 0.50  | 0.50 | 0.65 | 0.65  | 0.50 | 0.50 | 0.61  | 0.50  | 0.50  | 0.56  |
| 13/4  |                   | 0.59 | 0.59 | 0.65 | 0.50  | 0.50 | 0.65 | 0.65  | 0.50 | 0.50 | 0.61  | 0.50  | 0.50  | 0.56  |
| 2     |                   | 0.71 | 0.62 | 0.67 | 0.59  | 0.53 | 0.66 | 0.66  | 0.56 | 0.52 | 0.62  | 0.54  | 0.51  | 0.57  |
| 3     |                   | 1.00 | 0.74 | 0.74 | 0.93  | 0.64 | 0.71 | 0.70  | 0.81 | 0.61 | 0.65  | 0.69  | 0.57  | 0.60  |
| 4     |                   |      | 0.85 | 0.81 | 1.00  | 0.74 | 0.76 | 0.73  | 1.00 | 0.70 | 0.68  | 0.84  | 0.63  | 0.63  |
| 5     |                   |      | 0.97 | 0.88 |       | 0.85 | 0.81 | 0.77  |      | 0.78 | 0.71  | 0.99  | 0.69  | 0.65  |
| 6     |                   |      | 1.00 | 0.95 |       | 0.96 | 0.86 | 0.81  |      | 0.87 | 0.74  | 1.00  | 0.75  | 0.68  |
| 7     |                   |      |      | 1.00 |       | 1.00 | 0.90 | 0.84  |      | 0.96 | 0.78  |       | 0.81  | 0.71  |
| 8     |                   |      |      |      |       |      | 0.95 | 0.88  |      | 1.00 | 0.81  |       | 0.87  | 0.74  |
| 9     |                   |      |      |      |       |      | 1.00 | 0.92  |      |      | 0.84  |       | 0.93  | 0.77  |
| 10    |                   |      |      |      |       |      |      | 0.95  |      |      | 0.87  |       | 0.99  | 0.80  |
| 11    |                   |      |      |      |       |      |      | 0.99  |      |      | 0.90  |       | 1.00  | 0.83  |
| 12    |                   |      |      |      |       |      |      | 1.00  |      |      | 0.93  |       |       | 0.86  |
| 13    |                   |      |      |      |       |      |      |       |      |      | 0.96  |       |       | 0.89  |
| 14    |                   |      |      |      |       |      |      |       |      |      | 1.00  |       |       | 0.92  |
| 15    |                   |      |      |      |       |      |      |       |      |      |       |       |       | 0.95  |
| 16    |                   |      |      |      |       |      |      |       |      |      |       |       |       | 0.97  |
| 17    |                   |      |      |      |       |      |      |       |      |      |       |       |       | 1.00  |





#### Edge Distance Tension (f<sub>c</sub>) (continued)

|       | Dia.              |                                 | 7/8  |       |      | 1     |       |      | 11/8  |      |       | 11/4  |       |      |
|-------|-------------------|---------------------------------|------|-------|------|-------|-------|------|-------|------|-------|-------|-------|------|
| Edge  | Rebar             |                                 | #    | 7     |      | #     | 8     |      |       | #9   |       |       | #10   | #11  |
| Dist. | E                 | 3%                              | 73/4 | 131/8 | 41/2 | 9     | 15    | 51/8 | 101/8 | 16%  | 5%    | 111/4 | 18¾   | 20%  |
| Cact  | C <sub>cr</sub>   | 5 <sup>13</sup> / <sub>16</sub> | 11%  | 19%   | 63/4 | 131/2 | 221/2 | 73/4 | 151/4 | 25%  | 87/16 | 16%   | 281/8 | 31   |
| (in.) | C <sub>min</sub>  | 13/4                            | 13/4 | 13/4  | 13/4 | 13/4  | 13/4  | 23/4 | 23/4  | 23/4 | 23/4  | 23/4  | 23/4  | 23/4 |
|       | f <sub>cmin</sub> | 0.49                            | 0.49 | 0.52  | 0.44 | 0.44  | 0.39  | 0.47 | 0.47  | 0.43 | 0.47  | 0.47  | 0.43  | 0.43 |
| 13/4  |                   | 0.49                            | 0.49 | 0.52  | 0.44 | 0.44  | 0.39  |      |       |      |       |       |       |      |
| 23/4  |                   | 0.62                            | 0.54 | 0.55  | 0.55 | 0.49  | 0.42  | 0.47 | 0.47  | 0.43 | 0.47  | 0.47  | 0.43  | 0.43 |
| 4     |                   | 0.77                            | 0.61 | 0.58  | 0.69 | 0.55  | 0.46  | 0.60 | 0.52  | 0.46 | 0.59  | 0.52  | 0.46  | 0.46 |
| 6     |                   | 1.00                            | 0.71 | 0.63  | 0.92 | 0.64  | 0.51  | 0.81 | 0.61  | 0.51 | 0.77  | 0.59  | 0.50  | 0.50 |
| 8     |                   |                                 | 0.81 | 0.69  | 1.00 | 0.74  | 0.57  | 1.00 | 0.69  | 0.56 | 0.96  | 0.67  | 0.55  | 0.54 |
| 10    |                   |                                 | 0.92 | 0.74  |      | 0.83  | 0.63  |      | 0.78  | 0.61 | 1.00  | 0.74  | 0.59  | 0.58 |
| 12    |                   |                                 | 1.00 | 0.80  |      | 0.93  | 0.69  |      | 0.86  | 0.66 |       | 0.82  | 0.64  | 0.62 |
| 14    |                   |                                 |      | 0.85  |      | 1.00  | 0.75  |      | 0.95  | 0.71 |       | 0.89  | 0.68  | 0.66 |
| 16    |                   |                                 |      | 0.90  |      |       | 0.81  |      | 1.00  | 0.76 |       | 0.97  | 0.73  | 0.70 |
| 18    |                   |                                 |      | 0.96  |      |       | 0.87  |      |       | 0.81 |       | 1.00  | 0.77  | 0.74 |
| 20    |                   |                                 |      | 1.00  |      |       | 0.93  |      |       | 0.86 |       |       | 0.82  | 0.78 |
| 22    |                   |                                 |      |       |      |       | 0.99  |      |       | 0.91 |       |       | 0.86  | 0.82 |
| 24    |                   |                                 |      |       |      |       | 1.00  |      |       | 0.97 |       |       | 0.91  | 0.86 |
| 26    |                   |                                 |      |       |      |       |       |      |       | 1.00 |       |       | 0.95  | 0.90 |
| 28    |                   |                                 |      |       |      |       |       |      |       |      |       |       | 1.00  | 0.94 |
| 30    |                   |                                 |      |       |      |       |       |      |       |      |       |       |       | 0.98 |
| 32    |                   |                                 |      |       |      |       |       |      |       |      |       |       |       | 1.00 |



<sup>2.</sup>  $c_{act}$  = actual edge distance at which anchor is installed (inches).



<sup>3.</sup>  $c_{cr}$  = critical edge distance for 100% load (inches).

<sup>4.</sup>  $c_{min}$  = minimum edge distance for reduced load (inches).

<sup>5.</sup>  $f_C$  = adjustment factor for allowable load at actual edge distance.

<sup>6.</sup>  $f_{\it CCT}$  = adjustment factor for allowable load at critical edge distance.  $f_{\it CCT}$  is always = 1.00.

<sup>7.</sup>  $f_{\textit{cmin}} = \text{adjustment factor for allowable load at minimum edge distance.}$ 

<sup>8.</sup>  $f_c = f_{cmin} + [(1 - f_{cmin}) (c_{act} - c_{min}) / (c_{cr} - c_{min})].$ 

<sup>\*</sup> See p. 13 for an explanation of the load table icons.

# C-A-2018 @2018 SIMPSON STRONG-TIE COMPANY INC.

# **AT** Design Information — Concrete



#### AT Allowable Load Adjustment Factors in Normal-Weight Concrete: Edge Distance, Shear Load

#### How to use these charts

- 1. The following tables are for reduced edge distance.
- 2. Locate the anchor size to be used for either a tension and/or shear load application.
- 3. Locate the embedment (E) at which the anchor is to be installed.
- 4. Locate the edge distance (c<sub>act</sub>) at which the anchor is to be installed.
- 5. The load-adjustment factor ( $f_c$ ) is the intersection of the row and column.
- 6. Multiply the allowable load by the applicable load-adjustment factor.
- 7. Reduction factors for multiple edges are multiplied together.
- 8. Adjustment factors do not apply to allowable steel strength values.
- 9. Adjustment factors are to be applied to allowable shear load based on concrete edge distance values only.

#### Edge Distance Shear (f.)

| Lugu  | Dista             | 1100 |      | II (IC) |      |      |      |      |      |      |      |      |      |      |      |      |       |       |       |      |       |
|-------|-------------------|------|------|---------|------|------|------|------|------|------|------|------|------|------|------|------|-------|-------|-------|------|-------|
|       | Dia.              |      | 3/8  |         |      |      |      | 1/2  |      |      |      |      | 5/8  |      |      |      |       | 3/4   |       |      |       |
| Edge  | Rebar             |      |      |         | #    | 3    |      |      |      | #    | 4    |      |      |      | #    | 5    |       |       |       | #    | 6     |
| Dist. | Е                 | 13/4 | 31/2 | 41/2    | 31/2 | 41/2 | 21/8 | 41/4 | 6    | 41/4 | 71/2 | 21/2 | 5½   | 9%   | 51/2 | 9%   | 3%    | 6¾    | 111/4 | 6¾   | 111/4 |
| Cact  | C <sub>cr</sub>   | 51/4 | 51/4 | 51/4    | 6    | 6    | 6%   | 6%   | 6%   | 8    | 8    | 71/2 | 71/2 | 71/2 | 10   | 10   | 101/8 | 101/8 | 101/8 | 12   | 12    |
| (in.) | C <sub>min</sub>  | 13/4 | 13/4 | 13/4    | 13/4 | 13/4 | 13/4 | 13/4 | 13/4 | 13/4 | 13/4 | 13/4 | 13/4 | 1¾   | 13/4 | 13/4 | 13/4  | 1¾    | 1¾    | 13/4 | 13/4  |
|       | f <sub>cmin</sub> | 0.40 | 0.35 | 0.39    | 0.19 | 0.39 | 0.18 | 0.15 | 0.25 | 0.16 | 0.25 | 0.12 | 0.11 | 0.14 | 0.10 | 0.14 | 0.10  | 0.11  | 0.14  | 0.10 | 0.14  |
| 13/4  |                   | 0.40 | 0.35 | 0.39    | 0.19 | 0.39 | 0.18 | 0.15 | 0.25 | 0.16 | 0.25 | 0.12 | 0.11 | 0.14 | 0.10 | 0.14 | 0.10  | 0.11  | 0.14  | 0.10 | 0.14  |
| 23/4  |                   | 0.57 | 0.54 | 0.56    | 0.38 | 0.53 | 0.36 | 0.33 | 0.41 | 0.29 | 0.37 | 0.27 | 0.26 | 0.29 | 0.21 | 0.24 | 0.21  | 0.22  | 0.24  | 0.19 | 0.22  |
| 3     |                   | 0.61 | 0.58 | 0.61    | 0.43 | 0.57 | 0.40 | 0.38 | 0.45 | 0.33 | 0.40 | 0.31 | 0.30 | 0.33 | 0.24 | 0.27 | 0.23  | 0.24  | 0.27  | 0.21 | 0.24  |
| 31/2  |                   | 0.70 | 0.68 | 0.70    | 0.52 | 0.64 | 0.49 | 0.47 | 0.53 | 0.40 | 0.46 | 0.39 | 0.38 | 0.40 | 0.29 | 0.32 | 0.29  | 0.30  | 0.32  | 0.25 | 0.29  |
| 4     |                   | 0.79 | 0.77 | 0.78    | 0.62 | 0.71 | 0.58 | 0.56 | 0.61 | 0.46 | 0.52 | 0.46 | 0.46 | 0.48 | 0.35 | 0.37 | 0.34  | 0.35  | 0.37  | 0.30 | 0.33  |
| 41/2  |                   | 0.87 | 0.86 | 0.87    | 0.71 | 0.78 | 0.67 | 0.66 | 0.70 | 0.53 | 0.58 | 0.54 | 0.54 | 0.55 | 0.40 | 0.43 | 0.40  | 0.40  | 0.42  | 0.34 | 0.37  |
| 5     |                   | 0.96 | 0.95 | 0.96    | 0.81 | 0.86 | 0.76 | 0.75 | 0.78 | 0.60 | 0.64 | 0.62 | 0.61 | 0.63 | 0.45 | 0.48 | 0.45  | 0.46  | 0.47  | 0.39 | 0.41  |
| 51/2  |                   | 1.00 | 1.00 | 1.00    | 0.90 | 0.93 | 0.84 | 0.84 | 0.86 | 0.66 | 0.70 | 0.69 | 0.69 | 0.70 | 0.51 | 0.53 | 0.50  | 0.51  | 0.53  | 0.43 | 0.45  |
| 6     |                   |      |      |         | 1.00 | 1.00 | 0.93 | 0.93 | 0.94 | 0.73 | 0.76 | 0.77 | 0.77 | 0.78 | 0.56 | 0.58 | 0.56  | 0.56  | 0.58  | 0.47 | 0.50  |
| 61/2  |                   |      |      |         |      |      | 1.00 | 1.00 | 1.00 | 0.80 | 0.82 | 0.85 | 0.85 | 0.85 | 0.62 | 0.64 | 0.61  | 0.61  | 0.63  | 0.52 | 0.54  |
| 7     |                   |      |      |         |      |      |      |      |      | 0.87 | 0.88 | 0.92 | 0.92 | 0.93 | 0.67 | 0.69 | 0.66  | 0.67  | 0.68  | 0.56 | 0.58  |
| 71/2  |                   |      |      |         |      |      |      |      |      | 0.93 | 0.94 | 1.00 | 1.00 | 1.00 | 0.73 | 0.74 | 0.72  | 0.72  | 0.73  | 0.60 | 0.62  |
| 8     |                   |      |      |         |      |      |      |      |      | 1.00 | 1.00 |      |      |      | 0.78 | 0.79 | 0.77  | 0.77  | 0.78  | 0.65 | 0.66  |
| 81/2  |                   |      |      |         |      |      |      |      |      |      |      |      |      |      | 0.84 | 0.84 | 0.83  | 0.83  | 0.83  | 0.69 | 0.71  |
| 9     |                   |      |      |         |      |      |      |      |      |      |      |      |      |      | 0.89 | 0.90 | 0.88  | 0.88  | 0.88  | 0.74 | 0.75  |
| 91/2  |                   |      |      |         |      |      |      |      |      |      |      |      |      |      | 0.95 | 0.95 | 0.93  | 0.93  | 0.94  | 0.78 | 0.79  |
| 10    |                   |      |      |         |      |      |      |      |      |      |      |      |      |      | 1.00 | 1.00 | 0.99  | 0.99  | 0.99  | 0.82 | 0.83  |
| 101/2 |                   |      |      |         |      |      |      |      |      |      |      |      |      |      |      |      | 1.00  | 1.00  | 1.00  | 0.87 | 0.87  |
| 11    |                   |      |      |         |      |      |      |      |      |      |      |      |      |      |      |      |       |       |       | 0.91 | 0.92  |
| 11½   |                   |      |      |         |      |      |      |      |      |      |      |      |      |      |      |      |       |       |       | 0.96 | 0.96  |
| 12    |                   |      |      |         |      |      |      |      |      |      |      |      |      |      |      |      |       |       |       | 1.00 | 1.00  |





See notes below.

#### Edge Distance Shear (f<sub>c</sub>) (continued)

|                        | Dia.              |       | 7/8  | ,     |      |       |       | 1     | ,     |      |      |       | 11/8  |       |       | 11/4  |      |
|------------------------|-------------------|-------|------|-------|------|-------|-------|-------|-------|------|------|-------|-------|-------|-------|-------|------|
| Edge                   | Rebar             |       |      |       | #    | 7     |       |       |       | #    | 8    |       |       |       |       |       |      |
| Dist.                  | E                 | 31//8 | 73/4 | 131/8 | 73/4 | 131/8 | 41/2  | 9     | 15    | 9    | 15   | 51/8  | 101/8 | 16%   | 5%    | 111/4 | 18¾  |
| c <sub>act</sub> (in.) | Ccr               | 11%   | 11%  | 11%   | 14   | 14    | 131/2 | 131/2 | 131/2 | 16   | 16   | 151/4 | 151/4 | 151/4 | 161/8 | 167/8 | 16%  |
| (in.)                  | C <sub>min</sub>  | 13/4  | 13/4 | 13/4  | 13/4 | 13/4  | 13/4  | 13/4  | 13/4  | 13/4 | 13/4 | 23/4  | 23/4  | 23/4  | 23/4  | 23/4  | 23/4 |
|                        | f <sub>cmin</sub> | 0.09  | 0.08 | 0.09  | 0.09 | 0.09  | 0.08  | 0.08  | 0.09  | 0.08 | 0.09 | 0.14  | 0.12  | 0.12  | 0.14  | 0.12  | 0.12 |
| 13/4                   |                   | 0.09  | 0.08 | 0.09  | 0.09 | 0.09  | 0.08  | 0.08  | 0.09  | 0.08 | 0.09 |       |       |       |       |       |      |
| 23/4                   |                   | 0.18  | 0.17 | 0.18  | 0.16 | 0.16  | 0.16  | 0.16  | 0.17  | 0.14 | 0.15 | 0.14  | 0.12  | 0.12  | 0.14  | 0.12  | 0.12 |
| 3                      |                   | 0.21  | 0.20 | 0.21  | 0.18 | 0.18  | 0.18  | 0.18  | 0.19  | 0.16 | 0.17 | 0.16  | 0.14  | 0.14  | 0.16  | 0.14  | 0.14 |
| 4                      |                   | 0.30  | 0.29 | 0.30  | 0.26 | 0.26  | 0.26  | 0.26  | 0.26  | 0.23 | 0.23 | 0.23  | 0.21  | 0.21  | 0.22  | 0.20  | 0.20 |
| 5                      |                   | 0.39  | 0.38 | 0.39  | 0.33 | 0.33  | 0.33  | 0.33  | 0.34  | 0.29 | 0.30 | 0.29  | 0.28  | 0.28  | 0.28  | 0.26  | 0.26 |
| 6                      |                   | 0.48  | 0.48 | 0.48  | 0.41 | 0.41  | 0.41  | 0.41  | 0.42  | 0.35 | 0.36 | 0.36  | 0.35  | 0.35  | 0.34  | 0.32  | 0.32 |
| 7                      |                   | 0.57  | 0.57 | 0.57  | 0.48 | 0.48  | 0.49  | 0.49  | 0.50  | 0.42 | 0.43 | 0.43  | 0.42  | 0.42  | 0.40  | 0.38  | 0.38 |
| 8                      |                   | 0.67  | 0.66 | 0.67  | 0.55 | 0.55  | 0.57  | 0.57  | 0.57  | 0.48 | 0.49 | 0.50  | 0.49  | 0.49  | 0.46  | 0.45  | 0.45 |
| 9                      |                   | 0.76  | 0.76 | 0.76  | 0.63 | 0.63  | 0.65  | 0.65  | 0.65  | 0.55 | 0.55 | 0.57  | 0.56  | 0.56  | 0.52  | 0.51  | 0.51 |
| 10                     |                   | 0.85  | 0.85 | 0.85  | 0.70 | 0.70  | 0.73  | 0.73  | 0.73  | 0.61 | 0.62 | 0.64  | 0.63  | 0.63  | 0.58  | 0.57  | 0.57 |
| 11                     |                   | 0.94  | 0.94 | 0.94  | 0.78 | 0.78  | 0.80  | 0.80  | 0.81  | 0.68 | 0.68 | 0.71  | 0.70  | 0.70  | 0.64  | 0.63  | 0.63 |
| 12                     |                   | 1.00  | 1.00 | 1.00  | 0.85 | 0.85  | 0.88  | 0.88  | 0.88  | 0.74 | 0.74 | 0.78  | 0.77  | 0.77  | 0.70  | 0.70  | 0.70 |
| 13                     |                   |       |      |       | 0.93 | 0.93  | 0.96  | 0.96  | 0.96  | 0.81 | 0.81 | 0.85  | 0.84  | 0.84  | 0.76  | 0.76  | 0.76 |
| 14                     |                   |       |      |       | 1.00 | 1.00  | 1.00  | 1.00  | 1.00  | 0.87 | 0.87 | 0.91  | 0.91  | 0.91  | 0.82  | 0.82  | 0.82 |
| 15                     |                   |       |      |       |      |       |       |       |       | 0.94 | 0.94 | 0.98  | 0.98  | 0.98  | 0.89  | 0.88  | 0.88 |
| 16                     |                   |       |      |       |      |       |       |       |       | 1.00 | 1.00 | 1.00  | 1.00  | 1.00  | 0.95  | 0.95  | 0.95 |
| 17                     |                   |       |      |       |      |       |       |       |       |      |      |       |       |       | 1.00  | 1.00  | 1.00 |



 $<sup>2.</sup>c_{act}$  = actual edge distance at which anchor is installed (inches).  $3.c_{cr}$  = critical edge distance for 100% load (inches).





<sup>4.</sup>  $c_{min}$  = minimum edge distance for reduced load (inches).

<sup>\*</sup> See p. 13 for an explanation of the load table icons.

<sup>5.</sup>  $f_c$  = adjustment factor for allowable load at actual edge distance.  $f_{\it ccr}$  = adjustment factor for allowable load at critical edge distance.  $f_{ccr}$  is always = 1.00.

<sup>6.</sup> f<sub>cmin</sub> = adjustment factor for allowable load at minimum edge distance.

<sup>7.</sup>  $f_c = f_{cmin} + [(1 - f_{cmin}) (c_{act} - c_{min}) / (c_{cr} - c_{min})].$ 



AT Allowable Load Adjustment Factors in Normal-Weight Concrete: Spacing, Tension Load

#### How to use these charts

- 1. The following tables are for reduced spacing.
- Locate the anchor size to be used for either a tension and/or shear load application.
- 3. Locate the embedment (E) at which the anchor is to be installed.
- 4. Locate the spacing  $(s_{act})$  at which the anchor is to be installed.
- 5. The load-adjustment factor ( $f_s$ ) is the intersection of the row and column.
- 6. Multiply the allowable load by the applicable load-adjustment factor.
- 7. Reduction factors for multiple spacings are multiplied together.
- 8. Adjustment factors do not apply to allowable steel strength values
- Adjustment factors are to be applied to allowable tension load based on bond strength values only.

#### Spacing Tension (f<sub>s</sub>)

|       | Dia.              |      | 3/8  |      |      | 1/2  |      |      |      | 5/8  |       |       | 3/4    |       |
|-------|-------------------|------|------|------|------|------|------|------|------|------|-------|-------|--------|-------|
|       | Rebar             |      | #    | 3    |      | #4   |      | #4   |      | #    | 5     |       | #      | 6     |
| Sact  | E                 | 13/4 | 31/2 | 41/2 | 21/8 | 41/4 | 6    | 71/2 | 21/2 | 51/2 | 9%    | 3%    | 63/4   | 111/4 |
| (in.) | Scr               | 7    | 61/8 | 18   | 81/2 | 71/2 | 24   | 30   | 10   | 9%   | 371/2 | 131/2 | 111//8 | 45    |
|       | Smin              | 7/8  | 13/4 | 21/4 | 11/8 | 21/8 | 3    | 3¾   | 11/4 | 23/4 | 43/4  | 13/4  | 3%     | 5%    |
|       | f <sub>smin</sub> | 0.57 | 0.58 | 0.80 | 0.57 | 0.58 | 0.80 | 0.80 | 0.57 | 0.58 | 0.80  | 0.57  | 0.58   | 0.80  |
| 7/8   |                   | 0.57 |      |      |      |      |      |      |      |      |       |       |        |       |
| 1     |                   | 0.58 |      |      |      |      |      |      |      |      |       |       |        |       |
| 1½    |                   | 0.61 |      |      | 0.59 |      |      |      | 0.58 |      |       |       |        |       |
| 2     |                   | 0.65 | 0.60 |      | 0.62 |      |      |      | 0.61 |      |       | 0.58  |        |       |
| 21/2  |                   | 0.68 | 0.64 | 0.80 | 0.65 | 0.61 |      |      | 0.63 |      |       | 0.60  |        |       |
| 3     |                   | 0.72 | 0.68 | 0.81 | 0.67 | 0.64 | 0.80 |      | 0.66 | 0.59 |       | 0.61  |        |       |
| 3½    |                   | 0.75 | 0.72 | 0.82 | 0.70 | 0.68 | 0.80 |      | 0.68 | 0.62 |       | 0.63  | 0.59   |       |
| 4     |                   | 0.79 | 0.76 | 0.82 | 0.73 | 0.71 | 0.81 | 0.80 | 0.71 | 0.65 |       | 0.65  | 0.61   |       |
| 5     |                   | 0.86 | 0.84 | 0.83 | 0.78 | 0.79 | 0.82 | 0.81 | 0.75 | 0.71 | 0.80  | 0.68  | 0.66   |       |
| 6     |                   | 0.93 | 0.92 | 0.85 | 0.84 | 0.86 | 0.83 | 0.82 | 0.80 | 0.77 | 0.81  | 0.72  | 0.71   | 0.80  |
| 7     |                   | 1.00 | 1.00 | 0.86 | 0.89 | 0.93 | 0.84 | 0.82 | 0.85 | 0.83 | 0.81  | 0.75  | 0.76   | 0.81  |
| 8     |                   |      |      | 0.87 | 0.95 | 1.00 | 0.85 | 0.83 | 0.90 | 0.88 | 0.82  | 0.79  | 0.81   | 0.81  |
| 9     |                   |      |      | 0.89 | 1.00 |      | 0.86 | 0.84 | 0.95 | 0.94 | 0.82  | 0.82  | 0.85   | 0.82  |
| 10    |                   |      |      | 0.90 |      |      | 0.87 | 0.84 | 1.00 | 1.00 | 0.83  | 0.86  | 0.90   | 0.82  |
| 12    |                   |      |      | 0.92 |      |      | 0.89 | 0.86 |      |      | 0.84  | 0.93  | 1.00   | 0.83  |
| 14    |                   |      |      | 0.95 |      |      | 0.90 | 0.87 |      |      | 0.85  | 1.00  |        | 0.84  |
| 16    |                   |      |      | 0.97 |      |      | 0.92 | 0.89 |      |      | 0.86  |       |        | 0.85  |
| 18    |                   |      |      | 1.00 |      |      | 0.94 | 0.90 |      |      | 0.88  |       |        | 0.86  |
| 20    |                   |      |      |      |      |      | 0.96 | 0.92 |      |      | 0.89  |       |        | 0.87  |
| 24    |                   |      |      |      |      |      | 1.00 | 0.94 |      |      | 0.91  |       |        | 0.89  |
| 28    |                   |      |      |      |      |      |      | 0.97 |      |      | 0.93  |       |        | 0.91  |
| 32    |                   |      |      |      |      |      |      | 1.00 |      |      | 0.95  |       |        | 0.93  |
| 36    |                   |      |      |      |      |      |      |      |      |      | 0.98  |       |        | 0.95  |
| 40    |                   |      |      |      |      |      |      |      |      |      | 1.00  |       |        | 0.97  |
| 45    |                   |      |      |      |      |      |      |      |      |      |       |       |        | 1.00  |





1. E = Embedment depth (inches).

C-A-2018 @2018 SIMPSON STRONG-TIE COMPANY INC.

- $2.S_{act}$  = actual spacing distance at which anchors are installed (inches).
- $3.S_{\it cr}$  = critical spacing distance for 100% load (inches).
- 4. S<sub>min</sub> = minimum spacing distance for reduced load (inches).
- $5.f_s = adjustment factor for allowable load at actual spacing distance.$
- $6.\,f_{SCT}$  = adjustment factor for allowable load at critical spacing distance.  $f_{SCT}$  is always = 1.00.
- $7.f_{\textit{smin}}$  = adjustment factor for allowable load at minimum spacing distance.
- $8.\,f_s = f_{smin} + \left[ \left( 1 f_{smin} \right) \left( s_{act} s_{min} \right) / \left( s_{cr} s_{min} \right) \right].$



#### Spacing Tension (f<sub>s</sub>) (continued)

|       | Dia.              |       | 7/8  |       |      | 1    |      |       | 11/8  |       |       | 11/4  |      |       |
|-------|-------------------|-------|------|-------|------|------|------|-------|-------|-------|-------|-------|------|-------|
|       | Rebar             |       | #    | 7     |      | #    | 8    |       |       | #9    |       |       | #10  | #11   |
| Sact  | E                 | 31//8 | 73/4 | 131/8 | 41/2 | 9    | 15   | 51/8  | 101/8 | 16%   | 5%    | 111/4 | 18¾  | 20%   |
| (in.) | Scr               | 151/2 | 13%  | 521/2 | 18   | 15¾  | 60   | 201/2 | 17¾   | 671/2 | 221/2 | 19¾   | 75   | 821/2 |
|       | Smin              | 2     | 37/8 | 6%    | 21/4 | 41/2 | 71/2 | 25/8  | 51/8  | 81/2  | 27/8  | 5%    | 9%   | 10%   |
|       | f <sub>smin</sub> | 0.57  | 0.58 | 0.80  | 0.57 | 0.58 | 0.80 | 0.57  | 0.58  | 0.80  | 0.57  | 0.58  | 0.80 | 0.80  |
| 2     |                   | 0.57  |      |       |      |      |      |       |       |       |       |       |      |       |
| 3     |                   | 0.60  |      |       | 0.59 |      |      | 0.58  |       |       | 0.57  |       |      |       |
| 4     |                   | 0.63  | 0.59 |       | 0.62 |      |      | 0.60  |       |       | 0.59  |       |      |       |
| 5     |                   | 0.67  | 0.63 |       | 0.65 | 0.60 |      | 0.63  |       |       | 0.62  |       |      |       |
| 6     |                   | 0.70  | 0.67 |       | 0.67 | 0.64 |      | 0.65  | 0.61  |       | 0.64  | 0.59  |      |       |
| 8     |                   | 0.76  | 0.76 | 0.81  | 0.73 | 0.71 | 0.80 | 0.70  | 0.68  |       | 0.68  | 0.65  |      |       |
| 10    |                   | 0.82  | 0.84 | 0.81  | 0.78 | 0.79 | 0.81 | 0.75  | 0.74  | 0.81  | 0.73  | 0.71  | 0.80 |       |
| 12    |                   | 0.89  | 0.93 | 0.82  | 0.84 | 0.86 | 0.82 | 0.80  | 0.81  | 0.81  | 0.77  | 0.77  | 0.81 | 0.80  |
| 14    |                   | 0.95  | 1.00 | 0.83  | 0.89 | 0.93 | 0.82 | 0.84  | 0.88  | 0.82  | 0.81  | 0.83  | 0.81 | 0.81  |
| 16    |                   | 1.00  |      | 0.84  | 0.95 | 1.00 | 0.83 | 0.89  | 0.94  | 0.83  | 0.86  | 0.89  | 0.82 | 0.82  |
| 20    |                   |       |      | 0.86  | 1.00 |      | 0.85 | 0.99  | 1.00  | 0.84  | 0.95  | 1.00  | 0.83 | 0.83  |
| 24    |                   |       |      | 0.88  |      |      | 0.86 | 1.00  |       | 0.85  | 1.00  |       | 0.84 | 0.84  |
| 28    |                   |       |      | 0.89  |      |      | 0.88 |       |       | 0.87  |       |       | 0.86 | 0.85  |
| 32    |                   |       |      | 0.91  |      |      | 0.89 |       |       | 0.88  |       |       | 0.87 | 0.86  |
| 36    |                   |       |      | 0.93  |      |      | 0.91 |       |       | 0.89  |       |       | 0.88 | 0.87  |
| 40    |                   |       |      | 0.95  |      |      | 0.92 |       |       | 0.91  |       |       | 0.89 | 0.88  |
| 50    |                   |       |      | 0.99  |      |      | 0.96 |       |       | 0.94  |       |       | 0.92 | 0.91  |
| 60    |                   |       |      | 1.00  |      |      | 1.00 |       |       | 0.97  |       |       | 0.95 | 0.94  |
| 70    |                   |       |      |       |      |      |      |       |       | 1.00  |       |       | 0.98 | 0.97  |
| 80    |                   |       |      |       |      |      |      |       |       |       |       |       | 1.00 | 0.99  |
| 83    |                   |       |      |       |      |      |      |       |       |       |       |       |      | 1.00  |

See notes on previous page.

#### AT Allowable Load Adjustment Factors in Normal-Weight Concrete: Spacing, Shear Load

#### How to use these charts

- 1. The following tables are for reduced spacing.
- Locate the anchor size to be used for either a tension and/or shear load application.
- 3. Locate the embedment (E) at which the anchor is to be installed.
- 4. Locate the spacing  $(s_{act})$  at which the anchor is to be installed.
- 5. The load-adjustment factor ( $f_s$ ) is the intersection of the row and column.
- 6. Multiply the allowable load by the applicable load-adjustment factor.
- 7. Reduction factors for multiple spacings are multiplied together.
- 8. Adjustment factors do not apply to allowable steel strength values.
- Adjustment factors are to be applied to allowable shear load based on concrete edge distance values only.

#### Spacing Shear (f<sub>s</sub>)

| •                         | Dia.              | . 0, | /8   | 1    | /2   | 5    | /8   | 3    | /4    | 7    | /8   |      | 1    | 1    | 1/8   | 1    | 1/4   |
|---------------------------|-------------------|------|------|------|------|------|------|------|-------|------|------|------|------|------|-------|------|-------|
|                           | Rebar             | ,    | #3   | ,    | #4   |      | #5   | ,    | #6    |      | #7   |      | #8   |      | 70    |      | /     |
| Soot                      | Е                 | 13/4 | 3½   | 21/8 | 41/4 | 21/2 | 5½   | 3%   | 63/4  | 37/8 | 73/4 | 41/2 | 9    | 51/8 | 101/8 | 5%   | 111/4 |
| s <sub>act</sub><br>(in.) | S <sub>cr</sub>   | 25/8 | 51/4 | 31/4 | 6%   | 33/4 | 81/4 | 51/8 | 101/8 | 57/8 | 11%  | 6¾   | 13½  | 73/4 | 151/4 | 81/2 | 167/8 |
|                           | Smin              | 7/8  | 13/4 | 11/8 | 21/8 | 11/4 | 23/4 | 13/4 | 3%    | 2    | 37/8 | 21/4 | 41/2 | 25/8 | 51/8  | 27/8 | 5%    |
|                           | f <sub>smin</sub> | 0.90 | 0.83 | 0.90 | 0.83 | 0.90 | 0.83 | 0.90 | 0.83  | 0.90 | 0.83 | 0.90 | 0.83 | 0.90 | 0.83  | 0.90 | 0.83  |
| 7/8                       |                   | 0.90 |      |      |      |      |      |      |       |      |      |      |      |      |       |      |       |
| 1                         |                   | 0.91 |      |      |      |      |      |      |       |      |      |      |      |      |       |      |       |
| 1 1/2                     |                   | 0.94 |      | 0.92 |      | 0.91 |      |      |       |      |      |      |      |      |       |      |       |
| 2                         |                   | 0.96 | 0.84 | 0.94 |      | 0.93 |      | 0.91 |       | 0.90 |      |      |      |      |       |      |       |
| 21/2                      |                   | 0.99 | 0.87 | 0.96 | 0.85 | 0.95 |      | 0.92 |       | 0.91 |      | 0.91 |      |      |       |      |       |
| 3                         |                   | 1.00 | 0.89 | 0.99 | 0.87 | 0.97 | 0.84 | 0.94 |       | 0.93 |      | 0.92 |      | 0.91 |       | 0.90 |       |
| 3½                        |                   |      | 0.92 | 1.00 | 0.89 | 0.99 | 0.85 | 0.95 | 0.83  | 0.94 |      | 0.93 |      | 0.92 |       | 0.91 |       |
| 4                         |                   |      | 0.94 |      | 0.91 | 1.00 | 0.87 | 0.97 | 0.85  | 0.95 | 0.83 | 0.94 |      | 0.93 |       | 0.92 |       |
| 5                         |                   |      | 0.99 |      | 0.95 |      | 0.90 | 1.00 | 0.87  | 0.98 | 0.85 | 0.96 | 0.84 | 0.95 |       | 0.94 |       |
| 6                         |                   |      | 1.00 |      | 0.99 |      | 0.93 |      | 0.90  | 1.00 | 0.88 | 0.98 | 0.86 | 0.97 | 0.84  | 0.96 | 0.84  |
| 7                         |                   |      |      |      | 1.00 |      | 0.96 |      | 0.92  |      | 0.90 | 1.00 | 0.88 | 0.99 | 0.86  | 0.97 | 0.85  |
| 8                         |                   |      |      |      |      |      | 0.99 |      | 0.95  |      | 0.92 |      | 0.90 | 1.00 | 0.88  | 0.99 | 0.87  |
| 9                         |                   |      |      |      |      |      | 1.00 |      | 0.97  |      | 0.94 |      | 0.92 |      | 0.90  | 1.00 | 0.88  |
| 10                        |                   |      |      |      |      |      |      |      | 1.00  |      | 0.96 |      | 0.93 |      | 0.91  |      | 0.90  |
| 12                        |                   |      |      |      |      |      |      |      |       |      | 1.00 |      | 0.97 |      | 0.95  |      | 0.93  |
| 14                        |                   |      |      |      |      |      |      |      |       |      |      |      | 1.00 |      | 0.98  |      | 0.96  |
| 16                        |                   |      |      |      |      |      |      |      |       |      |      |      |      |      | 1.00  |      | 0.99  |
| 17                        |                   |      |      |      |      |      |      |      |       |      |      |      |      |      |       |      | 1.00  |



- $2. s_{act}$  = actual spacing distance at which anchors are installed (inches).
- $3.s_{cr}$  = critical spacing distance for 100% load (inches).
- $4. s_{min}$  = minimum spacing distance for reduced load (inches).

- 5.  $f_s$  = adjustment factor for allowable load at actual spacing distance.
- 6.  $f_{SCr}$  = adjustment factor for allowable load at critical spacing distance.  $f_{SCr}$  is always = 1.00.
- 7.  $f_{smin}$  = adjustment factor for allowable load at minimum spacing distance.



<sup>\*</sup> See p. 13 for an explanation of the load table icons.

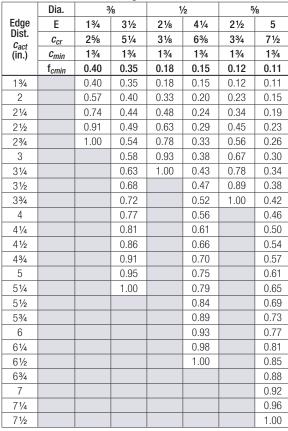
<sup>8.</sup>  $f_s = f_{smin} + [(1 - f_{smin}) (s_{act} - s_{min}) / (s_{cr} - s_{min})].$ 



**Adhesive** Anchors

AT Allowable Load Adjustment Factors in Sand-Lightweight Concrete: Edge Distance, Tension and Shear Loads

#### How to use these charts


- 1. The following tables are for reduced edge distance only.
- Locate the anchor size to be used for either a tension and/or shear load application.
- 3. Locate the embedment (E) at which the anchor is to be installed.
- 4. Locate the edge distance ( $c_{\it act}$ ) at which the anchor is to be installed.
- The load-adjustment factor (f<sub>c</sub>) is the intersection of the row and column.
- 6. Multiply the allowable load by the applicable load-adjustment factor.
- 7. Reduction factors for multiple edges are multiplied together.
- 8. Adjustment factors do not apply to allowable steel strength values.
- Adjustment factors are to be applied to allowable tension load based on bond strength values or allowable shear load based on concrete edge distance values only.

#### Edge Distance Tension (f<sub>c</sub>)

| - 0 -                     | Distand<br>Dia.   |      | /8   | 1    | /2   | 5    | /8   |
|---------------------------|-------------------|------|------|------|------|------|------|
| Edge                      | E                 | 13/4 | 3½   | 21/8 | 41/4 | 2½   | 5    |
| Dist.                     | C <sub>cr</sub>   | 25/8 | 51/4 | 31/8 | 6%   | 33/4 | 71/2 |
| c <sub>act</sub><br>(in.) | C <sub>min</sub>  | 13/4 | 13/4 | 13/4 | 13/4 | 13/4 | 13/4 |
| ,                         | f <sub>cmin</sub> | 0.59 | 0.59 | 0.50 | 0.50 | 0.50 | 0.50 |
| 1¾                        |                   | 0.59 | 0.59 | 0.50 | 0.50 | 0.50 | 0.50 |
| 2                         |                   | 0.71 | 0.62 | 0.59 | 0.53 | 0.56 | 0.52 |
| 21/4                      |                   | 0.82 | 0.65 | 0.68 | 0.55 | 0.63 | 0.54 |
| 21/2                      |                   | 0.94 | 0.68 | 0.77 | 0.58 | 0.69 | 0.57 |
| 2¾                        |                   | 1.00 | 0.71 | 0.86 | 0.61 | 0.75 | 0.59 |
| 3                         |                   |      | 0.74 | 0.95 | 0.64 | 0.81 | 0.61 |
| 31/4                      |                   |      | 0.77 | 1.00 | 0.66 | 0.88 | 0.63 |
| 3½                        |                   |      | 0.80 |      | 0.69 | 0.94 | 0.65 |
| 3¾                        |                   |      | 0.82 |      | 0.72 | 1.00 | 0.67 |
| 4                         |                   |      | 0.85 |      | 0.74 |      | 0.70 |
| 41/4                      |                   |      | 0.88 |      | 0.77 |      | 0.72 |
| 41/2                      |                   |      | 0.91 |      | 0.80 |      | 0.74 |
| 43/4                      |                   |      | 0.94 |      | 0.82 |      | 0.76 |
| 5                         |                   |      | 0.97 |      | 0.85 |      | 0.78 |
| 51/4                      |                   |      | 1.00 |      | 0.88 |      | 0.80 |
| 5½                        |                   |      |      |      | 0.91 |      | 0.83 |
| 5¾                        |                   |      |      |      | 0.93 |      | 0.85 |
| 6                         |                   |      |      |      | 0.96 |      | 0.87 |
| 61/4                      |                   |      |      |      | 0.99 |      | 0.89 |
| 6½                        |                   |      |      |      | 1.00 |      | 0.91 |
| 6¾                        |                   |      |      |      |      |      | 0.93 |
| 7                         |                   |      |      |      |      |      | 0.96 |
| 71/4                      |                   |      |      |      |      |      | 0.98 |
| 71/2                      |                   |      |      |      |      |      | 1.00 |

- 1. E = Embedment depth (inches).
- $2.c_{act}$  = actual edge distance at which anchor is installed (inches).
- $3.c_{cr}$  = critical edge distance for 100% load (inches).
- $4.c_{min}$  = minimum edge distance for reduced load (inches).
- $5. f_c = adjustment factor for allowable load at actual edge distance.$
- 6. f<sub>ccr</sub> = adjustment factor for allowable load at critical edge distance. fccr is always = 1.00.
- $7.f_{\it cmin} = {\it adjustment factor for allowable load at minimum edge distance.}$
- 8.  $f_c = f_{cmin} + [(1 f_{cmin}) (c_{act} c_{min}) / (c_{cr} c_{min})].$

#### Edge Distance Shear (f<sub>c</sub>)

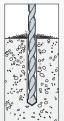




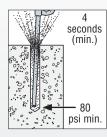
# C-A-2018 @2018 SIMPSON STRONG-TIE COMPANY INC.

# Adhesive Anchoring Installation Instructions

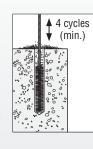




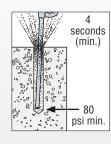

NOTE: Always check expiration date on product label. Do not use expired product.




WARNING: When drilling and cleaning hole, use eye and lung protection. When installing adhesive, use eye and skin protection.


#### Hole Preparation — Horizontal, Vertical and Overhead Applications (SET-XP®, AT-XP®, ET-HP®, AT and SET)

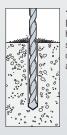



1. Drill. hole to specified diameter and depth

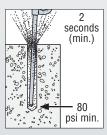


2. Blow. Remove dust from hole with oil-free compressed air for a minimum of four seconds. Compressed air nozzle must reach the bottom of the hole.

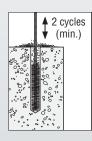



3. Brush. Clean with a nylon brush for a minimum of four cycles. Brush should provide resistance to insertion. If no resistance is felt, the brush is worn and must be replaced.

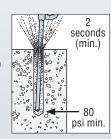



Remove dust from hole with oilfree compressed air for a minimum of four seconds Compressed air nozzle must reach the bottom of the hole.

Visit strongtie.com for proper brush part number.


#### Hole Preparation — Horizontal, Vertical and Overhead Applications (SET-3G™)

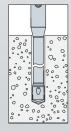



1. Drill. Drill hole to specified diameter and depth.



2. Blow. Remove dust from hole with oil-free compressed air for a minimum of two seconds Compressed air nozzle must reach the bottom of the hole.




3. Brush. Clean with a steel wire brush for a minimum of two cycles. Brush should provide resistance to insertion. If no resistance is felt, the brush is worn and must be replaced.



4. Blow. Remove dust from hole with oilfree compressed air for a minimum of two seconds. Compressed air nozzle must reach the bottom of the hole.

Visit strongtie.com for proper brush part number.

1B Hole Preparation Vacuum Dust Extraction System with Bosch® / Simpson Strong-Tie® DXS Hollow Carbide Drill Bit -Horizontal, Vertical and Overhead Applications



1. Drill. Drill hole to specified diameter and depth using a Bosch / Simpson Strong-Tie DXS hollow carbide drill bit and vacuum dust extraction system.



Bosch / Simpson Strong-Tie DXS drill bit used with the vacuum dust extraction system.

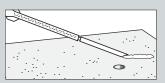
#### 2 Cartridge Preparation

1. Check.

Check expiration date on product label. Do not use expired product. Product is usable until end of printed expiration month.

2. Open.

Open cartridge per package instructions




Attach proper Simpson Strong-Tie® nozzle and extension to

nozzle.

3. Attach. cartridge. Do 4. Insert. not modify

Insert cartridge into dispensing

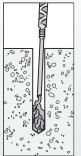


5. Dispense.

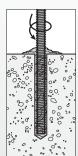
Dispense adhesive to the side until properly mixed (uniform color).

Refer to strongtie.com for proper mixing nozzle and dispensing tool part number.



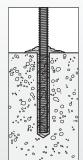



#### FOR SOLID BASE MATERIALS


#### **3A** Filling the Hole — Vertical Anchorage

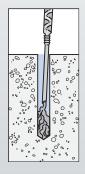
Prepare the hole per "Hole Preparation" instructions on product label.

#### **Dry and Damp Holes:**



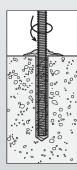

1. Fill. Fill hole ½ to 3/3 full, starting from bottom of hole to prevent air pockets. Withdraw nozzle as hole fills up.




2. Insert. Insert clean, oil-free anchor, turning slowly until the anchor contacts the bottom of the hole.

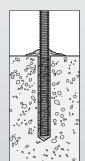
Threaded rod or rebar




3. Do not disturb. Do not disturb anchor until fully cured.(See cure schedule for specific adhesive.)

#### Water-Filled Holes:




C-A-2018 @2018 SIMPSON STRONG-TIE COMPANY INC.

1. Fill. Fill hole completely full, starting from bottom of hole to prevent water pockets. Withdraw nozzle as hole fills up.



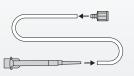
2. Insert. Insert clean, oil-free anchor, turning slowly until the anchor contacts the bottom of the hole.





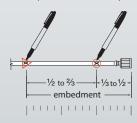
3. Do not disturb. Do not disturb anchor until fully cured. (See cure schedule.)

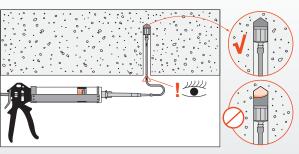
Note: Nozzle extensions may be needed for deep holes.


Installation instructions continued on p. 102.



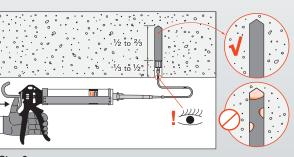



#### 3B Filling the Hole - Horizontal and Overhead Anchorage


Prepare the hole per "Hole Preparation" instructions on product label

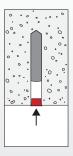


#### Step 1:


- Attach the piston plug to one end of the flexible tubing (PPFT25)
- Cut tubing to the length needed for the application, mark tubing as noted below and attach other end of tubing to the mixing nozzle
- If using a pneumatic dispensing tool, regulate air pressure to 80–100 psi

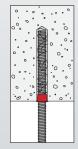





#### Step 2:

Insert the piston plug to the back of the drilled hole and dispense adhesive




#### Step 3:

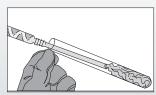
- Fill the hole ½ to ¾ full
- Note: as adhesive is dispensed into the drilled hole, the piston plug will slowly displace out of the hole due to back pressure, preventing air gaps



#### Step 4:

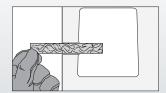
 Install the appropriate Simpson Strong-Tie adhesive retaining cap




#### Step 5:

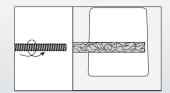
- Place either threaded rod or rebar through the adhesive retaining cap and into adhesivefilled hole
- Turn rod/rebar slowly until the insert bottoms out
- Do not disturb until fully cured

#### FOR HOLLOW BASE MATERIALS


#### 3C Filling the Hole — When Anchoring with Screens: For AT, SET-XP® and SET Adhesives

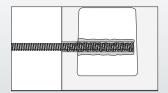
Prepare the hole per instructions on "Hole Preparation."




1. Fill.

Fill screen completely. Fill from the bottom of the screen and withdraw the nozzle as the screen fills to prevent air pockets. (Opti-Mesh screens: Close integral cap after filling.)




2. Insert.

Insert adhesive-filled screen into hole.

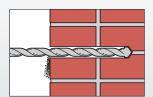


#### 3. Insert.

Insert clean, oil-free anchor, turning slowly until the anchor contacts the bottom of the screen.

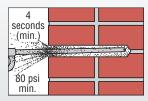


#### 4. Do not disturb.


Do not disturb anchor until fully cured. (See cure schedule for specific adhesive.)

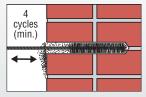
C-A-2018 @ 2018 SIMPSON STRONG-TIE COMPANY INC.




#### FOR UNREINFORCED BRICK MASONRY

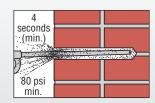
1A Hole Preparation — For Configurations A and C (Horizontal) and B (22½° Downward) Installations with a Carbide-Tipped Drill Bit.




#### 1. Drill.

Drill 1"-diameter hole to specified depth with a carbide-tipped drill bit, using rotation only mode. For Configurations A and C, drill 8" deep. For Configuration B, drill to within 1" of the opposite side of wall (minimum 13" deep).

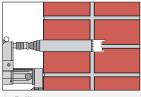



#### 2. Blow.

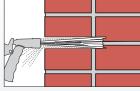
Remove dust from hole with oil-free compressed air for a minimum of four seconds Compressed air nozzle MUST reach the bottom of the hole.



#### 3. Brush.

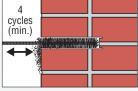

Clean with a nylon brush for a minimum of four cycles. Brush MUST reach the bottom of the hole. Brush should provide resistance to insertion. If no resistance is felt, the brush is worn and must be replaced.




#### 4. Blow.

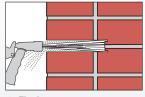
Remove dust from hole with oil-free compressed air for a minimum of four seconds. Compressed air nozzle MUST reach the bottom of the hole.

**1B** Hole Preparation — For using SET Adhesive Configurations A and C (Horizontal) and B (22½° Downward) Installations with a Wet Diamond Core-Drill Bit. (See p. 66, footnote 4.)



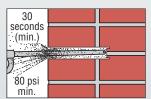

Drill hole to specified depth with 1"-diameter wet diamond core-drill bit. For Configurations A and C, drill 8" deep. For Configuration B, drill to within 1" of the opposite side of wall (minimum 13" deep).




#### 2. Flush.

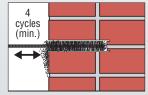
Flush out hole with pressurized water until water runs clear.




#### 3. Brush.

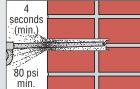
Clean with a nylon brush (Simpson Strong-Tie part number ETB10) for a minimum of four brush strokes. Brush MUST reach the bottom of the hole. Brush should provide resistance to insertion. If no resistance is felt, the brush is worn and must be replaced.




#### 4. Flush.

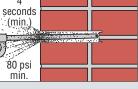
Flush out hole with pressurized water until water runs clear.




#### 5. Blow.

Remove free standing water from hole with oil-free compressed air and blow out hole for a minimum of 30 seconds. Compressed air nozzle MUST reach the bottom of




#### 6. Brush.

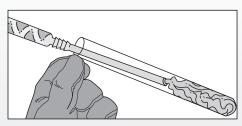
Clean with a nylon brush (Simpson Strong-Tie part number ETB10) for a minimum of four brush strokes. Brush MUST reach the bottom of the hole. Brush should provide resistance to insertion. If no resistance is felt, the brush is worn and must be replaced.



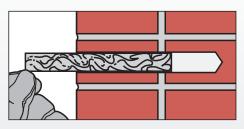
#### 7. Blow.

Blow hole with oil-free compressed air for a minimum of four seconds. Compressed air nozzle MUST reach the bottom of the hole



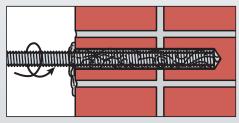






#### 2 Cartridge Preparation

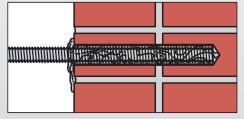
Reference p. 100 for cartridge preparation.

### 3A Filling the Hole — For Configurations A (Horizontal) and B (22½-Degree Downward) Installations.




Fill screen completely. Fill from the bottom of the screen and withdraw the nozzle as the screen fills to prevent air pockets.




2. Insert.

Insert adhesive filled screen into hole.



3. Insert.

Insert clean, oil-free anchor, turning slowly until the anchor contacts the bottom of the screen.



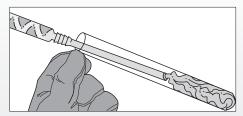
#### 4. Do not disturb.

Do not disturb anchor until fully cured. (See cure schedule for specific adhesive.)

Note: Steel wire mesh screens may be used for Configurations A and B.

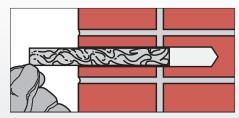
Installation instructions continued on p. 105.




C-A-2018 @2018 SIMPSON STRONG-TIE COMPANY INC.

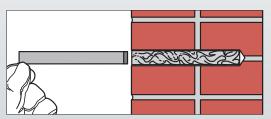
# C-A-2018 @ 2018 SIMPSON STRONG-TIE COMPANY INC.

# **Adhesive Anchoring Installation Instructions**



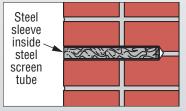

### **3B** Filling the Hole — For Configuration C (Horizontal Through-Bolt) Installation.




1. Fill

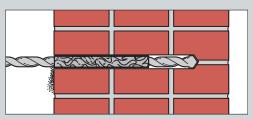
Fill screen completely. Fill from the bottom of the screen and withdraw the nozzle as the screen fills to prevent air pockets.




#### 2. Insert.

Insert adhesive filled screen into hole.




#### 3 Insert

Insert steel sleeve (capped end first) slowly into screen tube (adhesive will displace).



#### 4. Cure

Allow adhesive to cure (see Cure Time Table 1).



#### 5. Drill.

Drill through plastic plug in (inside) end of steel sleeve and completely through the wall with %" carbide tipped concrete drill bit (rotation mode only).

Steel screen tube
Steel sleeve

5%" dia. rod

6"x6"x%" steel plate

Hex nut

#### 6. Insert

Insert %" rod through hole and attach metal plate and nut.

Note: Steel wire mesh screens shall be used for Configuration C.

### **Adhesive Accessories**



# Hole-Cleaning Brushes

Brushes are used for cleaning drilled holes prior to adhesive installation.

Note: The standard hole-cleaning method (blow-brush-blow) can be avoided by using the Speed Clean™ vacuum dust extraction system (DXS) with SET-XP®, AT-XP® and SET-3G™. See p. 244 for details.

#### Nylon Brush - Standard

(For use with SET-XP, AT-XP, ET-HP®, AT and SET)

| Model<br>No. | Hole Diameter<br>(in.)                                      | Anchor Diameter<br>(in.) | Rebar<br>Size | Usable<br>Length<br>(in.) | Carton<br>Qty. |
|--------------|-------------------------------------------------------------|--------------------------|---------------|---------------------------|----------------|
| ETB4         | 3/8 - 7/16                                                  | 1/4 - 5/16               | _             | 7                         | 24             |
| ETB6         | 1/2 - 3/4                                                   | 3/8 — 5/8                | #3 – #5       | 15                        | 24             |
| ETB8         | 13/16 - 7/8                                                 | 3/4                      | #6            | 15                        | 24             |
| ETB8L        | <sup>13</sup> / <sub>16</sub> — <sup>7</sup> / <sub>8</sub> | 3/4                      | #6            | 23                        | 24             |
| ETB10        | 1 – 1 1/8                                                   | 7⁄8 − 1                  | #7 – #8       | 28                        | 24             |
| ETB12        | 13/16 - 13/8                                                | 11/4                     | #10           | 33                        | 24             |



#### Nylon Brush - Rebar

(For use with SET-XP)

| Model<br>No. | Hole Diameter<br>(in.) | Rebar<br>Size | Usable<br>Length<br>(in.) | Carton<br>Qty. |
|--------------|------------------------|---------------|---------------------------|----------------|
| ETB6R        | 1/2 - 3/4              | #3 – #5       | 6                         | 25             |
| ETB8R        | 7/8                    | #6            | 6                         | 25             |
| ETB10R       | 1 – 1 1/8              | #7 – #8       | 8                         | 25             |
| ETB12R       | 13/8                   | #10           | 8                         | 25             |
| ETB14R       | 1¾                     | #11           | 7                         | 25             |
| ETBR-EXT     | T-handle and exte      | ension        | 351/4                     | 25             |



- 1. ETBR-EXT is required for use with all sizes of rebar nylon brushes.
- 2. To obtain total usable length, add the usable length for each part used.

#### Wire Brush - Standard

(For use with SET-3G)

| Model<br>No. | Hole Diameter<br>(in.) | Anchor Diameter<br>(in.) | Rebar<br>Size | Usable<br>Length<br>(in.) | Carton<br>Qty. |
|--------------|------------------------|--------------------------|---------------|---------------------------|----------------|
| ETB43S       | 7/16                   | 3/8                      | _             | 5                         | 25             |
| ETB50S       | 1/2                    | _                        | #3            | 5                         | 25             |
| ETB56S       | 9/16                   | 1/2                      | _             | 5                         | 25             |
| ETB62S       | 5/8                    | _                        | #4            | 5                         | 25             |
| ETB68S       | 11/16                  | 5/8                      | _             | 5                         | 25             |
| ETB75S       | 3/4                    | _                        | #5            | 5                         | 25             |
| ETB87S       | 7/8                    | 3/4                      | #6            | 5                         | 25             |
| ETB100S      | 1                      | 7/8                      | #7            | 5                         | 25             |
| ETB112S      | 11/8                   | 1                        | #8            | 5                         | 25             |
| ETB137S      | 13/8                   | 11/4                     | #10           | 5                         | 25             |
| ETBS-TH      |                        | T-handle                 |               | 81/2                      | 25             |
| ETBS-EXT     |                        | Extension                |               | 11½                       | 25             |



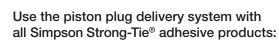
- 1. T-handle is required for use with all sizes of standard wire brush.
- 2. To obtain total usable length, add the usable length for each part used.

<sup>1.</sup> All standard nylon brushes are one-piece which includes a twisted wire handle.

### **Adhesive Accessories**



# Piston Plug Delivery System


The Simpson Strong-Tie® Piston Plug Delivery System for adhesives offers you an easy-to-use, reliable and less time-consuming means to dispense adhesive into drilled holes for threaded rod and rebar dowel installations in overhead, upwardly inclined and horizontal orientations. The matched tolerance design between the piston plug and drilled hole virtually eliminates the formation of voids and air pockets during adhesive dispensing.

The Piston Plug Delivery System consists of three components: piston plug, flexible extension tubing, and adhesive retaining cap.

#### **Features**

- Designed for dispensing adhesive into drilled holes in overhead, upwardly inclined and horizontal orientations, as well as deep embedments
- Suitable for use with all Simpson Strong-Tie anchoring adhesives
- Adhesive piston plugs are sized to fit each drilled hole diameter
- Model number is embossed on each adhesive piston plug for identification
- A barbed end provides a reliable connection to the flexible extension tubing
- Flexible extension tubing is available in 25-foot-long rolls to be cut to required lengths









### **Adhesive Accessories**

# SIMPSON Strong-Tie

#### Piston Plugs

| Model No.  | Hole Size<br>(in.) | Pkg.<br>Quantity | Carton<br>Quantity* |
|------------|--------------------|------------------|---------------------|
| PP56-RP10  | 9/16               | 10               | 100                 |
| PP62-RP10  | 5/8                | 10               | 100                 |
| PP68-RP10  | 11/16              | 10               | 100                 |
| PP75-RP10  | 3/4                | 10               | 100                 |
| PP81-RP10  | 13/16              | 10               | 100                 |
| PP87-RP10  | 7/8                | 10               | 100                 |
| PP100-RP10 | 1                  | 10               | 100                 |
| PP112-RP10 | 11/8               | 10               | 100                 |
| PP137-RP10 | 1%                 | 10               | 100                 |
| PP175-RP10 | 13⁄4               | 10               | 100                 |

<sup>\*10</sup> packages of 10.



| Model No. | Description                                            | Package<br>Quantity |
|-----------|--------------------------------------------------------|---------------------|
| PPFT25    | Piston Plug Flexible<br>Extension Tubing — 25 ft. roll | 1                   |





# Adhesive Retaining Caps

Adhesive retaining caps make overhead and horizontal installation easier by preventing the adhesive from running out of the hole. They also center the rod in the hole, making them ideal for applications where precise anchor placement is required. It may be necessary to provide support for the anchor during cure time. Adhesive retaining caps are not designed to support the weight of the anchor in overhead installations. Adhesive retaining caps should be used for horizontal and overhead adhesive installations. ARCs may be used in conjunction with the Piston Plug Delivery system.





#### Retaining Caps

| 9 - 4-       |                    |                       |            |                    |                 |                      |
|--------------|--------------------|-----------------------|------------|--------------------|-----------------|----------------------|
| Model No.    | Hole Size<br>(in.) | Anchor Diameter (in.) | Rebar Size | Cap Depth<br>(in.) | Package<br>Qty. | Carton Qty*<br>(ea.) |
| ARC37A-RP25  | 7/16               | 3/8                   | #3         | 7/16               | 25              | 200                  |
| ARC37-RP25   | 1/2                | 3/8                   |            | 7/16               | 25              | 200                  |
| ARC50A-RP25  | 9/16               | 1/2                   | +4         | 1/2                | 25              | 200                  |
| ARC50-RP25   | 5/8                | 1/2                   |            | 1/2                | 25              | 200                  |
| ARC62A-RP25  | 11/16              | 5/8                   | #5         | 9/16               | 25              | 200                  |
| ARC62-RP25   | 3/4                | 5/8                   |            | 9/16               | 25              | 200                  |
| ARC75A-RP25  | 13/16              | 3/4                   | #6         | 9/16               | 25              | 200                  |
| ARC75-RP25   | 7/8                | 3/4                   |            | 9/16               | 25              | 200                  |
| ARC87-RP25   | 1                  | 7/8                   | #7         | 11/16              | 25              | 200                  |
| ARC100A-RP25 | 1 ½16              | 1                     | - #8       | 11/16              | 25              | 200                  |
| ARC100-RP25  | 1 1/8              | 1                     |            | 11/16              | 25              | 200                  |
| ARC125-RP25  | 13/8               | 11/4                  | #10        | 7/8                | 25              | 200                  |
| ARC137-RP25  | 13/4               | _                     | #11        | 11/16              | 25              | 200                  |

<sup>\*</sup>Cartons contain 8 packages of 25.

# **Adhesive Accessories**



# Opti-Mesh Adhesive-Anchoring Screen Tubes

Screen tubes are vital to the performance of adhesive anchors in base materials that are hollow or contain voids, such as hollow block and brick. The Simpson Strong-Tie® Opti-Mesh screen tube with woven mesh insert provides the advantages of a plastic screen tube while providing superior performance to steel screen tubes and competitive plastic screen tubes.

Material: Plastic

C-A-2018 @2018 SIMPSON STRONG-TIE COMPANY INC.

Caution: Screen tubes are designed for a specific adhesive type.

Epoxy screen tubes must be used with SET-XP® formulations.



Epoxy Adhesive Screen Tube (mesh is black)

Integral Cap: Serves to center and secure the rod in the screen tube, while displaying important information such as rod diameter, drill bit diameter and the Simpson Strong-Tie® "≠" symbol for easy inspection after installation. The cap also prevents adhesive from running out the front of the screen tube.

Flanges: Prevents the screen tube from slipping into over-drilled holes. Allows screen tube to function in holes that are drilled too deep.

Open-Mesh Collar: This section of larger mesh allows extra adhesive to flow out the screen tube behind the face shell of hollow block applications. The extra "collar" of adhesive increases bearing area and results in higher load capacities in hollow concrete block.

Color-Coded, Formula-Specific Mesh: The openings between the woven mesh screen tube strands are sized to allow only the right amount of adhesive to flow through the screen tube to bond with the base material while the balance remains in the screen to bond the rod. The acrylic screen tube mesh is white, while the epoxy screen tube mesh is black.



Acrylic Adhesive Screen Tube (mesh is white)



The integral cap centers the rod and displays drill bit and rod diameter.

# **Adhesive Accessories**



# Opti-Mesh Adhesive-Anchoring Screen Tubes (cont.)

Screen Tubes — Plastic

| For<br>Rod Diameter<br>(in.) | Hole Size<br>(in.) | Length<br>(in.) | Epoxy<br>Model No.<br>SET-XP® | Carton<br>Qty. |
|------------------------------|--------------------|-----------------|-------------------------------|----------------|
|                              |                    | 31/2            | EWS373P                       | 150            |
| 3/8                          | 9/16               | 6               | EWS376P                       | 150            |
|                              |                    | 10              | EWS3710P                      | 100            |
|                              |                    | 31/2            | EWS503P                       | 100            |
| 1/2                          | 3/4                | 6               | EWS506P                       | 100            |
|                              |                    | 10              | EWS5010P                      | 50             |
|                              |                    | 31/2            | EWS623P                       | 50             |
| 5/8                          | 7/8                | 6               | EWS626P                       | 50             |
|                              |                    | 10              | EWS6210P                      | 25             |
| 2/                           | 1                  | 8               | EWS758P                       | 25             |
| 3/4                          | 1                  | 13              | EWS7513P                      | 25             |



Specially sized holes in Opti-Mesh screens allow for adhesive to seep out at the appropriate location at the hollow portion of the CMU to create a better bond to the face shell.



# Steel Adhesive-Anchoring Screen Tubes

Screen tubes are used in hollow base material applications to contain adhesive around the anchor and prevent it from running into voids. Simpson Strong-Tie® screen tubes are specifically designed to work with AT, SET and ET-HP® adhesives in order to precisely control the amount of adhesive that passes through the mesh. This results in thorough coating and bonding of the rod to the screen tube and base material. Order screen tubes based upon rod diameter and adhesive type. The actual outside diameter of the screen tube is larger than the rod diameter.

Material: Acrylic screen tubes: 50 mesh stainless steel Epoxy screen tubes: 60 mesh carbon steel



Caution: Screen tubes are designed for a specific adhesive type. Epoxy screen tubes must be used with SET or ET-HP® formulations and acrylic screen tubes must be used with AT.



**Epoxy Screen Tube** 

(acrylic screen tubes similar)

Screen tubes are for use in hollow CMU, hollow brick and unreinforced masonry applications. Contact Simpson Strong-Tie for information on special-order sizes.

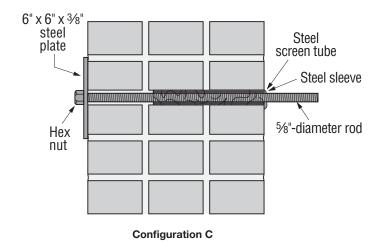
### Screen Tubes

| For                   | Hole Size | Acrylic Stainless S<br>for                 |              | Epoxy Carbon Sto<br>for SET a              | Epoxy Carbon Steel Screen Tubes<br>for SET and ET-HP |                |  |  |
|-----------------------|-----------|--------------------------------------------|--------------|--------------------------------------------|------------------------------------------------------|----------------|--|--|
| Rod Diameter<br>(in.) | (in.)     | Actual Screen Size<br>0.D./Length<br>(in.) | Model<br>No. | Actual Screen Size<br>0.D./Length<br>(in.) | Model<br>No.                                         | Carton<br>Qty. |  |  |
|                       |           | 15/32 X 3 1/2                              | ATS373       | _                                          | _                                                    | 150            |  |  |
| 3/8                   | 9/16      | <sup>15</sup> ⁄ <sub>32</sub> X 6          | ATS376       | <sup>15</sup> ⁄ <sub>32</sub> x 6          | ETS376                                               | 150            |  |  |
|                       |           | _                                          | _            | <sup>15</sup> / <sub>32</sub> x 10         | ETS3710                                              | 100            |  |  |
|                       |           | <sup>19</sup> / <sub>32</sub> X 3 ½        | ATS503       | _                                          | _                                                    | 100            |  |  |
| 1/2                   | 11/16     | <sup>19</sup> ⁄ <sub>32</sub> x 6          | ATS506       | <sup>19</sup> ⁄ <sub>32</sub> x 6          | ETS506                                               | 100            |  |  |
|                       |           | <sup>19</sup> / <sub>32</sub> x 10         | ATS5010      | <sup>19</sup> / <sub>32</sub> x 10         | ETS5010                                              | 50             |  |  |
|                       |           | <sup>25</sup> / <sub>32</sub> X 3          | ATS623       | _                                          | _                                                    | 50             |  |  |
| 5/                    | 7/        | <sup>25</sup> / <sub>32</sub> X 6          | ATS626       | <sup>25</sup> / <sub>32</sub> x 6          | ETS626                                               | 50             |  |  |
| 5/8                   | 7/8       | <sup>25</sup> / <sub>32</sub> x 10         | ATS6210      | <sup>25</sup> / <sub>32</sub> x 10         | ETS6210                                              | 25             |  |  |
|                       |           | <sup>25</sup> / <sub>32</sub> x 13         | ATS6213      | <sup>25</sup> / <sub>32</sub> x 13         | ETS6213                                              | 25             |  |  |
|                       |           | <sup>31</sup> / <sub>32</sub> X 8          | ATS758       | <sup>31</sup> / <sub>32</sub> X 8          | ETS758                                               | 25             |  |  |
| 2/                    | 1         | <sup>31</sup> / <sub>32</sub> x 13         | ATS7513      | <sup>31</sup> / <sub>32</sub> x 13         | ETS7513                                              | 25             |  |  |
| 3/4                   |           | <sup>31</sup> / <sub>32</sub> x 17         | ATS7517      | <sup>31</sup> / <sub>32</sub> x 17         | ETS7517                                              | 25             |  |  |
|                       |           | _                                          | _            | <sup>31</sup> / <sub>32</sub> x 21         | ETS7521                                              | 25             |  |  |

# **Adhesive Accessories**



# Adhesive Shear Tubes


Used in conjunction with anchoring adhesive and screen tubes, adhesive shear tubes transfer anchor shear loads over a larger area, reducing localized crushing in unreinforced masonry installations. Required for through-bolt applications per ICC-ES's unreinforced masonry anchorage "Configuration C" detail. For detailed installation instructions, refer to the appropriate adhesive anchor ICC-ES report.

Material: Steel
Finish: Zinc-plated



| Description<br>(in.)  | Model<br>No. | For use with<br>Simpson Strong-Tie Screen<br>Model No. <sup>1</sup> | Drill Bit<br>Diameter<br>(in.) | Threaded Rod<br>Diameter<br>(in.) | Carton<br>Qty. |
|-----------------------|--------------|---------------------------------------------------------------------|--------------------------------|-----------------------------------|----------------|
| <sup>13</sup> ⁄16 X 8 | AST800       | ETS758, ATS758                                                      | 1                              | 5/8                               | 1              |

<sup>1.</sup> Screens sold separately. Not for use with Simpson Strong-Tie plastic Opti-Mesh screen tubes.



# **Adhesive Accessories**



# Retrofit Bolts

RFBs are pre-cut threaded rod, supplied with nut and washer. For use with Simpson Strong-Tie adhesives. May be ordered in bulk without the nut and washer. Use with Simpson Strong-Tie adhesives to anchor into existing concrete and masonry. Each end of the threaded rod is stamped with the rod length in inches and our "No-Equal" symbol for easy identification after installation.

Material: ASTM F1554 Grade 36

Coating: Zinc-plated, hot-dip galvanized



| Description<br>Diameter Length | Zinc-Plated<br>Model No. | Hot-Dip Galvanized<br>Model No. | Carton<br>Qty. | Retail<br>Pack² |
|--------------------------------|--------------------------|---------------------------------|----------------|-----------------|
| ½" x 4"                        | RFB#4x4                  | RFB#4x4HDG                      | 50             | _               |
| ½" x 5"                        | RFB#4x5                  | RFB#4x5HDG                      | 50             | 10              |
| ½" x 6"                        | RFB#4x6                  | RFB#4x6HDG                      | 50             | 10              |
| ½" x 7"                        | RFB#4x7                  | RFB#4x7HDG                      | 50             | 10              |
| ½" x 8"                        | _                        | RFB#4x8HDG                      | _              | 10              |
| ½" x 10"                       | RFB#4x10                 | RFB#4x10HDG                     | 25             | 10              |
| 5/8" x 5"                      | RFB#5x5                  | RFB#5x5HDG                      | 50             | 10              |
| 5/8" x 8"                      | RFB#5x8                  | RFB#5x8HDG                      | 50             | 10              |
| 5⁄8" x 10"                     | RFB#5x10                 | RFB#5x10HDG                     | 50             | 10              |
| %" x 12"                       | _                        | RFB#5x12HDG                     | _              | 10              |
| %" x 16"                       | RFB#5x16                 | RFB#5x16HDG                     | 25             | 10              |
| 3⁄4" x 101⁄2"                  | RFB#6x10.5               | RFB#6x10.5HDG                   | 25             | _               |

<sup>1.</sup> Bulk quantities do not include the nut and washer and must be ordered with a "-B" suffix (example: RFB#4x5-B). Hot-dip galvanized RFBs not available in bulk.

<sup>2.</sup> Retail packs must be ordered with an "-R" suffix (example: RFB#5x12HDG-R).



The original high-strength screw anchor for use in cracked and uncracked concrete, as well as uncracked masonry. The Titen HD offers low installation torque and outstanding performance. Designed and tested in dry, interior, non-corrosive environments or temporary outdoor applications, the Titen HD demonstrates industry-leading performance even in seismic conditions.

#### **Features**

- Code listed under IBC/IRC in accordance with ICC-ES AC193 and ACI 355.2 for cracked and uncracked concrete per ICC-ES ESR-2713
- Code listed under IBC/IRC in accordance with ICC-ES AC106 for masonry per ICC-ES ESR-1056
- Qualified for static and seismic loading conditions
- Thread design undercuts to efficiently transfer the load to the base material
- · Standard fractional sizes
- Specialized heat-treating process creates tip hardness for better cutting without compromising the ductility
- No special drill bit required designed to install using standard-sized ANSI tolerance drill bits
- Testing shows the Titen HD installs in concrete with 50% less torque than competitor anchors
- Hex-washer head requires no separate washer, unless required by code, and provides a clean installed appearance
- Removable ideal for temporary anchoring (e.g., formwork, bracing) or applications where fixtures may need to be moved
- Reuse of the anchor to achieve listed load values is not recommended

**Codes:** ICC-ES ESR-2713 (concrete); ICC-ES ESR-1056 (masonry); City of L.A. RR25741 (concrete), RR25560 (masonry); Florida FL-15730.6; FM 3017082, 3035761 and 3043442; Multiple DOT listings

Material: Carbon steel

Coating: Zinc plated or mechanically galvanized.

Not recommended for permanent exterior use or highly corrosive environments.







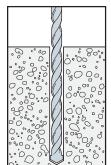
Serrated teeth on the tip of the Titen HD® screw anchor facilitate cutting and reduce installation torque.

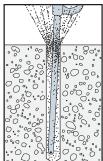
Titen HD Screw Anchor U.S. Patent 6.623,228

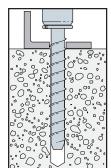
#### Installation

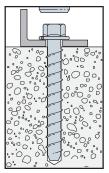
C-A-2018 @2018 SIMPSON STRONG-TIE COMPANY INC.

Holes in metal fixtures to be mounted should match the diameter specified in the table below.


Use a Titen HD screw anchor one time only — installing the anchor multiple times may result in excessive thread wear and reduce load capacity.


Do not use impact wrenches to install into hollow CMU.


Caution: Oversized holes in base material will reduce or eliminate the mechanical interlock of the threads with the base material and reduce the anchor's load capacity.


- 1. Drill a hole in the base material using a carbide drill bit the same diameter as the nominal diameter of the anchor to be installed. Drill the hole to the specified embedment depth plus minimum hole depth overall (see table below right) to allow the thread tapping dust to settle, and blow it clean using compressed air. (Overhead installations need not be blown clean.) Alternatively, drill the hole deep enough to accommodate embedment depth and the dust from drilling and tapping.
- 2. Insert the anchor through the fixture and into the hole.
- 3. Tighten the anchor into the base material until the hex-washer head contacts the fixture.

# Installation Sequence









# Additional Installation Information for Structural Steel

| Titen HD <sup>®</sup><br>Diameter<br>(in.) | Wrench<br>Size<br>(in.) | Recommended<br>Steel Fixture<br>Hole Size<br>(in.) | Minimum<br>Hole Depth<br>Overdrill<br>(in.) |
|--------------------------------------------|-------------------------|----------------------------------------------------|---------------------------------------------|
| 1/4                                        | 3/8                     | 3/8 to 7/16                                        | 1/8                                         |
| 3/8                                        | 9/16                    | ½ to %6                                            | 1/4                                         |
| 1/2                                        | 3/4                     | 5/8 to 11/16                                       | 1/2                                         |
| 5/8                                        | 15/16                   | 3/4 to <sup>13</sup> / <sub>16</sub>               | 1/2                                         |
| 3/4                                        | 11/8                    | 7⁄8 to 15∕16                                       | 1/2                                         |

Suggested fixture hole sizes are for structural steel thicker than 12 gauge only. Larger holes are not required for wood or cold-formed steel members.

# C-A-2018 @ 2018 SIMPSON STRONG-TIE COMPANY INC.

IRC A

# Titen HD® Heavy-Duty Screw Anchor

# SIMPSON Strong-Tie

#### Titen HD Anchor Product Data — Zinc Plated

| TILEN ND AI | nchor Product L        | Jala — Z      |                               |     |        |
|-------------|------------------------|---------------|-------------------------------|-----|--------|
| Size        | Mandal No.             | Drill Bit     | Wrench                        | Qua | ntity  |
| (in.)       | Model No.              | Dia.<br>(in.) | Size<br>(in.)                 | Вох | Carton |
| 1/4 X 1 7/8 | THDB25178H             | 1/4           | 3/8                           | 100 | 500    |
| 1/4 x 23/4  | THDB25234H             | 1/4           | 3/8                           | 50  | 250    |
| 1/4 x 3     | THDB25300H             | 1/4           | 3/8                           | 50  | 250    |
| 1/4 x 3 1/2 | THDB25312H             | 1/4           | 3/8                           | 50  | 250    |
| 1/4 x 4     | THDB25400H             | 1/4           | 3/8                           | 50  | 250    |
| 3/8 X 1 3/4 | THD37134H <sup>†</sup> | 3/8           | 9/16                          | 50  | 250    |
| 3/8 X 2 1/2 | THD37212H <sup>†</sup> | 3/8           | 9/16                          | 50  | 200    |
| 3/8 X 3     | THD37300H              | 3/8           | 9/16                          | 50  | 200    |
| 3/8 X 4     | THD37400H              | 3/8           | 9/16                          | 50  | 200    |
| 3/8 X 5     | THD37500H              | 3/8           | 9/16                          | 50  | 100    |
| 3/8 x 6     | THD37600H              | 3/8           | 9⁄16                          | 50  | 100    |
| ½ x 3       | THD50300H              | 1/2           | 3/4                           | 25  | 100    |
| ½ x 4       | THD50400H              | 1/2           | 3/4                           | 20  | 80     |
| ½ x 5       | THD50500H              | 1/2           | 3/4                           | 20  | 80     |
| ½ x 6       | THD50600H              | 1/2           | 3/4                           | 20  | 80     |
| ½ x 6½      | THD50612H              | 1/2           | 3/4                           | 20  | 40     |
| ½ x 8       | THD50800H              | 1/2           | 3/4                           | 20  | 40     |
| ½ x 12      | THD501200H             | 1/2           | 3/4                           | 5   | 25     |
| ½ x 13      | THD501300H             | 1/2           | 3/4                           | 5   | 25     |
| ½ x 14      | THD501400H             | 1/2           | 3/4                           | 5   | 25     |
| ½ x 15      | THD501500H             | 1/2           | 3/4                           | 5   | 25     |
| 5⁄8 x 4     | THDB62400H             | 5/8           | <sup>15</sup> /16             | 10  | 40     |
| % x 5       | THDB62500H             | 5/8           | <sup>15</sup> /16             | 10  | 40     |
| % x 6       | THDB62600H             | 5/8           | <sup>15</sup> /16             | 10  | 40     |
| 5⁄8 x 6 1∕2 | THDB62612H             | 5/8           | <sup>15</sup> / <sub>16</sub> | 10  | 40     |
| % x 8       | THDB62800H             | 5/8           | <sup>15</sup> /16             | 10  | 20     |
| % x 10      | THDB62100H             | 5/8           | <sup>15</sup> /16             | 10  | 20     |
| 3/4 x 4     | THD75400H              | 3/4           | 11/8                          | 10  | 40     |
| 3/4 X 5     | THD75500H              | 3/4           | 11/8                          | 5   | 20     |
| 3/4 x 6     | THDT75600H             | 3/4           | 11/8                          | 5   | 20     |
| 3/4 x 7     | THD75700H              | 3/4           | 11/8                          | 5   | 10     |
| 3/4 X 8 1/2 | THD75812H              | 3/4           | 11/8                          | 5   | 10     |
| 3/4 x 10    | THD75100H              | 3/4           | 11/8                          | 5   | 10     |

# Titen HD Anchor Product Data — Mechanically Galvanized

| Size        | Model        | Drill Bit     | Wrench        | Qua | ntity  |
|-------------|--------------|---------------|---------------|-----|--------|
| (in.)       | No.          | Dia.<br>(in.) | Size<br>(in.) | Box | Carton |
| 3/8 x 3     | THD37300HMG  |               |               | 50  | 200    |
| 3/8 x 4     | THD37400HMG  | 3/8           | 9/16          | 50  | 200    |
| 3/8 x 5     | THD37500HMG  | 9/8           | 716           | 50  | 100    |
| 3/8 x 6     | THD37600HMG  |               |               | 50  | 100    |
| ½ x 4       | THD50400HMG  |               |               | 20  | 80     |
| ½ x 5       | THD50500HMG  |               |               | 20  | 80     |
| ½ x 6       | THD50600HMG  | 1/2           | 3/4           | 20  | 80     |
| ½ x 6½      | THD50612HMG  |               |               | 20  | 40     |
| ½ x 8       | THD50800HMG  |               |               | 20  | 40     |
| 5⁄8 x 5     | THDB62500HMG |               |               | 10  | 40     |
| 5⁄8 x 6     | THDB62600HMG | 5/            | 15/           | 10  | 40     |
| % x 6½      | THDB62612HMG | 5/8           | 15/16         | 10  | 40     |
| 5% x 8      | THDB62800HMG |               |               | 10  | 20     |
| 3/4 x 6     | THDT75600HMG |               |               | 5   | 20     |
| 3/4 x 8 1/2 | THD75812HMG  | 3/4           | 11/8          | 5   | 10     |
| 3/4 x 10    | THD75100HMG  |               |               | 5   | 10     |

Mechanical galvanizing meets ASTM B695, Class 65, Type 1. Intended for some pressure-treated wood sill plate applications. Not for use in other corrosive or outdoor environments. See p. 248 or visit **strongtie.com/info** for more corrosion information.

† These models do not meet minimum embedment depth requirements for strength design and require maximum installation torque of 25 ft. – lb. using a torque wrench, driver drill or cordless ¼" impact driver with a maximum permitted torque rating of 100 ft. – lb.

| Titen HD Installation Information                             | and Addition                  | nal Data¹       |                 |                                               |        |                 |      |                |      | IL              | 36   | LW              |
|---------------------------------------------------------------|-------------------------------|-----------------|-----------------|-----------------------------------------------|--------|-----------------|------|----------------|------|-----------------|------|-----------------|
| Characteristic                                                | Symbol                        | Units           |                 | Nominal Anchor Diameter, d <sub>a</sub> (in.) |        |                 |      |                |      |                 |      |                 |
| Gildidololistic                                               | Syllibol                      | Ullits          | 1 1             | 4                                             | 3,     | /8              | 1,   | ⁄2             | 5,   | /8              | 3    | <sup>3</sup> /4 |
|                                                               |                               | Install         | ation Info      | rmation                                       |        |                 |      |                |      |                 |      |                 |
| Drill Bit Diameter                                            | d <sub>bit</sub>              | in.             | 1,              | 4                                             | 3,     | /8              | 1,   | ⁄2             | 5,   | /8              | 3    | 3/4             |
| Baseplate Clearance Hole Diameter                             | $d_{c}$                       | in.             | 3,              | /8                                            | 1,     | ⁄2              | 5,   | 8              | 3,   | <b>/</b> 4      | 7    | /8              |
| Maximum Installation Torque                                   | T <sub>inst,max</sub>         | ftlbf           | 2               | $4^{2}$                                       | 5      | $0^{2}$         | 6    | 5 <sup>2</sup> | 10   | $10^{2}$        | 15   | $50^{2}$        |
| Maximum Impact Wrench Torque Rating                           | T <sub>impact,max</sub>       | ftlbf           | 12              | 25 <sup>3</sup>                               | 15     | iO <sup>3</sup> | 34   | 103            | 34   | 10 <sup>3</sup> | 38   | 35 <sup>3</sup> |
| Minimum Hole Depth                                            | h <sub>hole</sub>             | in.             | 13/4            | 25/8                                          | 23/4   | 31/2            | 33/4 | 41/2           | 41/2 | 6               | 6    | 63/4            |
| Nominal Embedment Depth                                       | h <sub>nom</sub>              | in.             | 1%              | 21/2                                          | 21/2   | 31/4            | 31/4 | 4              | 4    | 51/2            | 51/2 | 61/4            |
| Critical Edge Distance                                        | $c_{ac}$                      | in.             | 3               | 6                                             | 211/16 | 3%              | 3%16 | 41/2           | 41/2 | 6%              | 6%   | 75/16           |
| Minimum Edge Distance                                         | C <sub>min</sub>              | in.             | 11/2            |                                               |        |                 |      |                |      |                 |      |                 |
| Minimum Spacing                                               | S <sub>min</sub>              | in.             |                 |                                               |        |                 | 3    | 3              |      |                 |      |                 |
| Minimum Concrete Thickness                                    | h <sub>min</sub>              | in.             | 31/4            | 31/2                                          | 4      | 5               | 5    | 61/4           | 6    | 81/2            | 83/4 | 10              |
|                                                               |                               | Ac              | dditional I     | Data                                          |        |                 |      |                |      |                 |      |                 |
| Anchor Category                                               | Category                      | _               |                 |                                               |        |                 |      | 1              |      |                 |      |                 |
| Yield Strength                                                | $f_{ya}$                      | psi             | 100             | ,000                                          |        |                 |      | 97,            | 000  |                 |      |                 |
| Tensile Strength                                              | f <sub>uta</sub>              | psi             | 125             | ,000                                          |        |                 |      | 110            | ,000 |                 |      |                 |
| Minimum Tensile and Shear Stress Area                         | A <sub>se</sub>               | in <sup>2</sup> | 0.0             | )42                                           | 0.0    | )99             | 0.1  | 83             | 0.2  | 276             | 0.4  | 414             |
| Axial Stiffness in Service Load Range –<br>Uncracked Concrete | $oldsymbol{eta}_{	ext{uncr}}$ | lb./in.         | 202,000 715,000 |                                               |        |                 |      |                |      |                 |      |                 |
| Axial Stiffness in Service Load Range –<br>Cracked Concrete   | $eta_{cr}$                    | lb./in.         | 173             | ,000                                          |        |                 |      | 345            | ,000 |                 |      |                 |

- 1. The information presented in this table is to be used in conjunction with the design criteria of ACI 318-14 Chapter 17 and ACI 318 Appendix D.
- 2. Tinst, max is the maximum permitted installation torque for the embedment depth range covered by this table using a torque wrench.
- 3. T<sub>impact,max</sub> is the maximum permitted torque rating for impact wrenches for the embedment depth range covered by this table.

<sup>\*</sup> See p. 13 for an explanation of the load table icons

# **Titen HD**<sup>®</sup> Design Information — Concrete









**Mechanical** Anchors

#### Titen HD Tension Strength Design Data<sup>1</sup>

| Characteristic                                                                | Cumbal                   | Units     |           |          |                | Nomina | Anchor | Diamete         | r, d <sub>a</sub> (in.) |        |        |                |
|-------------------------------------------------------------------------------|--------------------------|-----------|-----------|----------|----------------|--------|--------|-----------------|-------------------------|--------|--------|----------------|
| GHAFACTERISTIC                                                                | Symbol                   | UIIILS    | 1         | /4       | 3/8            |        | 1/2    |                 | 5,                      | /8     | 3,     | / <sub>4</sub> |
| Nominal Embedment Depth                                                       | h <sub>nom</sub>         | in.       | 1 5/8     | 21/2     | 2½             | 31/4   | 31/4   | 4               | 4                       | 5½     | 5½     | 61/4           |
| Steel Strength in Tension                                                     |                          |           |           |          |                |        |        |                 |                         |        |        |                |
| Tension Resistance of Steel                                                   | N <sub>sa</sub>          | lb.       | 5,1       | 95       | 10,            | 890    | 20,    | 130             | 30,                     | 360    | 45,    | 540            |
| Strength Reduction Factor — Steel Failure                                     | $\phi_{sa}$              | _         |           |          |                |        | 0.6    | 35 <sup>2</sup> |                         |        |        |                |
| Concrete Breakout Strength in Tension <sup>6,8</sup>                          |                          |           |           |          |                |        |        |                 |                         |        |        |                |
| Effective Embedment Depth                                                     | h <sub>ef</sub>          | in.       | 1.19      | 1.94     | 1.77           | 2.40   | 2.35   | 2.99            | 2.97                    | 4.24   | 4.22   | 4.86           |
| Critical Edge Distance <sup>6</sup>                                           | Cac                      | in.       | 3         | 6        | 211/16         | 3%     | 39/16  | 41/2            | 41/2                    | 6 %    | 6%     | 75/16          |
| Effectiveness Factor — Uncracked Concrete                                     | <i>k</i> <sub>uncr</sub> |           | 30        |          |                |        |        | 24              |                         |        |        |                |
| Effectiveness Factor — Cracked Concrete                                       | k <sub>cr</sub>          |           |           |          |                |        | 1      | 7               |                         |        |        |                |
| Modification Factor                                                           | $\psi_{c,N}$             |           |           |          |                |        | 1      | .0              |                         |        |        |                |
| Strength Reduction Factor — Concrete Breakout Failure                         | $\phi_{cb}$              | _         |           |          |                |        | 0.0    | 35 <sup>7</sup> |                         |        |        |                |
|                                                                               |                          | Pullout S | trength i | n Tensio | n <sup>8</sup> |        |        |                 |                         |        |        |                |
| Pullout Resistance, Uncracked Concrete (f' <sub>c</sub> = 2,500 psi)          | N <sub>p,uncr</sub>      | lb.       | 3         | 3        | 2,7004         | 3      | 3      | 3               | 3                       | 9,8104 | 3      | 3              |
| Pullout Resistance, Cracked Concrete (f' <sub>c</sub> = 2,500 psi)            | N <sub>p,cr</sub>        | lb.       | 3         | 1,9054   | 1,2354         | 2,7004 | 3      | 3               | 3,0404                  | 5,5704 | 6,0704 | 7,1954         |
| Strength Reduction Factor — Concrete Pullout Failure                          | $\phi_{ ho}$             | _         | 0.655     |          |                |        |        |                 |                         |        |        |                |
| Breakout or Pullout Strength in Tension for Seismic Applications <sup>8</sup> |                          |           |           |          |                |        |        |                 |                         |        |        |                |
| Nominal Pullout Strength for Seismic Loads (f' <sub>c</sub> = 2,500 psi)      | N <sub>p,eq</sub>        | lb.       | 3         | 1,9054   | 1,2354         | 2,7004 | 3      | 3               | 3,0404                  | 5,5704 | 6,0704 | 7,1954         |
| Strength Reduction Factor — Breakout or Pullout Failure                       | $\phi_{eq}$              |           |           |          |                |        | 0.0    | 35 <sup>5</sup> |                         |        |        |                |

- 1. The information presented in this table is to be used in conjunction with the design criteria of ACI 318-14 Chapter 17 and ACI 318-11 Appendix D, except as modified below.
- 2. The tabulated value of  $\phi_{\rm Sa}$  applies when the load combinations of Section 1605.2.1 of the IBC, ACI 318-14 Section 5.3 or ACI 318-11 Section 9.2 are used. If the load combinations of ACI 318-11 Appendix C are used, the appropriate value of  $\phi_{sa}$  must be determined in accordance with ACI 318-11 D.4.4. Anchors are considered brittle steel elements
- 3. Pullout strength is not reported since concrete breakout controls.
- 4. Adjust the characteristic pullout resistance for other concrete compressive strengths by multiplying the tabular value by (f'c, specified / 2,500)<sup>0.5</sup>.
- 5. The tabulated value of  $\phi_{\Omega}$  or  $\phi_{\Theta}$  applies when the load combinations of Section 1605.2.1 of the IBC, ACI 318-14 Section 5.3 or ACI 318-11 Section 9.2 are used and the requirements of ACI 318-14 17.3.3.(c) or ACI 318-11 D.4.3(c) for Condition B are met. If the load combinations of ACI 318-11 Appendix C are used, appropriate value of  $\phi$  must be determined in accordance with ACI 318-11 Section D.4.4(c).
- 6. The modification factor  $\psi_{cp,N}=$  1.0 for cracked concrete. Otherwise, the modification factor for uncracked concrete without supplementary reinforcement to control splitting is either:

removement to control splitting is either:

(1) 
$$\psi_{cp,N} = 1.0$$
 if  $c_{a,min} \ge c_{ac}$  or (2)  $\psi_{cp,N} = \frac{c_{a,min}}{c_{ac}} \ge \frac{1.5h_{ef}}{c_{ac}}$  if  $c_{a,min} < c_{ac}$ 

The modification factor,  $\psi_{cp,N}$  is applied to the nominal concrete breakout strength  $N$ , or  $N$ 

strength,  $N_{cb}$  or  $N_{cbg}$ .

7. The tabulated value of  $\phi_{\it CD}$  applies when both the load combinations of Section 1605.2.1 of the IBC, ACI 318-14 Section 5.3 or ACI 318-11 Section 9.2 are used and the requirements of ACI 318-14 17.3.3(c) or ACI 318-11 D.4.3(c) for Condition B are met. Condition B applies where supplementary reinforcement is not provided. For installations where complying supplementary reinforcement can be verified, the  $\phi_{cb}$  factors described in ACI 318-14 17.3.3(c) or ACI 318-11 D.4.3(c) for Condition A are allowed. If the load combinations of ACI 318-11 Appendix C are used, the appropriate value of  $\phi_{\mathit{cb}}$  must be determined in accordance with ACI 318-11 D.4.4(c).

# C-A-2018 @ 2018 SIMPSON STRONG-TIE COMPANY INC.

# **Titen HD®** Design Information — Concrete









### Titen HD Shear Strength Design Data<sup>1</sup>

| Characteristic                                        | Symbol           | Units      | Nominal Anchor Diameter, d <sub>a</sub> (in.) |                |           |      |       |                             |                  |      |       |      |
|-------------------------------------------------------|------------------|------------|-----------------------------------------------|----------------|-----------|------|-------|-----------------------------|------------------|------|-------|------|
| Glidiacteristic                                       | Syllibul         | UIIILS     | 1/.                                           | 4 <sup>5</sup> | 3/8       |      | 1/2   |                             | 5⁄8 <sup>5</sup> |      | 3/4   |      |
| Nominal Embedment Depth                               | h <sub>nom</sub> | in.        | 1%                                            | 21/2           | 21/2      | 31/4 | 31/4  | 4                           | 4                | 5½   | 51/2  | 61/4 |
|                                                       |                  | Steel      | Strength                                      | in Shear       |           |      |       |                             |                  |      |       |      |
| Shear Resistance of Steel                             | V <sub>sa</sub>  | lb.        | 2,0                                           | )20            | 4,4       | 160  | 7,4   | 55                          | 10,              | 000  | 16,8  | 340  |
| Strength Reduction Factor — Steel Failure             | $\phi_{sa}$      |            |                                               |                |           |      | 0.6   | 60 <sup>2</sup>             |                  |      |       |      |
| Concrete Breakout Strength in Shear <sup>6</sup>      |                  |            |                                               |                |           |      |       |                             |                  |      |       |      |
| Outside Diameter                                      | d <sub>a</sub>   | in.        | 0.:                                           | 25             | 0.3       | 375  | 0.500 |                             | 0.625            |      | 0.750 |      |
| Load Bearing Length of Anchor in Shear                | $\ell_e$         | in.        | 1.19                                          | 1.94           | 1.77      | 2.40 | 2.35  | 2.99                        | 2.97             | 4.24 | 4.22  | 4.86 |
| Strength Reduction Factor — Concrete Breakout Failure | $\phi_{cb}$      |            |                                               |                |           |      | 0.7   | <sup>7</sup> 0 <sup>4</sup> |                  |      |       |      |
|                                                       | Co               | ncrete P   | ryout Str                                     | ength in S     | Shear     |      |       |                             |                  |      |       |      |
| Coefficient for Pryout Strength                       | k <sub>cp</sub>  | lb.        |                                               |                | 1.0       |      |       |                             |                  | 2.0  |       |      |
| Strength Reduction Factor — Concrete Pryout Failure   | $\phi_{cp}$      | _          | 0.704                                         |                |           |      |       |                             |                  |      |       |      |
|                                                       | Steel Stre       | ength in S | Shear for                                     | Seismic        | Applicati | ons  |       |                             |                  |      |       |      |
| Shear Resistance for Seismic Loads                    | V <sub>eq</sub>  | lb.        | 1,6                                           | 95             | 2,8       | 355  | 4,7   | '90                         | 8,0              | 000  | 9,3   | 350  |
| Strength Reduction Factor — Steel Failure             | $\phi_{eq}$      | _          |                                               |                |           |      | 0.6   | 30 <sup>2</sup>             |                  |      |       |      |

- The information presented in this table is to be used in conjunction with the design criteria of ACI 318-14 Chapter 17 and ACI 318-11 Appendix D, except as modified below.
- 2. The tabulated value of  $\phi_{\rm Sa}$  applies when the load combinations of Section 1605.2.1 of the IBC, ACI 318-14 Section 5.3 or ACI 318-11 Section 9.2 are used. If the load combinations of ACI 318-11 Appendix C are used, the appropriate value of  $\phi_{\rm Sa}$  must be determined in accordance with ACI 318 D.4.4.
- 3. The tabulated value of  $\phi_{cb}$  applies when both the load combinations of Section 1605.2.1 of the IBC, ACI 318-14 Section 5.3 or ACI 318-11 Section 9.2 are used and the requirements of ACI 318-14 17.3.3(c) or ACI 318-11 D.4.3(c) for Condition B are met. Condition B applies where
- supplementary reinforcement is not provided. For installations where complying supplementary reinforcement can be verified, the  $\phi_{cb}$  factors described in ACl 318-14 17.3.3(c) or ACl 318-11 D.4.3(c) for Condition A are allowed. If the load combinations of ACl 318-11 Appendix C are used, the appropriate value of  $\phi_{cb}$  must be determined in accordance with ACl 318-11 D.4.4(c).
- 4. The tabulated value of  $\phi_{cp}$  applies when both the load combinations of IBC Section 1605.2, ACI 318-14 5.3 or ACI 318-11 Section 9.2 are used and the requirements of ACI 318-14 17.3.3(c) or ACI 318-11 D.4.3(c) for Condition B are met. If the load combinations of ACI 318-11 Appendix C are used, appropriate value of  $\phi_{cp}$  must be determined in accordance with ACI 318-11 Section D.4.4(c).

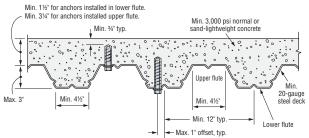
#### Titen HD Tension and Shear Strength Design Data for the Soffit of Normal-Weight or Sand-Lightweight Concrete over Metal Deck<sup>1,6,8</sup>



|                                                                         |                          |                | Nominal Anchor Diameter, d <sub>a</sub> (in.) |          |        |            |       |       |             |          |        |       |
|-------------------------------------------------------------------------|--------------------------|----------------|-----------------------------------------------|----------|--------|------------|-------|-------|-------------|----------|--------|-------|
| Characteristic                                                          | Cumbal                   |                | Lower Flute                                   |          |        |            |       |       | Upper Flute |          |        |       |
| GHALACTERISTIC                                                          | Syllibol                 | Symbol Units - |                                               | Figure 2 |        | Figure 1   |       |       |             | Figure 2 |        | ıre 1 |
|                                                                         |                          |                |                                               | 48       | 3,     | <b>/</b> 8 | 1,    | /2    | 1/.         | 48       | 3/8    | 1/2   |
| Nominal Embedment Depth                                                 | h <sub>nom</sub>         | in.            | 1%                                            | 21/2     | 1 1//8 | 21/2       | 2     | 3½    | 1%          | 21/2     | 1 1//8 | 2     |
| Effective Embedment Depth                                               | h <sub>ef</sub>          | in.            | 1.19                                          | 1.94     | 1.23   | 1.77       | 1.29  | 2.56  | 1.19        | 1.94     | 1.23   | 1.29  |
| Pullout Resistance, concrete on metal deck (cracked) <sup>2,3,4</sup>   | N <sub>p,deck,cr</sub>   | lb.            | 420                                           | 535      | 375    | 870        | 905   | 2,040 | 655         | 1,195    | 500    | 1,700 |
| Pullout Resistance, concrete on metal deck (uncracked) <sup>2,3,4</sup> | N <sub>p,deck,uncr</sub> | lb.            | 995                                           | 1,275    | 825    | 1,905      | 1,295 | 2,910 | 1,555       | 2,850    | 1,095  | 2,430 |
| Steel Strength in Shear, concrete on metal deck <sup>5</sup>            | V <sub>sa, deck</sub>    | lb.            | 1,335                                         | 1,745    | 2,240  | 2,395      | 2,435 | 4,430 | 2,010       | 2,420    | 4,180  | 7,145 |
| Steel Strength in Shear, Seismic                                        | V <sub>sa, deck,eq</sub> | lb.            | 870                                           | 1,135    | 1,434  | 1,533      | 1,565 | 2,846 | 1,305       | 1,575    | 2,676  | 4,591 |

- 1. The information presented in this table is to be used in conjunction with the design criteria of ACI 318-14 Chapter 17 and ACI 318-11 Appendix D, except as modified below.
- 2. Concrete compressive strength shall be 3,000 psi minimum. The characteristic pullout resistance for greater compressive strengths shall be increased by multiplying the tabular value by  $(f'_{c,specified}/3,000)^{0.5}$ .
- 3. For anchors installed in the soffit of sand-lightweight or normal-weight concrete over metal deck floor and roof assemblies, as shown in Figure 1 and Figure 2, calculation of the concrete breakout strength may be omitted.
- 4. In accordance with ACI 318-14 Section 17.4.3.2 or ACI 318-11 Section D.5.3.2, the nominal pullout strength in cracked concrete for anchors
- installed in the soffit of sand-lightweight or normal-weight concrete over metal deck floor and roof assemblies  $N_{P,deck,cr}$  shall be substituted for  $N_{P,cr}$ . Where analysis indicates no cracking at service loads, the normal pullout strength in uncracked concrete  $N_{P,deck,uncr}$  shall be substituted for  $N_{P,uncr}$ .
- 5. In accordance with ACl 318-14 Section 17.5.1.2(C) or ACl 318-11 Section D.6.1.2(c), the shear strength for anchors installed in the soffit of sand-lightweight or normal-weight concrete over metal deck floor and roof assemblies  $V_{sa,deck,eq}$  shall be substituted for  $V_{sa}$ .
- 6. Minimum edge distance to edge of panel is 2hef.
- 7. The minimum anchor spacing along the flute must be the greater of  $3h_{\rm eff}$  or 1.5 times the flute width.

# Titen HD® Design Information — Concrete




Titen HD Anchor Tension and Shear Strength Design Data in the Topside of Normal-Weight Concrete or Sand-Lightweight Concrete over Metal Deck

|     |       |       | * |
|-----|-------|-------|---|
| IBC | 24 22 | 24 22 |   |

|                            |                           |       | Nominal Anchor Diameter, d <sub>a</sub> (in.) |          |  |
|----------------------------|---------------------------|-------|-----------------------------------------------|----------|--|
| Design Information         | Symbol                    | Units | Figure 3                                      | Figure 3 |  |
|                            |                           |       | 1/4                                           | 3/8      |  |
| Nominal Embedment Depth    | h <sub>nom</sub>          | in.   | 1 %                                           | 21/2     |  |
| Effective Embedment Depth  | h <sub>ef</sub>           | in.   | 1.19                                          | 1.77     |  |
| Minimum Concrete Thickness | h <sub>min,deck</sub>     | in.   | 2½                                            | 31⁄4     |  |
| Critical Edge Distance     | C <sub>ac,deck,top</sub>  | in.   | 3¾                                            | 71/4     |  |
| Minimum Edge Distance      | C <sub>min,deck,top</sub> | in.   | 3½                                            | 3        |  |
| Minimum Spacing            | S <sub>min,deck,top</sub> | in.   | 3½                                            | 3        |  |

- 1. For anchors installed in the topside of concrete-filled deck assemblies, as shown in Figures 2 and 3, the nominal concrete breakout strength of a single anchor or group of anchors in shear,  $V_{cb}$  or  $V_{cbg}$ , respectively, must be calculated in accordance with ACI 318-14 Section 17.5.2 or ACI 318-11 Section D.6.2, using the actual member thickness,  $h_{min,deck}$ , in the determination of  $A_{vc}$ .
- 2. Design capacity shall be based on calculations according to values in the tables featured on pp. 116-118.
- 3. Minimum flute depth (distance from top of flute to bottom of flute) is 11/2" (see Figures 2 and 3).
- 4. Steel deck thickness shall be minimum 20 gauge.
- 5. Minimum concrete thickness ( $h_{min,deck}$ ) refers to concrete thickness above upper flute (see Figures 2 and 3).



Upper flute

Min. 1½\*

Min

Figure 1. Installation of %"- and ½"-Diameter Anchors in the Soffit of Concrete over Metal Deck

Figure 2. Installation of ¼"-Diameter Anchors in the Soffit of Concrete over Metal Deck

Sand-light weight concrete or normal-weight concrete over steel decl (minimum 3,000 psi)

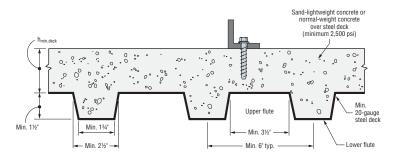



Figure 3. Installation of 1/4"- and 1/4"-Diameter Anchors in the Topside of Concrete over Metal Deck

C-A-2018 @2018 SIMPSON STRONG-TIE COMPANY INC.

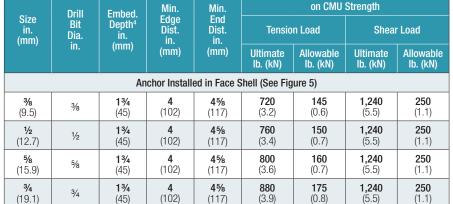
<sup>\*</sup> See p. 13 for an explanation of the load table icons.

# C-A-2018 @2018 SIMPSON STRONG-TIE COMPANY INC.

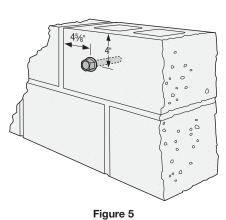
# **Titen HD®** Design Information — Masonry



Titen HD Allowable Tension and Shear Loads in 8" Lightweight, Medium-Weight and Normal-Weight Grout-Filled CMU


| <b>IBC</b> | 1      | •      | *  |
|------------|--------|--------|----|
| weight I   | Medium | -Weigh | nt |

| Size              | Drill                                                       | Min.<br>Embed.  | Critical<br>Edge | Critical<br>End | Critical<br>Spacing |                      | or 8" Lightwe<br>ormal-Weight |                      |                       |  |  |
|-------------------|-------------------------------------------------------------|-----------------|------------------|-----------------|---------------------|----------------------|-------------------------------|----------------------|-----------------------|--|--|
| in.               | Bit<br>Dia.                                                 | Depth           | Dist.            | Dist.           | Dist.               | Tensio               | n Load                        | Shear                | <sup>r</sup> Load     |  |  |
| (mm)              | in.                                                         | in.<br>(mm)     | in.<br>(mm)      | in.<br>(mm)     | in.<br>(mm)         | Ultimate<br>lb. (kN) | Allowable<br>lb. (kN)         | Ultimate<br>lb. (kN) | Allowable<br>lb. (kN) |  |  |
|                   | Anchor Installed in the Face of the CMU Wall (See Figure 4) |                 |                  |                 |                     |                      |                               |                      |                       |  |  |
| <b>3/8</b> (9.5)  | 3/8                                                         | <b>2¾</b> (70)  | <b>12</b> (305)  | <b>12</b> (305) | <b>6</b> (152)      | <b>2,390</b> (10.6)  | <b>480</b> (2.1)              | <b>4,340</b> (19.3)  | <b>870</b> (3.9)      |  |  |
| <b>½</b> (12.7)   | 1/2                                                         | <b>3½</b> (89)  | <b>12</b> (305)  | <b>12</b> (305) | <b>8</b> (203)      | <b>3,440</b> (15.3)  | <b>690</b> (3.1)              | <b>6,920</b> (30.8)  | <b>1,385</b> (6.2)    |  |  |
| <b>5%</b> (15.9)  | 5/8                                                         | <b>4½</b> (114) | <b>12</b> (305)  | <b>12</b> (305) | <b>10</b> (254)     | <b>5,300</b> (23.6)  | <b>1,060</b> (4.7)            | <b>10,420</b> (46.4) | <b>2,085</b> (9.3)    |  |  |
| <b>3/4</b> (19.1) | 3/4                                                         | <b>5½</b> (140) | <b>12</b> (305)  | <b>12</b> (305) | <b>12</b> (305)     | <b>7,990</b> (35.5)  | <b>1,600</b> (7.1)            | <b>15,000</b> (66.7) | <b>3,000</b> (13.3)   |  |  |


- Critical edge distance (see load table) in this area for reduced allowable edge distance allowable load capacity 4" minimum end distance Critical end distance (see load table) No installation within 1½" of head joint Installations in this area for full allowable load capacity
  - Figure 4. Shaded Area = Placement for Full and Reduced Allowable Load Capacity in Grout-Filled CMU
- 1. The tabulated allowable loads are based on a safety factor of 5.0 for installations under the IBC and IRC.
- 2. Values for 8"-wide, lightweight, medium-weight and normal-weight concrete masonry units.
- 3. The masonry units must be fully grouted.
- 4. The minimum specified compressive strength of masonry,  $\mathbf{f}'_{\textit{m}}$ , at 28 days is 1,500 psi.
- 5. Embedment depth is measured from the outside face of the concrete masonry unit.
- 6. Allowable loads may be increased 331/3% for short-term loading due to wind or seismic forces where permitted by code
- 7. Grout-filled CMU wall design must satisfy applicable design standards and be capable of withstanding applied loads.
- 8. Refer to allowable load-adjustment factors for spacing and edge distance on p. 123.

#### Titen HD Allowable Tension and Shear Loads in 8" Lightweight, Medium-Weight and Normal-Weight Hollow CMU

|                     | Drill                                         | Embed.           | Min.                                            | Min.               | lin. on CMU          |                       | ollow CMU Loads Based<br>on CMU Strength |                       |  |  |
|---------------------|-----------------------------------------------|------------------|-------------------------------------------------|--------------------|----------------------|-----------------------|------------------------------------------|-----------------------|--|--|
| Size<br>in.<br>(mm) | Bit<br>Dia.                                   | Depth⁴<br>in.    | Edge End Dist. Dist. Tension Load Sheal in. in. |                    | Tension Load         |                       | r Load                                   |                       |  |  |
| (11111)             | in.                                           | (mm)             | (mm)                                            | (mm)               | Ultimate<br>lb. (kN) | Allowable<br>lb. (kN) | Ultimate<br>lb. (kN)                     | Allowable<br>lb. (kN) |  |  |
|                     | Anchor Installed in Face Shell (See Figure 5) |                  |                                                 |                    |                      |                       |                                          |                       |  |  |
| <b>3/8</b> (9.5)    | 3/8                                           | <b>13/4</b> (45) | <b>4</b> (102)                                  | <b>4</b> % (117)   | <b>720</b> (3.2)     | <b>145</b> (0.6)      | <b>1,240</b> (5.5)                       | <b>250</b> (1.1)      |  |  |
| <b>½</b> (12.7)     | 1/2                                           | <b>13/4</b> (45) | <b>4</b> (102)                                  | <b>4</b> % (117)   | <b>760</b> (3.4)     | <b>150</b> (0.7)      | <b>1,240</b> (5.5)                       | <b>250</b> (1.1)      |  |  |
| <b>5/8</b> (15.9)   | 5/8                                           | <b>13/4</b> (45) | <b>4</b> (102)                                  | <b>4</b> 5/8 (117) | <b>800</b> (3.6)     | <b>160</b> (0.7)      | <b>1,240</b> (5.5)                       | <b>250</b> (1.1)      |  |  |
| 3/.                 |                                               | 13/              | 4                                               | 45/                | 000                  | 175                   | 1 040                                    | 250                   |  |  |



- 1. The tabulated allowable loads are based on a safety factor of 5.0 for installations under the IBC and IRC.
- 2. Values for 8"-wide, lightweight, medium-weight and normal-weight concrete masonry units.
- 3. The minimum specified compressive strength of masonry, f'm, at 28 days is 1,500 psi.
- 4. Embedment depth is measured from the outside face of the concrete masonry unit and is based on the anchor being embedded an additional 1/2"- through 1 1/4"-thick face shell.
- 5. Allowable loads may not be increased for short-term loading due to wind or seismic forces. CMU wall design must satisfy applicable design standards and be capable of withstanding applied loads.
- 6. Do not use impact wrenches to install in hollow CMU.
- 7. Set drill to rotation-only mode when drilling into hollow CMU.



\* See p. 13 for an explanation of the load table icons

# Titen HD® Design Information — Masonry



Titen HD® Allowable Tension and Shear Loads in 8" Lightweight, Medium-Weight and Normal-Weight Grout-Filled CMU Stemwall

| IBC 1 | <b>→</b> |  |
|-------|----------|--|
|-------|----------|--|

|                  | Drill       | Embed.          | Min. Min.        |                             |                     | 8" Grout-Filled CMU Allowable Loads Based on CMU Strength |                  |                  |                      |                       |                      |                       |                      |                       |            |                           |  |
|------------------|-------------|-----------------|------------------|-----------------------------|---------------------|-----------------------------------------------------------|------------------|------------------|----------------------|-----------------------|----------------------|-----------------------|----------------------|-----------------------|------------|---------------------------|--|
| Size in.         | Bit<br>Dia. | Depth<br>in.    | Edge<br>Dist.    | End<br>Dist.<br>in.<br>(mm) | st. Dist.<br>1. in. | t. Dist.<br>in.                                           | Dist. Dist       |                  |                      |                       | Spacing Dist.        |                       | sion Shear Perp. t   |                       | p. to Edge | o. to Edge Shear Parallel |  |
| (mm)             | in.         | (mm)            | in.<br>(mm)      |                             |                     |                                                           |                  | in.<br>(mm)      | Ultimate<br>lb. (kN) | Allowable<br>lb. (kN) | Ultimate<br>lb. (kN) | Allowable<br>lb. (kN) | Ultimate<br>lb. (kN) | Allowable<br>lb. (kN) |            |                           |  |
|                  |             |                 |                  | Anchor                      | Installed in        | Cell Opening                                              | or Web (Top o    | f Wall) (See Fig | gure 6)              |                       |                      |                       |                      |                       |            |                           |  |
| <b>½</b> (12.7)  | 1/2         | <b>4½</b> (114) | <b>13/4</b> (45) | <b>8</b> (203)              | <b>8</b> (203)      | <b>2,860</b> (12.7)                                       | <b>570</b> (2.5) | <b>800</b> (3.6) | <b>160</b> (0.7)     | <b>2,920</b> (13.0)   | <b>585</b> (2.6)     |                       |                      |                       |            |                           |  |
| <b>5%</b> (15.9) | 5/8         | <b>4½</b> (114) | <b>13/4</b> (45) | <b>10</b> (254)             | <b>10</b> (254)     | <b>2,860</b> (12.7)                                       | <b>570</b> (2.5) | <b>800</b> (3.6) | <b>160</b> (0.7)     | <b>3,380</b> (15.0)   | <b>675</b> (3.0)     |                       |                      |                       |            |                           |  |

- $1. The \ tabulated \ allowable \ loads \ are \ based \ on \ a \ safety \ factor \ of \ 5.0 \ for \ installations \ under \ the \ IBC \ and \ IRC.$
- 2. Values are for 8"-wide, lightweight, medium-weight and normal-weight concrete masonry units.
- 3. The masonry units must be fully grouted.
- 4. The minimum specified compressive strength of masonry,  $f'_{\it m}$ , at 28 days is 1,500 psi.
- 5. Allowable loads may be increased 331% for short-term loading due to wind or seismic forces where permitted by code.
- 6. Grout-filled CMU wall design must satisfy applicable design standards and be capable of withstanding applied design loads.
- 7. Loads are based on anchor installed in either the web or grout-filled cell opening in the top of wall.

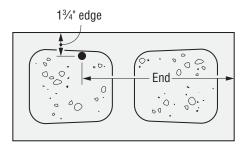
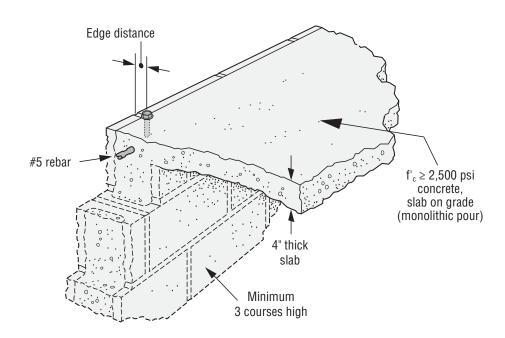



Figure 6. Anchor Installed in Top of Wall

C-A-2018 @2018 SIMPSON STRONG-TIE COMPANY INC.


# **Titen HD®** Design Information — Masonry

Titen HD Allowable Tension Loads for 8" Lightweight, Medium-Weight and Normal-Weight CMU Chair Blocks Filled with Normal-Weight Concrete

| BC |
|----|
|----|

| Size<br>in.         |       |                    | Embed. Min.<br>Depth Edge Dist. | Critical<br>Spacing | 8" Concrete-Filled CMU Chair Block<br>Allowable Tension Loads Based on CMU Strength |                       |  |
|---------------------|-------|--------------------|---------------------------------|---------------------|-------------------------------------------------------------------------------------|-----------------------|--|
| (mm)                | (in.) | in.<br>(mm)        | in.<br>(mm)                     | in. (mm)            | Ultimate lb.<br>(kN)                                                                | Allowable lb.<br>(kN) |  |
|                     |       | <b>2</b> %<br>(60) | <b>13/4</b> (44)                | <b>9½</b><br>(241)  | <b>3,175</b> (14.1)                                                                 | <b>635</b> (2.8)      |  |
| <b>3/8</b><br>(9.5) | 3/8   | <b>3</b> % (86)    | <b>13/4</b> (44)                | <b>13½</b> (343)    | <b>5,175</b> (23.0)                                                                 | <b>1,035</b> (4.6)    |  |
|                     |       | <b>5</b> (127)     | <b>21/4</b> (57)                | <b>20</b> (508)     | <b>10,584</b> (47.1)                                                                | <b>2,115</b> (9.4)    |  |
| 1/2                 | 1/2   | <b>8</b> (203)     | <b>21/4</b> (57)                | <b>32</b> (813)     | <b>13,722</b> (61.0)                                                                | <b>2,754</b> (12.2)   |  |
| (12.7)              | 72    | <b>10</b> (254)    | <b>21/4</b> (57)                | <b>40</b> (1016)    | <b>16,630</b> (74.0)                                                                | <b>3,325</b> (14.8)   |  |
| <b>5%</b><br>(15.9) | 5/8   | <b>5½</b> (140)    | <b>13/4</b> (44)                | <b>22</b> (559)     | <b>9,025</b> (40.1)                                                                 | <b>1,805</b> (8.1)    |  |

- 1. The tabulated allowable loads are based on a safety factor of 5.0.
- 2. Values are for 8"-wide concrete masonry units (CMU) filled with concrete, with minimum compressive strength of 2,500 psi and poured monolithically with the floor slab.
- 3. Center #5 rebar in CMU cell and concrete slab as shown in the illustration below.

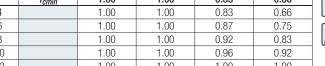


122

**Mechanical** Anchors

# **Titen HD**<sup>®</sup> Design Information — Masonry




Load-Adjustment Factors for Titen HD Anchors in Face-of-Wall Installation in 8" Grout-Filled CMU: Edge Distance and Spacing, Tension and Shear Loads

#### How to use these charts:

- 1. The following tables are for reduced edge distance and spacing.
- 2. Locate the anchor size to be used for either a tension and/or shear load application.
- 3. Locate the embedment (E) at which the anchor is to be installed.
- 4. Locate the edge distance ( $c_{act}$ ) or spacing ( $s_{act}$ ) at which the anchor is to be installed.
- 5. The load adjustment factor (f<sub>c</sub> or f<sub>s</sub>) is the intersection of the row and column.
- 6. Multiply the allowable load by the applicable load adjustment factor.
- 7. Reduction factors for multiple edges or spacings are multiplied together.

### Edge or End Distance Tension (f<sub>c</sub>)

|                           |                   |      | . 0, |      |      |
|---------------------------|-------------------|------|------|------|------|
|                           | Dia.              | 3/8  | 1/2  | 5/8  | 3/4  |
| _                         | E                 | 2¾   | 31/2 | 41/2 | 51/2 |
| c <sub>act</sub><br>(in.) | c <sub>cr</sub>   | 12   | 12   | 12   | 12   |
| ()                        | C <sub>min</sub>  | 4    | 4    | 4    | 4    |
|                           | f <sub>cmin</sub> | 1.00 | 1.00 | 0.83 | 0.66 |
| 4                         |                   | 1.00 | 1.00 | 0.83 | 0.66 |
| 6                         |                   | 1.00 | 1.00 | 0.87 | 0.75 |
| 8                         |                   | 1.00 | 1.00 | 0.92 | 0.83 |
| 10                        |                   | 1.00 | 1.00 | 0.96 | 0.92 |
| 12                        |                   | 1.00 | 1.00 | 1.00 | 1.00 |
|                           |                   |      |      |      |      |



See notes below.

# Edge or End Distance Shear (f<sub>c</sub>) Shear Load Perpendicular to Edge or End (Directed Towards Edge or End)

|                           | •                 |      |      | ,     |       |
|---------------------------|-------------------|------|------|-------|-------|
|                           | Dia.              | 3/8  | 1/2  | 5/8   | 3/4   |
| _                         | E                 | 2¾   | 31/2 | 4 1/2 | 5 1/2 |
| c <sub>act</sub><br>(in.) | C <sub>cr</sub>   | 12   | 12   | 12    | 12    |
| (111.)                    | C <sub>min</sub>  | 4    | 4    | 4     | 4     |
|                           | f <sub>cmin</sub> | 0.58 | 0.38 | 0.30  | 0.21  |
| 4                         |                   | 0.58 | 0.38 | 0.30  | 0.21  |
| 6                         |                   | 0.69 | 0.54 | 0.48  | 0.41  |
| 8                         |                   | 0.79 | 0.69 | 0.65  | 0.61  |
| 10                        |                   | 0.90 | 0.85 | 0.83  | 0.80  |
| 12                        |                   | 1.00 | 1.00 | 1.00  | 1.00  |



- $2. c_{act}$  = actual end or edge distance at which anchor is installed (inches).
- 3.  $c_{cr}$  = critical end or edge distance for 100% load (inches).
- 4.  $c_{min}$  = minimum end or edge distance for reduced load (inches).
- 5.  $f_c$  = adjustment factor for allowable load at actual end or edge distance.
- 6. f<sub>ccr</sub> = adjustment factor for allowable load at critical end or edge distance.  $f_{ccr}$  is always = 1.00.
- 7. f<sub>cmin</sub> = adjustment factor for allowable load at minimum end or edge distance.
- 8.  $f_c = f_{cmin} + [(1 f_{cmin}) (c_{act} c_{min}) / (c_{cr} c_{min})].$

#### Spacing Tension (f<sub>s</sub>)

|                           | Dia.              | 3/8  | 1/2   | 5/8   | 3/4   |
|---------------------------|-------------------|------|-------|-------|-------|
| _                         | Е                 | 23/4 | 3 1/2 | 4 1/2 | 5 1/2 |
| s <sub>act</sub><br>(in.) | S <sub>cr</sub>   | 6    | 8     | 10    | 12    |
| (111.)                    | S <sub>min</sub>  | 3    | 4     | 5     | 6     |
|                           | f <sub>smin</sub> | 0.87 | 0.69  | 0.59  | 0.50  |
| 3                         |                   | 0.87 |       |       |       |
| 4                         |                   | 0.91 | 0.69  |       |       |
| 5                         |                   | 0.96 | 0.77  | 0.59  |       |
| 6                         |                   | 1.00 | 0.85  | 0.67  | 0.50  |
| 8                         |                   |      | 1.00  | 0.84  | 0.67  |
| 10                        |                   |      |       | 1.00  | 0.83  |
| 12                        |                   |      |       |       | 1.00  |

- 1. E = Embedment depth (inches).
- 2.  $s_{act}$  = actual spacing distance at which anchors are installed (inches).
- 3.  $s_{cr}$  = critical spacing distance for 100% load (inches).
- 4.  $s_{min}$  = minimum spacing distance for reduced load (inches).
- $5. f_s = adjustment factor for allowable load at actual spacing distance.$
- 6.  $f_{SCT}$  = adjustment factor for allowable load at critical spacing distance.  $f_{SCT}$  is always = 1.00.
- 7. f<sub>smin</sub> = adjustment factor for allowable load at minimum spacing distance.
- 8.  $f_s = f_{smin} + [(1 f_{smin}) (s_{act} s_{min}) / (s_{cr} s_{min})]$

#### Edge or End Distance Shear (f<sub>c</sub>) Shear Load Parallel to Edge or End

|                           | Dia.              | 3/8  | 1/2  | 5/8  | 3/4  |
|---------------------------|-------------------|------|------|------|------|
| _                         | E                 | 23/4 | 31/2 | 41/2 | 51/2 |
| c <sub>act</sub><br>(in.) | C <sub>cr</sub>   | 12   | 12   | 12   | 12   |
| (111.)                    | C <sub>min</sub>  | 4    | 4    | 4    | 4    |
|                           | f <sub>cmin</sub> | 0.77 | 0.48 | 0.46 | 0.44 |
| 4                         |                   | 0.77 | 0.48 | 0.46 | 0.44 |
| 6                         |                   | 0.83 | 0.61 | 0.60 | 0.58 |
| 8                         |                   | 0.89 | 0.74 | 0.73 | 0.72 |
| 10                        |                   | 0.94 | 0.87 | 0.87 | 0.86 |
| 12                        |                   | 1.00 | 1.00 | 1.00 | 1.00 |

See notes below.

**IBC** 

**IBC** 

#### Edge or End Distance Shear (f<sub>c</sub>) Shear Load Perpendicular to Edge or End (Directed Away From Edge or End)

| - (                       |                   | - )  |      | - 0   | - /  |
|---------------------------|-------------------|------|------|-------|------|
|                           | Dia.              | 3/8  | 1/2  | 5/8   | 3/4  |
|                           | E                 | 23/4 | 31/2 | 4 1/2 | 51/2 |
| c <sub>act</sub><br>(in.) | C <sub>Cr</sub>   | 12   | 12   | 12    | 12   |
| (111.)                    | C <sub>min</sub>  | 4    | 4    | 4     | 4    |
|                           | f <sub>cmin</sub> | 0.89 | 0.79 | 0.58  | 0.38 |
| 4                         |                   | 0.89 | 0.79 | 0.58  | 0.38 |
| 6                         |                   | 0.92 | 0.84 | 0.69  | 0.54 |
| 8                         |                   | 0.95 | 0.90 | 0.79  | 0.69 |
| 10                        |                   | 0.97 | 0.95 | 0.90  | 0.85 |
| 12                        |                   | 1.00 | 1.00 | 1.00  | 1.00 |









|                           | Dia.              | 3/8  | 1/2  | 5/8   | 3/4  |
|---------------------------|-------------------|------|------|-------|------|
| _                         | Е                 | 23/4 | 31/2 | 4 1/2 | 51/2 |
| s <sub>act</sub><br>(in.) | S <sub>cr</sub>   | 6    | 8    | 10    | 12   |
|                           | Smin              | 3    | 4    | 5     | 6    |
|                           | f <sub>smin</sub> | 0.62 | 0.62 | 0.62  | 0.62 |
| 3                         |                   | 0.62 |      |       |      |
| 4                         |                   | 0.75 | 0.62 |       |      |
| 5                         |                   | 0.87 | 0.72 | 0.62  |      |
| 6                         |                   | 1.00 | 0.81 | 0.70  | 0.62 |
| 8                         |                   |      | 1.00 | 0.85  | 0.75 |
| 10                        |                   |      |      | 1.00  | 0.87 |
| 12                        |                   |      |      |       | 1.00 |





<sup>\*</sup> See p. 13 for an explanation of the load table icons.

# Stainless-Steel Titen HD® Heavy-Duty Screw Anchor



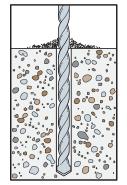
#### The Next Era of Stainless-Steel Screw Anchor for Concrete and Masonry

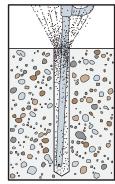
Titen HD screw anchors are a trusted anchor solution because they offer the performance that specifiers need and the ease of installation that contractors demand. Until now, however, they were not for use in permanent exterior or corrosive environments. The Titen HD stainless-steel screw anchor for concrete and masonry sets the new standard for when the job calls for installation in multiple types of environments. It is the ultimate choice to provide fast and efficient installation, combined with long-lasting corrosion resistance for an unsurpassed peace-of-mind.

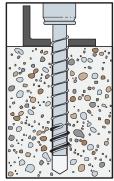
Innovative — The serrated carbon-steel threads on the tip of the stainless-steel Titen HD are vital because they undercut the concrete as the anchor is driven into the hole, making way for the rest of the threads to interlock with the concrete. In order for these threads to be durable enough to cut into the concrete, they are formed from carbon steel that is then hardened and brazed onto the tip of the anchor.

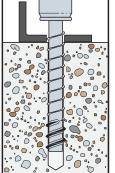
Corrosion Resistant — For dry, interior applications, carbon-steel corrosion is not a risk, but in any kind of exterior, coastal or chemical environment the anchor would be susceptible to corrosion. With the introduction of the THDSS, there is finally a stateof-the-art anchor solution that combines the corrosion resistance of Type 300 Series stainless steel with the undercutting ability of heat-treated carbon-steel cutting threads.

#### Features:


- THDSS is now the first stainless-steel screw anchor available in \%" and \%" diameters, in addition to the 3/8" and 1/2" sizes
- Ideal for exterior or corrosive environments
- · Less carbon steel, less expansion
- · Installs with an impact wrench or by hand tool
- Code listed in IAPMO UES ER-493 (concrete) and ICC-ES ESR-1056 (masonry)
- Tested per ACI355.2 and AC193


Material: Type 316 and Type 304 stainless steel with carbon-steel lead threads


#### Installation


- Caution: Holes in steel fixtures to be mounted should match the diameter specified in the table below if steel is thicker than 12 gauge.
- Caution: Use a Titen HD screw anchor one time only installing the anchor multiple times may result in excessive thread wear and reduce load capacity. Do not use impact wrenches to install into hollow CMU.
- Caution: Oversized holes in base material will reduce or eliminate the mechanical interlock of the threads with the base material and reduce the anchor's load capacity.
- 1. Drill a hole in the base material using a carbide drill bit (complying with ANSI B212.15) with the same diameter as the nominal diameter of the anchor to be installed. Drill the hole to the specified minimum hole depth overdrill (see table below) to allow the thread tapping dust to settle, and blow it clean using compressed air. (Overhead installations need not be blown clean.) Alternatively, drill the hole deep enough to accommodate embedment depth and the dust from drilling and tapping.
- 2. Insert the anchor through the fixture and into the hole.
- 3. Tighten the anchor into the base material until the hex-washer head contacts the fixture.

#### Installation Sequence









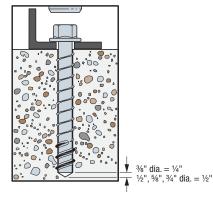




Innovative carbon-steel thread effectively cuts the concrete while significantly limiting the amount of carbon steel in the anchor, minimizing the amount of corrosion potential that can occur in a exterior corrosive environment.

### Anatomy of the Stainless-Steel Titen HD® (THDSS)

The THDSS screw anchor gets its cutting ability from a proprietary bi-metal design that incorporates a carbon-steel helical-coil thread brazed into the shank of the anchor. The serrated carbon-steel leading thread cuts a channel for the stainless-steel threads to engage into.


Stainless-Steel Titen HD® **Screw Anchor** 

U.S. Patent 8.747.042 B2

#### Additional Installation Information

| Titen HD <sup>®</sup><br>Diameter<br>(in.) | Wrench<br>Size<br>(in.) | Recommended<br>Steel Fixture Hole<br>Size (in.) | Min. Hole<br>Depth Overdrill<br>(in.) |
|--------------------------------------------|-------------------------|-------------------------------------------------|---------------------------------------|
| 3/8                                        | 9/16                    | ½ to %6                                         | 1/4                                   |
| 1/2                                        | 3/4                     | 5% to 11/16                                     | 1/2                                   |
| 5%                                         | 15/16                   | 3⁄4 to 13⁄16                                    | 1/2                                   |
| 3/4                                        | 11/8                    | 7⁄8 to ¹5∕₁6                                    | 1/2                                   |

Suggested fixture hole sizes are for structural steel thicker than 12 gauge only. Larger holes are not required for wood or cold-formed steel members.



# Stainless-Steel Titen HD® Design Information — Concrete



#### Stainless-Steel Titen HD Anchor Product Data

| Size        | Model No.     | Model No.     | Drill Bit Dia. | Wrench Size | Qua | ntity  |
|-------------|---------------|---------------|----------------|-------------|-----|--------|
| (in.)       | (Type 316)    | (Type 304)    | (in.)          | (in.)       | Box | Carton |
| 3% x 3      | THD37300H6SS  | THD37300H4SS  | 3/8            | 9/16        | 50  | 200    |
| 3/8 X 4     | THD37400H6SS  | THD37400H4SS  | 3/8            | 9/16        | 50  | 200    |
| 3% x 5      | THD37500H6SS  | THD37500H4SS  | 3/8            | 9/16        | 50  | 100    |
| 3% x 6      | THD37600H6SS  | THD37600H4SS  | 3/8            | 9/16        | 50  | 100    |
| ½ x 3       | THD50300H6SS  | THD50300H4SS  | 1/2            | 3/4         | 25  | 100    |
| ½ x 4       | THD50400H6SS  | THD50400H4SS  | 1/2            | 3/4         | 20  | 80     |
| ½ x 5       | THD50500H6SS  | THD50500H4SS  | 1/2            | 3/4         | 20  | 80     |
| ½ x 6       | THD50600H6SS  | THD50600H4SS  | 1/2            | 3/4         | 20  | 80     |
| ½ x 6½      | THD50612H6SS  | THD50612H4SS  | 1/2            | 3/4         | 20  | 40     |
| ½ x 8       | THD50800H6SS  | THD50800H4SS  | 1/2            | 3/4         | 20  | 40     |
| 5⁄8 x 4     | THDB62400H6SS | THDB62400H4SS | 5/8            | 15/16       | 10  | 40     |
| % x 5       | THDB62500H6SS | THDB62500H4SS | 5/8            | 15/16       | 10  | 40     |
| % x 6       | THDB62600H6SS | THDB62600H4SS | 5/8            | 15/16       | 10  | 40     |
| 5⁄8 x 61⁄⁄2 | THDB62612H6SS | THDB62612H4SS | 5/8            | 15/16       | 10  | 40     |
| % x 8       | THDB62800H6SS | THDB62800H4SS | 5/8            | 15/16       | 10  | 20     |
| 3/4 x 4     | THD75400H6SS  | THD75400H4SS  | 3/4            | 11/8        | 10  | 40     |
| 3⁄4 x 5     | THD75500H6SS  | THD75500H4SS  | 3/4            | 11/8        | 5   | 20     |
| 3⁄4 x 6     | THD75600H6SS  | THD75600H4SS  | 3/4            | 11/8        | 5   | 20     |
| 3/4 x 7     | THD75700H6SS  | THD75700H4SS  | 3/4            | 11/8        | 5   | 10     |
| 3/4 x 81/2  | THD75812H6SS  | THD75812H4SS  | 3/4            | 11/8        | 5   | 10     |

#### Stainless-Steel Titen HD Installation Information<sup>1</sup>







| Ohawashavistia                                             | Complete                     | Units       | Nominal Anchor Diameter (in.) |      |      |                |      |         |                 |         |      |
|------------------------------------------------------------|------------------------------|-------------|-------------------------------|------|------|----------------|------|---------|-----------------|---------|------|
| Characteristic                                             | Symbol                       | UIIILS      | 3,                            | /8   |      | 1/2            |      | 5,      | /8              | 3,      | /4   |
|                                                            | Ins                          | tallation I | nformatio                     | on   |      |                |      |         |                 |         |      |
| Nominal Diameter                                           | $d_a(d_0)^4$                 | in.         | 3                             | 3⁄8  |      | 1/2            |      | 5       | <sup>7</sup> ⁄8 | 3       | ₹/4  |
| Drill Bit Diameter                                         | d <sub>bit</sub>             | in.         | 3                             | 3/8  |      | 1/2            |      | 5       | <sup>5</sup> /8 | 3       | N/4  |
| Minimum Baseplate Clearance Hole Diameter <sup>2</sup>     | $d_c$                        | in.         | -                             | /2   |      | 5/8            |      | 3       | 3/4             | 7       | /8   |
| Maximum Installation Torque <sup>3</sup>                   | T <sub>inst,max</sub>        | ftlbf.      | 4                             | .0   |      | 70             |      | 8       | 5               | 15      | 50   |
| Maximum Impact Wrench Torque Rating                        | T <sub>impact,max</sub>      | ftlbf.      | 1                             | 50   |      | 345            |      | 34      | 45              | 38      | 30   |
| Minimum Hole Depth                                         | h <sub>hole</sub>            | in.         | 23/4                          | 3½   | 33   | V <sub>4</sub> | 41/2 | 41/2    | 6               | 6       | 6¾   |
| Nominal Embedment Depth                                    | h <sub>nom</sub>             | in.         | 21/2                          | 31/4 | 31   | /4             | 4    | 4       | 5½              | 5½      | 61/4 |
| Effective Embedment Depth                                  | h <sub>ef</sub>              | in.         | 1.40                          | 2.04 | 1.8  | 36             | 2.50 | 2.31    | 3.59            | 3.49    | 4.13 |
| Critical Edge Distance                                     | Cac                          | in.         | 41/2                          | 5½   | 6    | i              | 5¾   | 6       | 6%              | 6¾      | 7%   |
| Minimum Edge Distance                                      | C <sub>min</sub>             | in.         | 13/4                          | 13⁄4 | 13/4 | 21/4           | 13/4 | 13/4    | 13/4            | 13⁄4    | 13/4 |
| Minimum Spacing                                            | Smin                         | in.         | 3                             | 3    | 4    | 3              | 3    | 3       | 3               | 3       | 3    |
| Minimum Concrete Thickness                                 | h <sub>min</sub>             | in.         | 4                             | 5    | 5    | i              | 61/4 | 6       | 81/2            | 8¾      | 10   |
|                                                            |                              | Anchor      | Data                          |      |      |                |      |         |                 |         |      |
| Yield Strength                                             | f <sub>ya</sub>              | psi         | 98,                           | 400  |      | 91,200         |      | 83,     | 200             | 92,     | 000  |
| Tensile Strength                                           | f <sub>uta</sub>             | psi         | 123,000                       |      |      | 114,000        |      | 104     | ,000            | 115     | ,000 |
| Minimum Tensile and Shear Stress Area                      | A <sub>se</sub> <sup>5</sup> | in.²        | 0.0                           | )99  |      | 0.1832         |      | 0.276   |                 | 0.414   |      |
| Axial Stiffness in Service Load Range — Uncracked Concrete | $eta_{uncr}$                 | lb./in.     | 807                           | ,700 |      | 269,085        |      | 111,040 |                 | 102,035 |      |
| Axial Stiffness in Service Load Range — Cracked Concrete   | $eta_{cr}$                   | lb./in.     | 113                           | ,540 |      | 93,675         |      | 94,400  |                 | 70,     | 910  |

For SI: 1 in. = 25.4 mm, 1 ft.-lbf. = 1.356 N-m, 1 psi = 6.89 kPa, 1 in.<sup>2</sup> = 645 mm<sup>2</sup>, 1 lb./in. = 0.175 N/mm.

C-A-2018 @ 2018 SIMPSON STRONG-TIE COMPANY INC.

The information presented in this table is to be used in conjunction with the design criteria of ACI 318-14 Chapter 17 or ACI 318-11 Appendix D, as applicable.

<sup>2.</sup> The minimum hole size must comply with applicable code requirements for the connected element.

<sup>3.</sup>  $T_{\mathit{inst,max}}$  applies to installations using a calibrated torque wrench.

<sup>4.</sup> For the 2006 IBC  $d_o$  replaces  $d_a$ . The notation in parenthesis is for the 2006 IBC.

<sup>\*</sup> See p. 13 for an explanation of the load table icons.

# Stainless-Steel Titen HD® Design Information — Concrete



Stainless-Steel Titen HD Characteristic Tension Strength Design Values<sup>1,5</sup>



| Characteristic                                                             | Symbol                   | Units        | Nominal Anchor Diameter (in.)                                                                                                        |                  |                  |                  |                  |                  |                  |                  |  |
|----------------------------------------------------------------------------|--------------------------|--------------|--------------------------------------------------------------------------------------------------------------------------------------|------------------|------------------|------------------|------------------|------------------|------------------|------------------|--|
| Glaracteristic                                                             | Syllibol                 | UIIILS       | 3,                                                                                                                                   | /8               | 1,               | <b>½</b>         | 5,               | /8               | 3,               | <b>/</b> 4       |  |
| Anchor Category                                                            | 1, 2 or 3                |              | 1                                                                                                                                    |                  |                  |                  |                  |                  |                  |                  |  |
| Nominal Embedment Depth                                                    | h <sub>nom</sub>         | in.          | 2½                                                                                                                                   | 31/4             | 31/4             | 4                | 4                | 5½               | 5½               | 61/4             |  |
| Steel Strength in Tension ( ACI 318-14 17.4.1 or ACI 318-11 Section D.5.1) |                          |              |                                                                                                                                      |                  |                  |                  |                  |                  |                  |                  |  |
| Tension Resistance of Steel                                                | N <sub>sa</sub>          | lbf.         | 12,                                                                                                                                  | 177              | 20,8             | 385              | 28,              | 723              | 47,              | 606              |  |
| Strength Reduction Factor — Steel Failure <sup>2</sup>                     | $\phi_{sa}$              | _            |                                                                                                                                      |                  |                  | 0.               | 75               |                  |                  |                  |  |
| Concrete Breakout Str                                                      | ength in Tensio          | on (ACI 318- | 14 17.4.2                                                                                                                            | or ACI 31        | 8 Section        | D.5.2)           |                  |                  |                  |                  |  |
| Effective Embedment Depth                                                  | h <sub>ef</sub>          | in.          | 1.40                                                                                                                                 | 2.04             | 1.86             | 2.50             | 2.31             | 3.59             | 3.49             | 4.13             |  |
| Critical Edge Distance                                                     | Cac                      | in.          | 41/2                                                                                                                                 | 5½               | 6                | 5¾               | 6                | 6%               | 6¾               | 7%               |  |
| Effectiveness Factor — Uncracked Concrete                                  | <i>k</i> <sub>uncr</sub> | _            | 27                                                                                                                                   | 24               | 27               | 24               | 24               | 24               | 27               | 27               |  |
| Effectiveness Factor — Cracked Concrete                                    | k <sub>cr</sub>          | _            | 21                                                                                                                                   | 17               | 17               | 17               | 17               | 17               | 17               | 21               |  |
| Modification Factor                                                        | $\Psi_{c,N}$             | _            |                                                                                                                                      |                  |                  |                  | 1                |                  |                  |                  |  |
| Strength Reduction Factor — Concrete Breakout Failure <sup>3</sup>         | $\phi_{cb}$              |              |                                                                                                                                      |                  |                  | 0.               | 65               |                  |                  |                  |  |
| Pullout Strength in                                                        | Tension (ACI             | 318-14 17.4  | .3 or ACI                                                                                                                            | 318-11 Se        | ection D.5       | .3)              |                  |                  |                  |                  |  |
| Pullout Resistance Uncracked Concrete (f' <sub>c</sub> = 2,500 psi)        | N <sub>p,uncr</sub>      | lbf.         | N/A <sup>4</sup>                                                                                                                     | N/A <sup>4</sup> | N/A <sup>4</sup> | N/A <sup>4</sup> | 3,8205           | 9,0807           | N/A <sup>4</sup> | N/A <sup>4</sup> |  |
| Pullout Resistance Cracked Concrete (f' <sub>c</sub> = 2,500 psi)          | N <sub>p,cr</sub>        | lbf.         | 1,6755                                                                                                                               | 2,4155           | 1,9955           | N/A <sup>4</sup> |  |
| Strength Reduction Factor — Pullout Failure <sup>6</sup>                   | $\phi_{\mathcal{P}}$     | _            | 0.65                                                                                                                                 |                  |                  |                  |                  |                  |                  |                  |  |
| Tension Strength for Seismi                                                | ic Applications          | (ACI 318-14  | 4 17.2.3.3                                                                                                                           | or ACI 31        | 8-11 Sec         | tion D.3.3       | .3)              |                  |                  |                  |  |
| Nominal Pullout Strength for Seismic Loads (f' <sub>c</sub> = 2,500 psi)   | N <sub>p,eq</sub>        | lbf.         | of. 1,675 <sup>5</sup> 2,415 <sup>5</sup> 1,995 <sup>5</sup> N/A <sup>4</sup> N/A <sup>4</sup> N/A <sup>4</sup> N/A <sup>4</sup> N/A |                  |                  |                  | N/A <sup>4</sup> | N/A <sup>4</sup> |                  |                  |  |
| Strength Reduction Factor for Pullout Failure <sup>6</sup>                 | $\phi_{eq}$              | _            |                                                                                                                                      |                  |                  | 0.               | 65               |                  |                  |                  |  |

For  $SI: 1 \text{ in.} = 25.4 \text{ mm}, 1 \text{ ft.-lbf.} = 1.356 \text{ N-m}, 1 \text{ psi} = 6.89 \text{ kPa}, 1 \text{ in.}^2 = 645 \text{ mm}^2, 1 \text{ lb./in.} = 0.175 \text{ N/mm}.$ 

- The information presented in this table is to be used in conjunction with the design criteria of ACI 318-14 Chapter 17 or ACI 318-11 Appendix D, as applicable.
- 2. The tabulated value of  $\phi_{Sa}$  applies when the load combinations of Section 1605.2 of the IBC, ACI 318-14 Section 5.3 or ACI 318-11 Section 9.2 are used, as applicable. If the load combinations of ACI 318-11 Appendix C are used, the appropriate value of  $\phi$  must be determined in accordance with ACI 318 D.4.4(b), as applicable.
- 3. The tabulated values of  $\phi_{cb}$  applies when both the load combinations of Section 1605.2 of the IBC, ACI 318-14 Section 5.3 or ACI 318-11 Section 9.2, as applicable, are used and the requirements of ACI 318-14 17.3.3(c) or ACI 318-11 D.4.3(c) for Condition B are met. Condition B applies where supplementary reinforcement is not provided in concrete. For installations where complying reinforcement can be verified, the  $\phi_{cb}$  factors described in ACI 318-14 17.3.3(c) or ACI 318-11 D.4.3(c), as applicable, may be used for Condition A. If the load combinations of ACI 318 Appendix C are used, the appropriate value of  $\phi$  must be determined in accordance with ACI 318 D.4.4(c) for Condition B.
- 4. N/A denotes that pullout resistance does not govern and does not need to be considered.
- 5. The characteristic pullout resistance for greater compressive strengths may be increased by multiplying the tabular value by  $(f_c/2,500)^{0.5}$ .
- 6. The tabulated values of  $\phi_p$  or  $\phi_{eq}$  applies when both the load combinations of ACI 318-14 Section 5.3 or ACI 318-11 Section 9.2, as applicable, are used and the requirements of ACI 318-14 17.3.3(c) or ACI 318-11 D.4.3(c) for Condition B are met. If the load combinations of ACI 318 Appendix C are used, the appropriate value of  $\phi$  must be determined in accordance with ACI 318 D.4.4(c) for Condition B.
- The characteristic pullout resistance for greater compressive strengths may be increased by multiplying the tabular value by (f'<sub>c</sub>/2,500)<sup>0.4</sup>.

# Stainless-Steel Titen HD® Design Information — Concrete



**Mechanical** Anchors

#### Stainless-Steel Titen HD Characteristic Shear Strength Design Values<sup>1</sup>

|     |          | <br> |
|-----|----------|------|
| IBC | <b>→</b> | LW   |

| Characteristic                                                                      | Cumbal             | Units       | Nominal Anchor Diameter (in.) |           |           |            |        |        |        |        |  |
|-------------------------------------------------------------------------------------|--------------------|-------------|-------------------------------|-----------|-----------|------------|--------|--------|--------|--------|--|
| Glaracteristic                                                                      | Symbol             | UIIIIS      | 3/8                           |           | 1/2       |            | 5%     |        | 3,     | V4     |  |
| Anchor Category                                                                     | 1, 2 or 3          | _           | 1                             |           |           |            |        |        |        |        |  |
| Nominal Embedment Depth                                                             | h <sub>nom</sub>   | in.         | 21/2                          | 31/4      | 31/4      | 4          | 4      | 5½     | 5½     | 61/4   |  |
| Steel Strength in Shear (ACI 318-14 17.5.1 or ACI 318-11 Section D.6.1)             |                    |             |                               |           |           |            |        |        |        |        |  |
| Shear Resistance of Steel                                                           | V <sub>sa</sub>    | lbf.        | 3,790                         | 4,780     | 6,024     | 7,633      | 10,422 | 10,649 | 13,710 | 19,161 |  |
| Strength Reduction Factor — Steel Failure $\phi_{sa}$ — 0.65                        |                    |             |                               |           |           |            |        |        |        |        |  |
| Concrete Breakout Strength in Shear (ACI 318-14 17.5.2 or ACI 318-11 Section D.6.2) |                    |             |                               |           |           |            |        |        |        |        |  |
| Nominal Diameter                                                                    | $d_a(d_0)^4$       | in.         | 0.3                           | 375       | 0.5       | 500        | 0.6    | 325    | 0.7    | .750   |  |
| Load Bearing Length of Anchor in Shear                                              | l <sub>e</sub>     | in.         | 1.40                          | 2.04      | 1.86      | 2.50       | 2.31   | 3.59   | 3.49   | 4.13   |  |
| Strength Reduction Factor — Concrete Breakout Failure <sup>3</sup>                  | $\phi_{\it cb}$    | _           |                               |           |           | 0.         | 70     |        |        |        |  |
| Concrete Pryout Strer                                                               | ngth in Shear (    | ACI 318-14  | 17.5.3 or                     | ACI 318-1 | 1 Section | D.6.3)     |        |        |        |        |  |
| Coefficient for Pryout Strength                                                     | k <sub>cp</sub>    | _           |                               | 1.0       |           | 2.0        | 1.0    |        | 2.0    |        |  |
| Strength Reduction Factor — Concrete Pryout Failure <sup>4</sup>                    | $\phi_{cp}$        | _           |                               |           |           | 0.         | 70     |        |        |        |  |
| Shear Strength for Seismic                                                          | c Applications     | (ACI 318-14 | 17.2.3.3                      | or ACI 31 | 8-11 Sect | ion D.3.3. | 3)     |        |        |        |  |
| Shear Resistance — Single Anchor for Seismic Loads (f' <sub>C</sub> = 2,500 psi)    | V <sub>sa,eq</sub> | lbf.        | 3,790                         | 4,780     | 5,345     | 6,773      | 9,367  | 9,367  | 10,969 | 10,969 |  |
| Strength Reduction Factor — Steel Failure <sup>2</sup>                              | $\phi_{eq}$        | _           |                               |           |           | 0.         | 65     |        |        |        |  |

For SI: 1 in. = 25.4mm, 1 lbf. = 4.45N.

- The information presented in this table is to be used in conjunction with the design criteria of ACI 318-14 Chapter 17 or ACI 318-11 Appendix D, as applicable.
- 2. The tabulated value of  $\phi_{sa}$  and  $\phi_{eq}$  applies when the load combinations of Section 1605.2 of the IBC, ACI 318-14 Section 5.3 or ACI 318-11 Section 9.2, as applicable, are used. If the load combinations of ACI 318 Appendix C are used, the appropriate value of f must be determined in accordance with ACI 318 D.4.4(b).
- 3. The tabulated value of  $\phi_{cb}$  applies when both the load combinations of Section 1605.2.1 of the IBC, ACI 318-14 Section 5.3 or ACI 318-11 Section 9.2 are used and the requirements of ACI 318-14 17.3.3(c) or ACI 318-11 D.4.3(c) for Condition B are met. Condition B applies where supplementary reinforcement is not provided. For installations where
- complying supplementary reinforcement can be verified, the  $\phi_{cb}$  factors described in ACl 318-14 17.3.3(c) or ACl 318-11 D.4.3(c) for Condition A are allowed. If the load combinations of ACl 318-11 Appendix C are used, the appropriate value of  $\phi_{cb}$  must be determined in accordance with ACl 318-11 D.4.4(c).
- 4. The tabulated value of  $\phi_{cp}$  applies when both the load combinations of IBC Section 1605.2, ACI 318-14 5.3 or ACI 318-11 Section 9.2 are used and the requirements of ACI 318-14 17.3.3(c) or ACI 318-11 D.4.3(c) for Condition B are met. If the load combinations of ACI 318-11 Appendix C are used, appropriate value of  $\phi_{cp}$  must be determined in accordance with ACI 318-11 Section D.4.4(c).
- 5. The notation in parenthesis is for the 2006 IBC.

<sup>\*</sup> See p. 13 for an explanation of the load table icons.

# C-A-2018 @ 2018 SIMPSON STRONG-TIE COMPANY INC.

# Stainless-Steel Titen HD® Design Information — Masonry



Strong-Tie

Stainless-Steel Titen HD Allowable Tension and Shear Loads in 8" Lightweight, Medium-Weight and Normal-Weight Grout-Filled CMU

| IBC • • · · · · · · · · · · · · · · · · · |  |
|-------------------------------------------|--|
|-------------------------------------------|--|

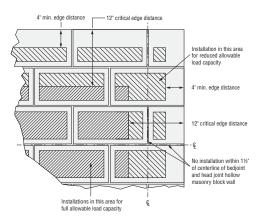
| Size                                                        | Drill       | Min.<br>Embed.  | Critical<br>Edge | Critical<br>End | Critical<br>Spacing |                      |                       |                      |                       |  |  |
|-------------------------------------------------------------|-------------|-----------------|------------------|-----------------|---------------------|----------------------|-----------------------|----------------------|-----------------------|--|--|
| in.                                                         | Bit<br>Dia. | Depth           | Dist.            | Dist.           | Dist.               | Tension Load         |                       | Shea                 | Load                  |  |  |
| (mm)                                                        | in.         | in.<br>(mm)     | in.<br>(mm)      | in.<br>(mm)     | in.<br>(mm)         | Ultimate<br>lb. (kN) | Allowable<br>lb. (kN) | Ultimate<br>lb. (kN) | Allowable<br>lb. (kN) |  |  |
| Anchor Installed in the Face of the CMU Wall (See Figure 1) |             |                 |                  |                 |                     |                      |                       |                      |                       |  |  |
| <b>3/8</b> (9.5)                                            | 3/8         | <b>2¾</b> (70)  | <b>12</b> (305)  | <b>12</b> (305) | <b>8</b> (203)      | <b>2,125</b> (9.5)   | <b>425</b> (1.9)      | <b>2,850</b> (12.7)  | <b>570</b> (2.5)      |  |  |
| <b>½</b> (12.7)                                             | 1/2         | <b>3½</b> (89)  | <b>12</b> (305)  | <b>12</b> (305) | <b>8</b> (203)      | <b>3,325</b> (14.8)  | <b>665</b> (3.0)      | <b>4,950</b> (22.0)  | <b>990</b> (4.4)      |  |  |
| <b>5%</b> (15.9)                                            | 5/8         | <b>4½</b> (114) | <b>12</b> (305)  | <b>12</b> (305) | <b>8</b> (203)      | <b>3,850</b> (17.1)  | <b>770</b> (3.4)      | <b>4,925</b> (21.9)  | <b>985</b> (4.4)      |  |  |
| <b>3/4</b> (19.1)                                           | 3/4         | <b>5½</b> (140) | <b>12</b> (305)  | <b>12</b> (305) | <b>8</b> (203)      | <b>5,200</b> (23.1)  | <b>1,040</b> (4.6)    | <b>4,450</b> (19.8)  | <b>890</b> (4.0)      |  |  |

4" minimum edge distance (see load table)
Installation in this area for full allowable load capacity

Critical end distance
(see load table)

Installations in this area for full allowable load capacity

Figure 1. Shaded Area = Placement for Full and Reduced Allowable Load Capacity in Grout-Filled CMU


- 1. The tabulated allowable loads are based on a safety factor of 5.0 for installations under the IBC and IRC.
- 2. Values for 8"-wide, lightweight, medium-weight and normal-weight concrete masonry units.
- 3. The masonry units must be fully grouted.
- 4. The minimum specified compressive strength of masonry, f'm, at 28 days is 2,000 psi.
- $5.\,\mbox{Embedment}$  depth is measured from the outside face of the concrete masonry unit.
- Allowable loads may be increased 331/4% for short-term loading due to wind or seismic forces where permitted by code.
- Grout-filled CMU wall design must satisfy applicable design standards and be capable of withstanding applied loads.
- 8. Refer to allowable load-adjustment factors for spacing and edge distance on p. 129.

# Stainless-Steel Titen HD Allowable Tension and Shear Loads in 8" Lightweight, Medium-Weight and Normal-Weight Hollow CMU



| Size                                          | Drill       | Min.<br>Embed. | Critial<br>Edge | Critical<br>Spacing | 8" Hollow CMU Loads Based<br>on CMU Strength |                       |                      |                       |  |  |  |
|-----------------------------------------------|-------------|----------------|-----------------|---------------------|----------------------------------------------|-----------------------|----------------------|-----------------------|--|--|--|
| in.                                           | Bit<br>Dia. | Depth⁴         | Dist.           | Dist.               | Tensio                                       | n Load                | Shea                 | r Load                |  |  |  |
| (mm)                                          | in.         | in.<br>(mm)    | in.<br>(mm)     | in.<br>(mm)         | Ultimate<br>lb. (kN)                         | Allowable<br>lb. (kN) | Ultimate<br>lb. (kN) | Allowable<br>lb. (kN) |  |  |  |
| Anchor Installed in Face Shell (See Figure 2) |             |                |                 |                     |                                              |                       |                      |                       |  |  |  |
| <b>3/8</b> (9.5)                              | 3/8         | <b>2½</b> (64) | <b>12</b> (305) | <b>8</b> (203)      | <b>925</b> (4.1)                             | <b>185</b> (0.8)      | <b>2,250</b> (10.0)  | <b>450</b> (2.0)      |  |  |  |
| <b>½</b> (12.7)                               | 1/2         | <b>2½</b> (64) | <b>12</b> (305) | <b>8</b> (203)      | <b>1,025</b> (4.6)                           | <b>205</b> (0.9)      | <b>2,325</b> (10.3)  | <b>465</b> (2.1)      |  |  |  |
| <b>5%</b> (15.9)                              | 5/8         | <b>2½</b> (64) | <b>12</b> (305) | <b>8</b> (203)      | <b>550</b> (2.4)                             | <b>110</b> (0.5)      | <b>2,025</b> (9.0)   | <b>405</b> (1.8)      |  |  |  |
| <b>3/4</b> (19.1)                             | 3/4         | <b>2½</b> (64) | <b>12</b> (305) | <b>8</b> (203)      | <b>775</b> (3.4)                             | <b>155</b> (0.7)      | <b>1,975</b> (8.8)   | <b>395</b> (1.8)      |  |  |  |

- 1. The tabulated allowable loads are based on a safety factor of 5.0 for installations under the IBC and IRC.
- $2. \ Values \ for \ 8"-wide, \ lightweight, \ medium-weight \ and \ normal-weight \ concrete \ masonry \ units.$
- 3. The minimum specified compressive strength of masonry,  $f'_{\it m}$ , at 28 days is 2,000 psi.
- 4. Embedment depth is measured from the outside face of the concrete masonry unit and is based on the anchor being embedded an additional 11/4" through 11/4"-thick face shell.
- 5. Allowable loads may not be increased for short-term loading due to wind or seismic forces. CMU wall design must satisfy applicable design standards and be capable of withstanding applied loads.
- 6. Do not use impact wrenches to install in hollow CMU.
- 7. Set drill to rotation-only mode when drilling into hollow CMU.
- 8. Refer to allowable load-adjustment factors for spacing and edge distance on p. 129.
- 9. Anchors must be installed a minimum of 11%" from vertical head joints and T-joints. Refer to Figure 2 for permitted and prohibited anchor installation locations.



**Figure 2.** Stainless-Steel Titen HD Screw Anchor Installed in the Face of Hollow CMU Wall Construction

<sup>\*</sup> See p. 13 for an explanation of the load table icons.

# **Stainless-Steel Titen HD®** Design Information — Masonry



Load-Adjustment Factors for Stainless-Steel Titen HD Anchors in Face-of-Wall Installation in 8" Grout-Filled CMU: Edge Distance and Spacing, Tension and Shear Loads

5/8

41/2

12

4

1.00

1.00

1.00

1.00

1.00

1.00

3/4

5 1/2

12

4

1.00

1.00 1.00

1.00

1.00

1.00

**IBC** 

#### How to use these charts:

Dia.

Ε

 $c_{cr}$ 

Cmin

f<sub>cmin</sub>

c<sub>act</sub> (in.)

4

6

8

10

12

See notes below.

Edge or End Distance Tension (f<sub>c</sub>)

- 1. The following tables are for reduced edge distance and spacing.
- 2. Locate the anchor size to be used for either a tension and/or shear load application.
- 3. Locate the embedment (E) at which the anchor is to be installed.

1/2

3 1/2

12

4

0.81

0.81

0.86

0.91

0.95

1.00

4. Locate the edge distance (cact) or spacing (sact) at which the anchor is to be installed.

3/8

23/4

12

4

0.80

0.80

0.85

0.90

0.95

1.00

- 5. The load adjustment factor (f<sub>c</sub> or f<sub>s</sub>) is the intersection of the row and column.
- 6. Multiply the allowable load by the applicable load adjustment factor.
- 7. Reduction factors for multiple edges or spacings are multiplied together.

#### Edge or End Distance Shear (f<sub>c</sub>) Shear Load Parallel to Edge or End

|                           | Dia.              | 3/8  | 1/2  | 5/8  | 3/4  |
|---------------------------|-------------------|------|------|------|------|
| _                         | E                 | 23/4 | 31/2 | 41/2 | 51/2 |
| c <sub>act</sub><br>(in.) | c <sub>cr</sub>   | 12   | 12   | 12   | 12   |
| (111.)                    | C <sub>min</sub>  | 4    | 4    | 4    | 4    |
|                           | f <sub>cmin</sub> | 0.88 | 0.56 | 0.65 | 0.84 |
| 4                         |                   | 0.88 | 0.56 | 0.65 | 0.84 |
| 6                         |                   | 0.91 | 0.67 | 0.74 | 0.88 |
| 8                         |                   | 0.94 | 0.78 | 0.83 | 0.92 |
| 10                        |                   | 0.97 | 0.89 | 0.91 | 0.96 |
| 12                        |                   | 1.00 | 1.00 | 1.00 | 1.00 |

|                           | Dia.              | 3/8  | 1/2  | 5/8  | 3/4  |
|---------------------------|-------------------|------|------|------|------|
| _                         | E                 | 23/4 | 31/2 | 41/2 | 51/2 |
| c <sub>act</sub><br>(in.) | C <sub>cr</sub>   | 12   | 12   | 12   | 12   |
| (111.)                    | C <sub>min</sub>  | 4    | 4    | 4    | 4    |
|                           | f <sub>cmin</sub> | 0.88 | 0.56 | 0.65 | 0.84 |
| 4                         |                   | 0.88 | 0.56 | 0.65 | 0.84 |
| 6                         |                   | 0.91 | 0.67 | 0.74 | 0.88 |
| 8                         |                   | 0.94 | 0.78 | 0.83 | 0.92 |
| 10                        |                   | 0.97 | 0.89 | 0.91 | 0.96 |
| 12                        |                   | 1.00 | 1.00 | 1.00 | 1.00 |
|                           |                   |      |      |      |      |



#### Edge or End Distance Shear (f<sub>c</sub>) Shear Load Perpendicular to Edge or End (Directed Toward Edge or End)

| c <sub>act</sub> (in.) | Dia.              | 3/8  | 1/2  | 5/8   | 3/4   |
|------------------------|-------------------|------|------|-------|-------|
|                        | E                 | 23/4 | 31/2 | 4 1/2 | 5 1/2 |
|                        | C <sub>Cr</sub>   | 12   | 12   | 12    | 12    |
|                        | C <sub>min</sub>  | 4    | 4    | 4     | 4     |
|                        | f <sub>cmin</sub> | 0.93 | 0.48 | 0.66  | 0.69  |
| 4                      |                   | 0.93 | 0.48 | 0.66  | 0.69  |
| 6                      |                   | 0.95 | 0.61 | 0.75  | 0.77  |
| 8                      |                   | 0.97 | 0.74 | 0.83  | 0.85  |
| 10                     |                   | 0.98 | 0.87 | 0.92  | 0.92  |
| 12                     |                   | 1.00 | 1.00 | 1.00  | 1.00  |
|                        |                   |      |      |       |       |



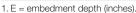
IBC

- 1. E = embedment depth (inches).
- 2. cact = actual end or edge distance at which anchor is installed (inches).
- $3.c_{cr}$  = critical end or edge distance for 100% load (inches).
- 4. c<sub>min</sub> = minimum end or edge distance for reduced load (inches).
- 5.  $f_c$  = adjustment factor for allowable load at actual end or edge distance.
- 6.  $f_{ccr}$  = adjustment factor for allowable load at critical end or edge distance.  $f_{ccr}$  is always = 1.00.
- 7. f<sub>cmin</sub> = adjustment factor for allowable load at minimum end or edge distance.
- 8.  $f_c = f_{cmin} + [(1 f_{cmin}) (c_{act} c_{min}) / (c_{cr} c_{min})].$

#### Edge or End Distance Shear (f<sub>c</sub>) Shear Load Perpendicular to Edge or End (Directed Away from Edge or End)

| ,                         |                   | ,    |      | 0     | ,    |
|---------------------------|-------------------|------|------|-------|------|
|                           | Dia.              | 3/8  | 1/2  | 5/8   | 3/4  |
| _                         | E                 | 23/4 | 31/2 | 4 1/2 | 51/2 |
| c <sub>act</sub><br>(in.) | c <sub>cr</sub>   | 12   | 12   | 12    | 12   |
| (111.)                    | C <sub>min</sub>  | 4    | 4    | 4     | 4    |
|                           | f <sub>cmin</sub> | 0.93 | 0.48 | 0.66  | 0.69 |
| 4                         |                   | 0.93 | 0.48 | 0.66  | 0.69 |
| 6                         |                   | 0.95 | 0.61 | 0.75  | 0.77 |
| 8                         |                   | 0.97 | 0.74 | 0.83  | 0.85 |
| 10                        |                   | 0.98 | 0.87 | 0.92  | 0.92 |
| 12                        |                   | 1.00 | 1.00 | 1.00  | 1.00 |
| 10                        |                   | 0.98 | 0.87 | 0.92  | 0.92 |




IBC

**Mechanical** Anchors



#### Spacing Tension (f<sub>a</sub>)

| _                         | Dia.              | 3/8  | 1/2  | 5/8   | 3/4   |
|---------------------------|-------------------|------|------|-------|-------|
|                           | E                 | 2¾   | 31/2 | 4 1/2 | 5 1/2 |
| s <sub>act</sub><br>(in.) | Scr               | 8    | 8    | 8     | 8     |
| (111.)                    | Smin              | 4    | 4    | 4     | 4     |
|                           | f <sub>smin</sub> | 0.81 | 0.79 | 0.87  | 0.78  |
| 4                         |                   | 0.81 | 0.79 | 0.87  | 0.78  |
| 6                         |                   | 0.91 | 0.90 | 0.94  | 0.89  |
| -                         |                   |      |      |       |       |



- 2. s<sub>act</sub> = actual spacing distance at which anchors are installed (inches).
- 3.  $s_{cr}$  = critical spacing distance for 100% load (inches).
- 4. s<sub>min</sub> = minimum spacing distance for reduced load (inches).
- 5.  $f_s$  = adjustment factor for allowable load at actual spacing distance.
- 6. f<sub>SCr</sub> = adjustment factor for allowable load at critical spacing distance. f<sub>SCr</sub> is always = 1.00.
- 7. f<sub>smin</sub> = adjustment factor for allowable load at minimum spacing distance.
- 8.  $f_s = f_{smin} + [(1 f_{smin}) (s_{act} s_{min}) / (s_{cr} s_{min})].$

# Spacing Shear (f.)

| Spacii                    | Dia. % ½ % ¾ E 2¾ 3½ 4½ 5½ |       |             |       |       |  |
|---------------------------|----------------------------|-------|-------------|-------|-------|--|
|                           | Dia.                       | 3/8   | 1/2         | 5/8   | 3/4   |  |
|                           | E                          | 23/4  | 31/2        | 4 1/2 | 5 1/2 |  |
| s <sub>act</sub><br>(in.) | Scr                        | 8     | 8           | 8     | 8     |  |
| (111.)                    | S <sub>min</sub>           | 4 4 4 | 4           | 4     |       |  |
|                           | f <sub>smin</sub>          | 1.00  | 0.86        | 0.90  | 0.94  |  |
| 4                         |                            | 1.00  | 0.86        | 0.90  | 0.94  |  |
| 6                         |                            | 1.00  | 0 0.93 0.95 |       | 0.97  |  |
| 8                         |                            | 1.00  | 1.00        | 1.00  | 1.00  |  |



<sup>\*</sup> See p. 13 for an explanation of the load table icons.

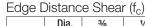
# C-A-2018 @2018 SIMPSON STRONG-TIE COMPANY INC.

# Stainless-Steel Titen HD® Design Information — Masonry



Load-Adjustment Factors for Stainless-Steel Titen HD Anchors in Face-of-Wall Installation in 8" Hollow CMU: Edge Distance and Spacing, Tension and Shear Loads

#### How to use these charts:


- 1. The following tables are for reduced edge distance and spacing.
- 2. Locate the anchor size to be used for either a tension and/or shear load application.
- 3. Locate the embedment (E) at which the anchor is to be installed.
- 4. Locate the edge distance ( $c_{act}$ ) or spacing ( $s_{act}$ ) at which the anchor is to be installed.
- 5. The load adjustment factor (f<sub>c</sub> or f<sub>s</sub>) is the intersection of the row and column.
- 6. Multiply the allowable load by the applicable load adjustment factor.
- 7. Reduction factors for multiple edges or spacings are multiplied together.

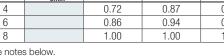
#### Edge Distance Tension (f<sub>c</sub>)

|                           | Dia.              | 3/8  | 1/2   | 5/8   | 3/4   |
|---------------------------|-------------------|------|-------|-------|-------|
|                           | E                 | 21/2 | 2 1/2 | 2 1/2 | 2 1/2 |
| c <sub>act</sub><br>(in.) | c <sub>cr</sub>   | 12   | 12    | 12    | 12    |
| (111.)                    | C <sub>min</sub>  | 4    | 4     | 4     | 4     |
|                           | f <sub>cmin</sub> | 1.00 | 1.00  | 1.00  | 1.00  |
| 4                         |                   | 1.00 | 1.00  | 1.00  | 1.00  |
| 6                         |                   | 1.00 | 1.00  | 1.00  | 1.00  |
| 8                         |                   | 1.00 | 1.00  | 1.00  | 1.00  |
| 10                        |                   | 1.00 | 1.00  | 1.00  | 1.00  |
| 12                        |                   | 1.00 | 1.00  | 1.00  | 1.00  |



**IBC** 




| 0                         |                   |      | ( 0) |       |      |
|---------------------------|-------------------|------|------|-------|------|
|                           | Dia.              | 3/8  | 1/2  | 5/8   | 3/4  |
| _                         | Е                 | 21/2 | 21/2 | 2 1/2 | 21/2 |
| c <sub>act</sub><br>(in.) | c <sub>cr</sub>   | 12   | 12   | 12    | 12   |
| (111.)                    | C <sub>min</sub>  | 4    | 4    | 4     | 4    |
|                           | f <sub>cmin</sub> | 0.78 | 0.63 | 0.55  | 0.51 |
| 4                         |                   | 0.78 | 0.63 | 0.55  | 0.51 |
| 6                         |                   | 0.84 | 0.72 | 0.66  | 0.63 |
| 8                         |                   | 0.89 | 0.82 | 0.78  | 0.76 |
| 10                        |                   | 0.95 | 0.91 | 0.89  | 0.88 |
| 12                        |                   | 1.00 | 1.00 | 1.00  | 1.00 |
|                           |                   |      |      |       |      |



- $2. c_{act} = \text{actual end or edge distance at which anchor is installed (inches)}.$
- $3.c_{cr}$  = critical end or edge distance for 100% load (inches).
- $4. c_{min}$  = minimum end or edge distance for reduced load (inches).
- 5.  $f_c$  = adjustment factor for allowable load at actual end or edge distance.
- 6.  $f_{ccr}$  = adjustment factor for allowable load at critical end or edge distance.
- 7. f<sub>cmin</sub> = adjustment factor for allowable load at minimum end or edge distance.
- 8.  $f_c = f_{cmin} + [(1 f_{cmin}) (c_{act} c_{min}) / (c_{cr} c_{min})].$

#### Spacing Tension (f<sub>s</sub>) One Anchor per Cell

| Dia.              | 3/8                          | 1/2                                                                                                                                                               | 5/8                                                                                                                                                                                                                            | 3/4                                                                                                                                                                                                                                                                                               |
|-------------------|------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Е                 | 2 1/2                        | 21/2                                                                                                                                                              | 21/2                                                                                                                                                                                                                           | 2 1/2                                                                                                                                                                                                                                                                                             |
| c <sub>cr</sub>   | 8                            | 8                                                                                                                                                                 | 8                                                                                                                                                                                                                              | 8                                                                                                                                                                                                                                                                                                 |
| C <sub>min</sub>  | 4                            | 4                                                                                                                                                                 | 4                                                                                                                                                                                                                              | 4                                                                                                                                                                                                                                                                                                 |
| f <sub>cmin</sub> | 0.72                         | 0.87                                                                                                                                                              | 0.89                                                                                                                                                                                                                           | 0.70                                                                                                                                                                                                                                                                                              |
|                   | 0.72                         | 0.87                                                                                                                                                              | 0.89                                                                                                                                                                                                                           | 0.70                                                                                                                                                                                                                                                                                              |
|                   | 0.86                         | 0.94                                                                                                                                                              | 0.95                                                                                                                                                                                                                           | 0.85                                                                                                                                                                                                                                                                                              |
|                   | 1.00                         | 1.00                                                                                                                                                              | 1.00                                                                                                                                                                                                                           | 1.00                                                                                                                                                                                                                                                                                              |
|                   | Dia.<br>E<br>c <sub>cr</sub> | $ \begin{array}{c cccc} E & 2 \frac{1}{2} \\ \hline c_{cr} & 8 \\ \hline c_{min} & 4 \\ \hline f_{cmin} & 0.72 \\ \hline & 0.72 \\ \hline & 0.86 \\ \end{array} $ | Dia.         %         ½           E         2½         2½           c <sub>cr</sub> 8         8           c <sub>min</sub> 4         4           f <sub>cmin</sub> 0.72         0.87           0.72         0.86         0.94 | Dia.         %         ½         %           E         2½         2½         2½           c <sub>Cr</sub> 8         8         8           c <sub>min</sub> 4         4         4           f <sub>cmin</sub> 0.72         0.87         0.89           0.72         0.87         0.94         0.95 |





# Spacing Shear (f<sub>s</sub>) One Anchor per Cell

| OHO / N                   | ici ici pci c     | /CII |      |       |      |
|---------------------------|-------------------|------|------|-------|------|
|                           | Dia.              | 3/8  | 1/2  | 5/8   | 3/4  |
|                           | E                 | 21/2 | 21/2 | 2 1/2 | 21/2 |
| s <sub>act</sub><br>(in.) | S <sub>Cr</sub>   | 8    | 8    | 8     | 8    |
| (111.)                    | Smin              | 4    | 4    | 4     | 4    |
|                           | f <sub>smin</sub> | 0.81 | 1.00 | 0.71  | 0.74 |
| 4                         |                   | 0.81 | 1.00 | 0.71  | 0.74 |
| 6                         |                   | 0.91 | 1.00 | 0.86  | 0.87 |
| 8                         |                   | 1.00 | 1.00 | 1.00  | 1.00 |



**IBC** 

- 1. E = embedment depth (inches).
- 2. s<sub>act</sub> = actual spacing distance at which anchors are installed (inches).
- 3.  $s_{cr}$  = critical spacing distance for 100% load (inches).
- 4. s<sub>min</sub> = minimum spacing distance for reduced load (inches).
- 5.  $f_{\text{\scriptsize S}}=$  adjustment factor for allowable load at actual spacing distance.
- 6.  $f_{SCT}$  = adjustment factor for allowable load at critical spacing distance.  $f_{SCT}$  is always = 1.00.
- 7. f<sub>smin</sub> = adjustment factor for allowable load at minimum spacing distance.
- 8.  $f_s = f_{smin} + [(1 f_{smin}) (s_{act} s_{min}) / (s_{cr} s_{min})].$

## Spacing Tension (f<sub>s</sub>) Two Anchors per Cell

|                           | Dia.              | 3/8  | 1/2   | 5/8       | 3/4   |
|---------------------------|-------------------|------|-------|-----------|-------|
| _                         | Е                 | 21/2 | 2 1/2 | 2 1/2     | 2 1/2 |
| c <sub>act</sub><br>(in.) | c <sub>cr</sub>   | 8    | 8 8   | 8         |       |
| (111.)                    | C <sub>min</sub>  | 4    | 4     | 4         | 4     |
|                           | f <sub>cmin</sub> | 1.00 | 1.00  | 1.00      | 0.78  |
| 4                         |                   | 1.00 | 1.00  | 1.00      | 0.78  |
| 6                         |                   | 1.00 | 1.00  | 1.00 0.89 |       |
| 8                         |                   | 1.00 | 1.00  | 1.00      | 1.00  |



#### Spacing Shear (f<sub>s</sub>) Two Anchors per Cell

|                           | Dia. 3/8 1/2      |      | 1/2  | 5/8   | 3/4  |
|---------------------------|-------------------|------|------|-------|------|
|                           | E                 | 21/2 | 21/2 | 2 1/2 | 21/2 |
| s <sub>act</sub><br>(in.) | Scr               | 8    | 8    | 8     | 8    |
| (111.)                    | S <sub>min</sub>  | 4    | 4 4  | 4     |      |
|                           | f <sub>smin</sub> | 0.76 | 1.00 | 0.75  | 0.75 |
| 4                         |                   | 0.76 | 1.00 | 0.75  | 0.75 |
|                           |                   |      |      |       |      |
| 6                         |                   | 0.88 | 1.00 | 0.88  | 0.88 |



<sup>\*</sup> See p. 13 for an explanation of the load table icons

# Strong-1

The Titen HD rod coupler is designed to be used in conjunction with a single or multi-story rod tie-down system. This anchor provides a fast and simple way to attach threaded rod to a concrete stem wall or thickened slab footing. Unlike adhesive anchors, the installation requires no special tools, cure time or secondary setting process; just drill a hole and drive the anchor.

#### **Features**

- The serrated cutting teeth and patented thread design enable the Titen HD rod voupler to be installed quickly and easily. Less installation time translates to lower installed cost
- The specialized heat treating process creates tip hardness to facilitate cutting while the body remain ductile
- No special setting tools are required. The Titen HD rod coupler installs with regular or hammer drill, ANSI size bits and standard
- Compatible with threaded rods in 3/8" and 1/2" diameters

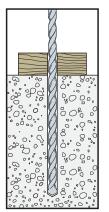
Material: Carbon steel

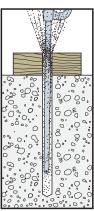
Coating: Zinc plated

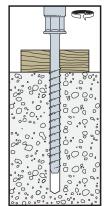
#### Installation

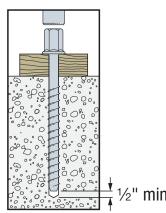


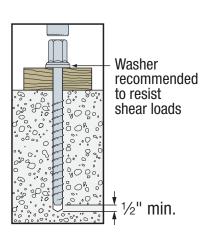
C-A-2018 @2018 SIMPSON STRONG-TIE COMPANY INC.


Caution: Oversized holes in the base material will reduce or eliminate the mechanical interlock of the threads with base material and will reduce the anchor's load capacity. Use a Titen HD Rod Coupler one time only. Installing the anchor multiple times may result in excessive thread wear and reduce load capacity.


- 1. Drill a hole using the specified diameter carbide bit into the base material to a depth of at least 1/2" deeper than the required embedment.
- 2. Blow the hole clean of dust and debris using compressed air. Overhead application need not be blown clean.
- 3. Tighten the anchor with appropriate size socket until the head sits flush against base material.





**Titen HD Rod Coupler** U.S. Patent 6,623,228


#### Installation Sequence











# Titen HD® Rod Coupler



#### Titen HD Rod Coupler Product Data

| Size       | Model      | Accepts<br>Rod Diameter | Drill Bit<br>Diameter | Wrench<br>Size | Qua    | ntity |
|------------|------------|-------------------------|-----------------------|----------------|--------|-------|
| (in) No.   | (in.)      | (in)                    | (in)                  | Вох            | Carton |       |
| 3/8 X 63/4 | THD37634RC | 3/8                     | 3/8                   | 9/16           | 50     | 100   |
| ½ x 9¾     | THD50934RC | 1/2                     | 1/2                   | 3/4            | 20     | 40    |

# Titen HD Rod Coupler Allowable Tension Loads in Normal-Weight Concrete Stemwall







| 0:                  | D.: II D.:                   | Embed.         | Stemwall       | Minimum                 | Minimum                | Minimum                    |                                 | ad Based on<br>Strength | Tension Load Based on<br>Connected Rod Strength |
|---------------------|------------------------------|----------------|----------------|-------------------------|------------------------|----------------------------|---------------------------------|-------------------------|-------------------------------------------------|
| Size<br>in.<br>(mm) | Drill Bit<br>Diameter<br>in. | Depth<br>in.   | Width<br>in.   | Edge<br>Distance<br>in. | End<br>Distance<br>in. | Spacing<br>Distance<br>in. | f' <sub>c</sub> ≥ 2,500 psi (17 | 7.2 MPa) Concrete       | A307 (SAE 1018)                                 |
| (11111)             |                              | (mm)           | (mm)           | (mm)                    | (mm)                   | (mm)                       | Ultimate<br>lb. (kN)            | Allowable<br>lb. (kN)   | Allowable<br>lb. (kN)                           |
| <b>3/8</b> (9.5)    | 3/8                          | <b>5</b> (127) | <b>8</b> (203) | <b>13/4</b> (45)        | <b>10</b> (254)        | <b>20</b> (508)            | <b>8,900</b> (39.6)             | <b>2,225</b> (9.9)      | <b>2,105</b> (9.4)                              |
| <b>½</b> (12.7)     | 1/2                          | <b>8</b> (203) | <b>8</b> (203) | <b>1 3/4</b> (45)       | <b>16</b> (406)        | <b>32</b> (813)            | <b>15,540</b> (69.1)            | <b>3,885</b> (17.3)     | <b>3,750</b> (16.7)                             |

- 1. Allowable load must be the lesser of the concrete or steel strength.
- 2. The allowable loads based on concrete strength are based on a factor of safety of 4.0.
- 3. The allowable load based on steel strength is limited by the strength of the coupler nut supplied with this anchor. Use of higher-strength rod will not increase allowable loads.
- 4. The minimum concrete thickness is 1.5 times the embedment depth.
- 5. Tension and shear loads may be combined using the straight-line interaction equation (n = 1).

# Titen HD Rod Coupler Allowable Shear Loads in Normal-Weight Concrete Stemwall, Load Applied Parallel to Concrete Edge





|                    |                       | Freehood               | Chamanall                | Minimum          | Minimum         | Minimum             | Shear Load Based on (           | Concrete Edge Distance |
|--------------------|-----------------------|------------------------|--------------------------|------------------|-----------------|---------------------|---------------------------------|------------------------|
| Size<br>in.        | Drill Bit<br>Diameter | Embed.<br>Depth<br>in. | Stemwall<br>Width<br>in. | Edge<br>Distance | End<br>Distance | Spacing<br>Distance | f' <sub>c</sub> ≥ 2,500 psi (17 | 7.2 MPa) Concrete      |
| (mm)               | in.                   | (mm)                   | (mm)                     | in.<br>(mm)      | in.<br>(mm)     | in.<br>(mm)         | Ultimate<br>lb. (kN)            | Allowable<br>lb. (kN)  |
| <b>½</b><br>(12.7) | 1/2                   | <b>8</b> (203)         | <b>8</b> (203)           | <b>13/4</b> (45) | <b>16</b> (406) | <b>32</b> (813)     | <b>6,200</b> (27.6)             | <b>1,550</b> (6.9)     |

- 1. Install with a washer (not supplied with anchor) when used to resist shear loads.
- 2. The allowable load based on concrete edge distance is based on a factor of safety of 4.0. Steel strength does not control.
- 3. The minimum concrete thickness is 1.5 times the embedment depth.
- 4. Tension and shear loads may be combined using the straight-line interaction equation (n = 1).

**Mechanical** Anchors

# Strong-Bolt® 2 Wedge Anchor



A wedge-type expansion anchor designed for optimal performance in cracked and uncracked concrete as well as uncracked masonry. The Strong-Bolt 2 is available in carbon steel, Type 304 and Type 316 stainless steel.

#### **Features**

- Code listed under IBC/IRC for cracked and uncracked concrete per ICC-ES ESR-3037
- Code listed under IBC/IRC for masonry per IAPMO UES ER-240
- Qualified for static and seismic loading conditions (seismic design categories A through F)
- Suitable for horizontal, vertical and overhead applications
- Qualified for minimum concrete thickness of 31/4", and lightweight concrete-over-metal deck thickness of 21/2" and 31/4"
- Standard (ANSI) fractional sizes: fits standard fixtures and installs with common drill bit and tool sizes
- Tested per ACI355.2 and AC193

**Code:** ICC-ES ESR-3037 (concrete); IAPMO UES ER-240 (carbon steel in CMU); City of L.A. RR25891 (concrete), RR25936 (carbon steel in CMU); Florida FL-15731.2; FL-16230.4; UL File Ex3605; FM 3043342 and 3047639; Mulitiple DOT listings; meets the requirements of Federal Specifications A-A-1923A, Type 4

#### Installation

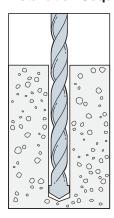


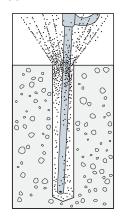
Do not use an impact wrench to set or tighten the Strong-Bolt 2 anchor.

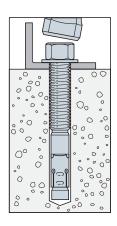


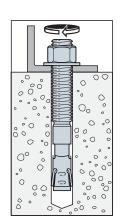
**Caution:** Oversized holes in the base material will make it difficult to set the anchor and will reduce the anchor's load capacity.

- 1. Drill a hole in the base material using a carbide drill bit the same diameter as the nominal diameter of the anchor to be installed. Drill the hole to the specified minimum hole depth, and blow it clean using compressed air. (Overhead installations need not be blown clean.) Alternatively, drill the hole deep enough to accommodate embedment depth and dust from drilling.
- Assemble the anchor with nut and washer so the top of the nut is flush with the top of the anchor. Place the anchor in the fixture, and drive it into the hole until the washer and nut are tight against the fixture.
- 3. Tighten to the required installation torque.





Head Stamp
The head is stamped with
the length identification
letter, bracketed top and
bottom by horizontal lines.


Strong-Bolt 2 Wedge Anchor

#### **Installation Sequence**









# Strong-Bolt® 2 Wedge Anchor



### Material Specifications

| Anchor Body     | Nut                 | Washer          | Clip            |
|-----------------|---------------------|-----------------|-----------------|
| Carbon Steel    | Carbon Steel,       | Carbon Steel    | Carbon Steel,   |
|                 | ASTM A 563, Grade A | ASTM F844       | ASTM A 568      |
| Type 304        | Type 304            | Type 304        | Type 304 or 316 |
| Stainless Steel | Stainless Steel     | Stainless Steel | Stainless Steel |
| Type 316        | Type 316            | Type 316        | Type 316        |
| Stainless Steel | Stainless Steel     | Stainless Steel | Stainless Steel |



### Strong-Bolt 2 Anchor Installation Data

| Guerig Ben Er mierier met                                |      |      |      |                               |      |      |
|----------------------------------------------------------|------|------|------|-------------------------------|------|------|
| Strong-Bolt 2 Diameter<br>(in.)                          | 1/4  | 3∕8  | 1/2  | 5/8                           | 3/4  | 1    |
| Drill Bit Size (in.)                                     | 1/4  | 3/8  | 1/2  | 5/8                           | 3/4  | 1    |
| Min. Fixture Hole (in.)                                  | 5/16 | 7/16 | 9/16 | 11/ <sub>16</sub>             | 7/8  | 11/8 |
| Wrench Size (in.)                                        | 7/16 | 9/16 | 3/4  | <sup>15</sup> / <sub>16</sub> | 11/8 | 1½   |
| Concrete Installation Torque (ftlbf.)<br>Carbon Steel    | 4    | 30   | 65   | 80                            | 150  | 230  |
| Concrete Installation Torque (ftlbf.)<br>Stainless Steel | 4    | 30   | 60   | 80                            | 150  | _    |

Length Identification Head Marks on Strong-Bolt® 2 Wedge Anchors (corresponds to length of anchor – inches)

| Mark                       | Units | A  | В  | С  | D  | Е  | F    | G  | н  | ı  | J  | K  | L  | M  | N  | 0  | Р  | Q  | R  | S  | T  | U  | v  | w  | Х  | Υ  | Z  |
|----------------------------|-------|----|----|----|----|----|------|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|
| From                       | in.   | 1½ | 2  | 2½ | 3  | 3½ | 4    | 4½ | 5  | 5½ | 6  | 6½ | 7  | 7½ | 8  | 8½ | 9  | 9½ | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 |
| Up To But<br>Not Including | in.   | 2  | 2½ | 3  | 3½ | 4  | 41/2 | 5  | 5½ | 6  | 6½ | 7  | 7½ | 8  | 8½ | 9  | 9½ | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 |



Strong-Bolt 2 Anchor Product Data

| Size       | Carbon Steel | Type 304                     | Type 316                     | Drill Bit         | Thread          | Qua | ntity  |
|------------|--------------|------------------------------|------------------------------|-------------------|-----------------|-----|--------|
| (in.)      | Model No.    | Stainless Steel<br>Model No. | Stainless Steel<br>Model No. | Diameter<br>(in.) | Length<br>(in.) | Box | Carton |
| 1/4 x 13/4 | STB2-25134   | STB2-251344SS                | STB2-251346SS                | 1/4               | 1 5/16          | 100 | 500    |
| 1/4 x 21/4 | STB2-25214   | STB2-252144SS                | STB2-252146SS                | 1/4               | 1 7/16          | 100 | 500    |
| 1/4 x 31/4 | STB2-25314   | STB2-253144SS                | STB2-253146SS                | 1/4               | 27/16           | 100 | 500    |
| 3/8 X 23/4 | STB2-37234   | STB2-372344SS                | STB2-372346SS                | 3/8               | 15/16           | 50  | 250    |
| 3% x 3     | STB2-37300   | STB2-373004SS                | STB2-373006SS                | 3/8               | 1 %16           | 50  | 250    |
| 3/8 X 31/2 | STB2-37312   | STB2-373124SS                | STB2-373126SS                | 3/8               | 21/16           | 50  | 250    |
| 3/8 x 33/4 | STB2-37334   | STB2-373344SS                | STB2-373346SS                | 3/8               | 25/16           | 50  | 250    |
| % x 5      | STB2-37500   | STB2-375004SS                | STB2-375006SS                | 3/8               | 39/16           | 50  | 200    |
| 3% x 7     | STB2-37700   | STB2-377004SS                | STB2-377006SS                | 3/8               | 5%16            | 50  | 200    |
| ½ x 3¾     | STB2-50334   | STB2-503344SS                | STB2-503346SS                | 1/2               | 21/16           | 25  | 125    |
| ½ x 4¼     | STB2-50414   | STB2-504144SS                | STB2-504146SS                | 1/2               | 2%16            | 25  | 100    |
| ½ x 4¾     | STB2-50434   | STB2-504344SS                | STB2-504346SS                | 1/2               | 31/16           | 25  | 100    |
| ½ x 5½     | STB2-50512   | STB2-505124SS                | STB2-505126SS                | 1/2               | 3 13/16         | 25  | 100    |
| ½ x 7      | STB2-50700   | STB2-507004SS                | STB2-507006SS                | 1/2               | 55/16           | 25  | 100    |
| ½ x 8½     | STB2-50812   | STB2-508124SS                | STB2-508126SS                | 1/2               | 6               | 25  | 50     |
| ½ x 10     | STB2-50100   | STB2-501004SS                | STB2-501006SS                | 1/2               | 6               | 25  | 50     |
| 5% x 4½    | STB2-62412   | STB2-624124SS                | STB2-624126SS                | 5/8               | 27/16           | 20  | 80     |
| 5% x 5     | STB2-62500   | STB2-625004SS                | STB2-625006SS                | 5/8               | 215/16          | 20  | 80     |
| 5% x 6     | STB2-62600   | STB2-626004SS                | STB2-626006SS                | 5/8               | 315/16          | 20  | 80     |
| 5% x 7     | STB2-62700   | STB2-627004SS                | STB2-627006SS                | 5/8               | 4 15/16         | 20  | 80     |
| 5% x 8½    | STB2-62812   | STB2-628124SS                | STB2-628126SS                | 5/8               | 6               | 20  | 40     |
| 5% x 10    | STB2-62100   | STB2-621004SS                | STB2-621006SS                | 5/8               | 6               | 10  | 20     |
| 3/4 x 51/2 | STB2-75512   | STB2-755124SS                | STB2-755126SS                | 3/4               | 33/16           | 10  | 40     |
| 3/4 x 61/4 | STB2-75614   | STB2-756144SS                | STB2-756146SS                | 3/4               | 315/16          | 10  | 40     |
| 3⁄4 x 7    | STB2-75700   | STB2-757004SS                | STB2-757006SS                | 3/4               | 411/16          | 10  | 40     |
| 3⁄4 x 8½   | STB2-75812   | STB2-758124SS                | STB2-758126SS                | 3/4               | 6               | 10  | 20     |
| 3⁄4 x 10   | STB2-75100   | _                            | _                            | 3/4               | 6               | 10  | 20     |
| 1 x 7      | STB2-100700  | _                            | _                            | 1                 | 3½              | 5   | 20     |
| 1 x 10     | STB2-1001000 | _                            | _                            | 1                 | 3½              | 5   | 10     |
| 1 x 13     | STB2-1001300 | _                            | _                            | 1                 | 3½              | 5   | 10     |

Carbon-Steel Strong-Bolt 2 Installation Information<sup>1</sup>

| IBC |        | LW |
|-----|--------|----|
|     | 375000 |    |

| Chava shariati                                                               | Complete          | Heite   |         |           |                       | No       | minal An | chor Dia | neter, d <sub>a</sub> | (in.)          |                                                                                                                                                                      |                |      |       |  |   |
|------------------------------------------------------------------------------|-------------------|---------|---------|-----------|-----------------------|----------|----------|----------|-----------------------|----------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|------|-------|--|---|
| Characteristic                                                               | Symbol            | Units   | 1/44    | 3/        | <b>6</b> <sup>5</sup> |          | 1/25     |          | 5/                    | 6 <sup>5</sup> | 3/                                                                                                                                                                   | 4 <sup>5</sup> |      | 5     |  |   |
|                                                                              |                   |         |         | Instal    | llation Inf           | ormation |          |          |                       |                | 3%     5     4½     9       4%     6     5½     10       5½     7     7     13       9     8     18     13½       6½     8       8     —       7     8       8     — |                |      |       |  |   |
| Nominal Diameter                                                             | da                | in.     | 1/4     | 3,        | <b>⅓</b> 8            |          | 1/2      | 1/2 5/8  |                       | /8             | 3,                                                                                                                                                                   | /4             |      | 1     |  |   |
| Drill Bit Diameter                                                           | d                 | in.     | 1/4     | 3,        | 3/8                   |          | 1/2      |          | 1/2                   |                | 5/8                                                                                                                                                                  |                | 3,   | /4    |  | 1 |
| Baseplate Clearance<br>Hole Diameter <sup>2</sup>                            | $d_c$             | in.     | 5/16    | 7/        | 16                    |          | 9/16     |          | 11,                   | /16            | 7,                                                                                                                                                                   | /8             | 1    | 1 1/8 |  |   |
| Installation Torque                                                          | T <sub>inst</sub> | ft-lbf  | 4       | 3         | 30                    |          | 60       |          | 90                    |                | 15                                                                                                                                                                   | 150            |      | 30    |  |   |
| Nominal Embedment Depth                                                      | h <sub>nom</sub>  | in.     | 13⁄4    | 17/8      | 27/8                  | 2        | 3/4      | 37/8     | 3%                    | 51/8           | 41/8                                                                                                                                                                 | 5¾             | 51/4 | 9¾    |  |   |
| Effective Embedment Depth                                                    | h <sub>ef</sub>   | in.     | 1½      | 11/2      | 2½                    | 2        | 1/4      | 3%       | 23/4                  | 4½             | 3%                                                                                                                                                                   | 5              | 41/2 | 9     |  |   |
| Minimum Hole Depth                                                           | h <sub>hole</sub> | in.     | 17/8    | 2         | 3                     |          | 3        | 41/8     | 35/8                  | 5%             | 4%                                                                                                                                                                   | 6              | 5½   | 10    |  |   |
| Minimum Overall<br>Anchor Length                                             | lanch             | in.     | 21/4    | 23/4 31/2 |                       | 3        | 33/4     |          | 41/2                  | 6              | 5½                                                                                                                                                                   | 7              | 7    | 13    |  |   |
| Critical Edge Distance                                                       | Cac               | in.     | 2½      | 6½        | 6                     | 6½       | 6½       | 7½       | 7½                    | 9              | 9                                                                                                                                                                    | 8              | 18   | 13½   |  |   |
|                                                                              | C <sub>min</sub>  | in.     | 13⁄4    | (         | 6                     | 7 4 4    |          | 4        | 6                     | 1/2            | 6                                                                                                                                                                    | 1/2            |      | 8     |  |   |
| Minimum Edge Distance                                                        | for s ≥           | in.     | _       | -         | _                     | _        | _        | _        | -                     | _              | 1                                                                                                                                                                    | 8              | -    |       |  |   |
| Mi · O                                                                       | S <sub>min</sub>  | in.     | 21/4    | ;         | 3                     | 7        | 4        | 4        |                       | 5              | -                                                                                                                                                                    | 7              |      | 8     |  |   |
| Minimum Spacing                                                              | for c ≥           | in.     | _       | -         | _                     | _        | _        | _        | -                     | _              | 8                                                                                                                                                                    |                | -    | _     |  |   |
| Minimum Concrete Thickness                                                   | h <sub>min</sub>  | in      | 31/4    | 31/4      | 41/2                  | 41/2     | 5½       | 6        | 5½                    | 77/8           | 6¾                                                                                                                                                                   | 83⁄4           | 8    | 13½   |  |   |
|                                                                              | •                 |         |         | Α         | dditional             | Data     |          |          |                       |                |                                                                                                                                                                      |                | '    |       |  |   |
| Yield Strength                                                               | f <sub>ya</sub>   | psi     | 56,000  | 92,       | 000                   |          |          | 85,000   |                       |                | 70,                                                                                                                                                                  | 000            | 60,  | 000   |  |   |
| Tensile Strength                                                             | f <sub>uta</sub>  | psi     | 70,000  |           |                       | I        | 115,000  |          |                       |                | 110                                                                                                                                                                  | ,000           | 78,  | 000   |  |   |
| Minimum Tensile and<br>Shear Stress Area                                     | A <sub>se</sub>   | in.²    | 0.0318  | 0.0       | 514                   |          | 0.105    |          | 0.1                   | 166            | 0.2                                                                                                                                                                  | 270            | 0.4  | 472   |  |   |
| Axial Stiffness in Service<br>Load Range — Cracked and<br>Uncracked Concrete | β                 | lb./in. | 73,700³ | 34,       | 820                   |          | 63,570   |          | 91,                   | 370            | 118                                                                                                                                                                  | ,840           | 299  | ),600 |  |   |

<sup>1.</sup> The information presented in this table is to be used in conjunction with the design criteria of ACI 318-14 Chapter 17 or ACI 318-11 Appendix D.

<sup>2.</sup> The clearance must comply with applicable code requirements for the connected element.

<sup>3.</sup> The tabulated value of  $\beta$  for 1/4"-diameter carbon steel Strong-Bolt 2 anchor is for installations in uncracked concrete only.

<sup>4.</sup> The 1/4"-diameter (6.4mm) anchor may be installed in top of uncracked normal-weight and sand-lightweight concrete over profile steel deck, where concrete thickness above upper flute meets the minimum thickness specified in this table.

<sup>5.</sup> The %"- through 1"-diameter (9.5mm through 25.4mm) anchors may be installed in top of cracked and uncracked normal-weight and sand-lightweight concrete over profile steel deck, where concrete thickness above upper flute meets the minimum thickness specified in this table.

<sup>\*</sup> See p.13 for an explanation of the load table icons.

Stainless-Steel Strong-Bolt 2 Installation Information<sup>1</sup>







**Mechanical** Anchors

| Charactoristic                                                            | Cumbal            | Unito            |                     |           | No              | minal And | chor Dian | neter, d <sub>a</sub> | (in.) |                |      |                |
|---------------------------------------------------------------------------|-------------------|------------------|---------------------|-----------|-----------------|-----------|-----------|-----------------------|-------|----------------|------|----------------|
| Characteristic                                                            | Symbol            | Units            | 1/44                | 3/        | ⁄8 <sup>5</sup> |           | 1/25      |                       | 5/    | i <sup>5</sup> | 3/   | 4 <sup>5</sup> |
|                                                                           |                   |                  | Installation In     | nformatio | n               |           |           |                       |       |                |      |                |
| Nominal Diameter                                                          | da                | in.              | 1/4                 | 3,        | /8              |           | 1/2       |                       | 5,    | 8              | 3,   | /4             |
| Drill Bit Diameter                                                        | d                 | in.              | 1/4                 | 3,        | /8              |           | 1/2       |                       | 5,    | 8              | 3,   | /4             |
| Baseplate Clearance Hole Diameter <sup>2</sup>                            | $d_{c}$           | in.              | 5/16                | 7/        | <b>1</b> 6      |           | 9/16      |                       | 11,   | <b>1</b> 6     | 7,   | /8             |
| Installation Torque                                                       | T <sub>inst</sub> | ft-lbf           | 4                   | 3         | 0               |           | 65        |                       | 8     | 0              | 150  |                |
| Nominal Embedment Depth                                                   | h <sub>nom</sub>  | in.              | 13/4                | 17/8      | 27/8            | 23/4      | 3         | 7/8                   | 3%    | 51/8           | 41/8 | 5¾             |
| Effective Embedment Depth                                                 | h <sub>ef</sub>   | in.              | 11/2                | 1½        | 2½              | 21/4      | 3         | 3/8                   | 2¾    | 41/2           | 3%   | 5              |
| Minimum Hole Depth                                                        | h <sub>hole</sub> | in.              | 17/8                | 2         | 3               | 3         | 4         | 1/8                   | 3%    | 5%             | 43/8 | 6              |
| Minimum Overall Anchor Length                                             | $\ell_{anch}$     | in.              | 21/4                | 23/4 31/2 |                 | 3¾        | 5½        |                       | 41/2  | 6              | 5½   | 7              |
| Critical Edge Distance                                                    | Cac               | in.              | 2½                  | 6½ 8½     |                 | 41/2      | 7         |                       | 7½    | 9              | 8    | 8              |
|                                                                           | C <sub>min</sub>  | in.              | 13/4                | (         | 6               | 6½        | 5         | 4                     | 2     | 1              | (    | 6              |
| Minimum Edge Distance                                                     | for s ≥           | in.              | _                   | 10        |                 | _         | _ 8       |                       | 3     | 3              | _    | _              |
|                                                                           | S <sub>min</sub>  | in.              | 21/4                | (         | 3               | 8 5½      |           | 4                     | 6     | 1/4            | 6    | 1/2            |
| Minimum Spacing                                                           | for c ≥           | in.              | _                   | 1         | 0               | _         | _         | 8                     | 5     | 1/2            | _    | _              |
| Minimum Concrete Thickness                                                | h <sub>min</sub>  | in.              | 31/4                | 31/4      | 41/2            | 41/2      | (         | 6                     | 5½    | 77/8           | 6¾   | 8¾             |
|                                                                           |                   |                  | Additiona           | ıl Data   |                 |           |           |                       |       |                |      |                |
| Yield Strength                                                            | f <sub>ya</sub>   | psi              | 96,000              | 80,       | 000             |           | 92,000    |                       | 82,   | 000            | 68,  | 000            |
| Tensile Strength                                                          | f <sub>uta</sub>  | psi              | 120,000             | 100       | ,000            |           | 115,000   |                       | 108   | 000            | 95,  | 000            |
| Minimum Tensile and Shear Stress Area                                     | A <sub>se</sub>   | in. <sup>2</sup> | 0.0255              | 0.0       | 514             |           | 0.105     |                       | 0.1   | 66             | 0.2  | 270            |
| Axial Stiffness in Service Load Range —<br>Cracked and Uncracked Concrete | β                 | lb./in.          | 54,430 <sup>3</sup> | 29,       | 150             |           | 54,900    |                       | 61,   | 270            | 154  | ,290           |

The information presented in this table is to be used in conjunction with the design criteria of ACI 318-14 Chapter 17 or ACI 318-11 Appendix D.

<sup>2.</sup> The clearance must comply with applicable code requirements for the connected element.

<sup>3.</sup> The tabulated value of  $\beta$  for 1/4"-diameter stainless-steel Strong-Bolt 2 anchor is for installtions in uncracked concrete only.

<sup>4.</sup> The ¼"-diameter (6.4mm) anchor may be installed in top of uncracked normal-weight and sand-lightweight concrete over profile steel deck, where concrete thickness above upper flute meets the minimum thickness specified in this table.

<sup>5.</sup> The %"- through %"-diameter (9.5mm through 19.1mm) anchors may be installed in top of cracked and uncracked normal-weight and sand-lightweight concrete over profile steel deck, where concrete thickness above upper flute meets the minimum thickness specified in this table.

<sup>\*</sup> See p. 13 for an explanation of the load table icons.











# Carbon-Steel Strong-Bolt 2 Tension Strength Design Data<sup>1</sup>

| Oarbon-Steel Strong-Bolt 2 Ten                                                    |                      | Nominal Anchor Diameter, d <sub>a</sub> (in.) |                                |                  |                |                  |            |                  |            |                  |                |        |                     |
|-----------------------------------------------------------------------------------|----------------------|-----------------------------------------------|--------------------------------|------------------|----------------|------------------|------------|------------------|------------|------------------|----------------|--------|---------------------|
| Characteristic                                                                    | Symbol               | Units                                         | 1/48                           | 3/               | 6 <sup>9</sup> | 1,               |            | 5,               | <b>6</b> 9 | 3/               | 4 <sup>9</sup> | 1      | 9                   |
| Anchor Category                                                                   | 1, 2 or 3            | _                                             |                                |                  |                | 1                |            |                  |            |                  |                | 2      | 2                   |
| Nominal Embedment Depth                                                           | h <sub>nom</sub>     | in.                                           | 13⁄4                           | 1 1/8            | 21/8           | 2¾               | 37/8       | 3%               | 51/8       | 41/8             | 5¾             | 51/4   | 9¾                  |
|                                                                                   |                      | Steel                                         | Strength in Tensio             | n (ACI 3         | 18 Section     | on D.5.1)        | )          |                  |            |                  |                |        |                     |
| Steel Strength in Tension                                                         | N <sub>sa</sub>      | lb.                                           | 2,225                          | 5,6              | 600            | 12,              | 100        | 19,              | 070        | 29,              | 700            | 36,    | 815                 |
| Strength Reduction Factor — Steel Failure <sup>2</sup>                            | $\phi_{sa}$          | _                                             |                                |                  |                | 0.7              | <b>'</b> 5 |                  |            |                  |                | 0.     | 65                  |
|                                                                                   | Conc                 | rete Brea                                     | akout Strength in <sup>-</sup> | Tension          | (ACI 318       | Section          | D.5.2)10   |                  |            |                  |                |        |                     |
| Effective Embedment Depth                                                         | h <sub>ef</sub>      | in.                                           | 1½                             | 1½               | 2½             | 21/4             | 3%         | 23/4             | 4½         | 3%               | 5              | 4½     | 9                   |
| Critical Edge Distance                                                            | Cac                  | in.                                           | 21/2                           | 6½               | 6              | 6½               | 7½         | 7½               | 9          | 9                | 8              | 18     | 13½                 |
| Effectiveness Factor —<br>Uncracked Concrete                                      | k <sub>uncr</sub>    | _                                             | - 24                           |                  |                |                  |            |                  |            |                  |                |        |                     |
| Effectiveness Factor —<br>Cracked Concrete                                        | k <sub>cr</sub>      |                                               | 7                              |                  |                |                  |            | 1                | 7          |                  |                |        |                     |
| Modification Factor                                                               | $\psi_{c,N}$         |                                               | 7                              |                  |                |                  |            | 1.               | 00         |                  |                |        |                     |
| Strength Reduction Factor —<br>Concrete Breakout Failure <sup>3</sup>             | $\phi_{\mathit{cb}}$ | _                                             |                                |                  |                | 0.6              | 35         |                  |            |                  |                | 0.     | 55                  |
|                                                                                   |                      | Pullout                                       | Strength in Tensio             | n (ACI 3         | 18 Secti       | on D.5.3         | )10        |                  |            |                  |                |        |                     |
| Pullout Strength, Cracked Concrete $(f'_{C} = 2,500 \text{ psi})$                 | N <sub>p,cr</sub>    | lb.                                           | 7                              | 1,3005           | 2,7755         | N/A <sup>4</sup> | 3,7355     | N/A <sup>4</sup> | 6,9855     | N/A <sup>4</sup> | 8,5005         | 7,7005 | 11,1855             |
| Pullout Strength, Uncracked Concrete $(f_C^* = 2,500 \text{ psi})$                | N <sub>p,uncr</sub>  | lb.                                           | N/A <sup>4</sup>               | N/A <sup>4</sup> | 3,3405         | 3,6155           | 5,2555     | N/A <sup>4</sup> | 9,0255     | 7,1155           | 8,8705         | 8,3605 | 9,6905              |
| Strength Reduction Factor —<br>Pullout Failure <sup>6</sup>                       | $\phi_p$             | _                                             | —   0.65                       |                  |                |                  |            |                  |            |                  |                |        |                     |
|                                                                                   | Tensile              | Strengt                                       | h for Seismic App              | lications        | (ACI 31        | 8 Section        | n D.3.3.)¹ | 0                |            |                  |                |        |                     |
| Tension Strength of Single Anchor for Seismic Loads ( $f_c = 2,500 \text{ psi}$ ) | N <sub>p.eq</sub>    | lb.                                           | 7                              | 1,3005           | 2,7755         | N/A <sup>4</sup> | 3,7355     | N/A <sup>4</sup> | 6,9855     | N/A <sup>4</sup> | 8,5005         | 7,7005 | 11,185 <sup>5</sup> |
| Strength Reduction Factor —<br>Pullout Failure <sup>6</sup>                       | $\phi_{eq}$          | _                                             |                                |                  |                | 0.6              | 35         |                  |            |                  |                | 0.     | 55                  |

- 1. The information presented in this table must be used in conjunction with the design criteria of ACI 318-14 Chapter 17 or ACI 318-11 Appendix D, as applicable, except as modified below.
- 2. The tabulated value of  $\phi_{sa}$  applies when the load combinations of Section 1605.2.1 of the IBC, ACI 318-14 Section 5.3 or ACI 318-11 Section 9.2 are used. If the load combinations of ACI 318-11 Appendix C are used, the appropriate value of  $\phi_{sa}$  must be determined in accordance with ACI 318-11 D.4.4.
- 3. The tabulated value of  $\phi_{cb}$  applies when both the load combinations of Section 1605.2.1 of the IBC, ACI 318-14 Section 5.3 or ACI 318-11 Section 9.2 are used and the requirements of ACI 318-14 17.3.3(c) or ACI 318-11 D.4.3(c) for Condition B are met. Condition B applies where supplementary reinforcement is not provided. For installations where complying supplementary reinforcement can be verified, the  $\phi_{cb}$  factors described in ACI 318-14 17.3.3(c) or ACI 318-11 D.4.3(c) for Condition A are allowed. If the load combinations of ACI 318-11 Appendix C are used, the appropriate value of  $\phi_{cb}$  must be determined in accordance with ACI 318-11 D.4.4(c).
- $4.\,\mbox{N/A}$  (not applicable) denotes that pullout resistance does not need to be considered.
- 5. The characteristic pullout strength for greater concrete compressive strengths shall be increased by multiplying the tabular value by (f'c/2,500 psi)0.5.
- 6. The tabulated value of  $\phi_D$  or  $\phi_{eq}$  applies when the load combinations of Section 1605.2.1 of the IBC, ACI 318-14 Section 5.3 or ACI 318-11 Section 9.2 are used and the requirements of ACI 318-14 17.3.3.(c) or ACI 318-11 D.4.3(c) for Condition B are met. If the load combinations of ACI 318-11 Appendix C are used, appropriate value of  $\phi$  must be determined in accordance with ACI 318-11 Section D.4.4(c).
- 7. The ¼"-diameter carbon steel Strong-Bolt 2 anchor installation in cracked concrete is beyond the scope of this table.
- 8. The 1/4"-diameter (6.4mm) anchor may be installed in top of uncracked normal-weight and sand-lightweight concrete over profile steel deck, where concrete thickness above upper flute meets the minimum thickness specified in the table on p. 136.
- 9. The %"- through %"-diameter (9.5mm through 25.4mm) anchors may be installed in top of cracked and uncracked normal-weight and sand-lightweight concrete over profile steel deck, where concrete thickness above upper flute meets the minimum thickness specified in the table on p. 136.

<sup>\*</sup> See p. 13 for an explanation of the load table icons





**Mechanical** Anchors

#### Stainless-Steel Strong-Bolt 2 Tension Strength Design Data<sup>1</sup>

| Characteristic                                                                | Symbol              | Units      |                                                            |                    | Nomina             | l Anchor | Diamete          | r, d <sub>a</sub> (in.) |                    |                  |                              |
|-------------------------------------------------------------------------------|---------------------|------------|------------------------------------------------------------|--------------------|--------------------|----------|------------------|-------------------------|--------------------|------------------|------------------------------|
| onal acteristic                                                               | Syllibol            | Units      | 1/410                                                      | 3/                 | /s <sup>11</sup>   | 1,       | /2 <sup>11</sup> | 5,                      | /8 <sup>11</sup>   | 3,               | / <sub>4</sub> <sup>11</sup> |
| Anchor Category                                                               | 1, 2 or 3           | _          |                                                            |                    |                    |          | 1                |                         |                    |                  |                              |
| Nominal Embedment Depth                                                       | h <sub>nom</sub>    | in.        | 13⁄4                                                       | 1%                 | 27/8               | 2¾       | 3%               | 3%                      | 51/8               | 41/8             | 5¾                           |
|                                                                               | Steel Stre          | ngth in Te | nsion (ACI 318 Se                                          | ection D.5         | 5.1)               |          |                  |                         |                    |                  |                              |
| Steel Strength in Tension                                                     | N <sub>sa</sub>     | lb.        | 3,060                                                      | 5,1                | 40                 | 12,      | 075              | 17                      | 930                | 25,              | 650                          |
| Strength Reduction Factor — Steel Failure <sup>2</sup>                        | $\phi_{sa}$         | _          |                                                            |                    |                    | 0.       | 75               |                         |                    |                  |                              |
| Concre                                                                        | te Breakou          | t Strengt  | h in Tension (ACI                                          | 318 Sect           | ion D.5.2          | )12      |                  |                         |                    |                  |                              |
| Effective Embedment Depth                                                     | h <sub>ef</sub>     | in.        | 1½                                                         | 1 ½                | 21/2               | 21/4     | 3%               | 23/4                    | 41/2               | 3%               | 5                            |
| Critical Edge Distance                                                        | Cac                 | in.        | 21/2                                                       | 2½ 6½ 8½ 4½ 7 7½ 9 |                    |          |                  |                         |                    | 8                | 8                            |
| Effectiveness Factor — Uncracked Concrete                                     | K <sub>uncr</sub>   |            |                                                            |                    |                    | 2        | 24               |                         |                    |                  |                              |
| Effectiveness Factor — Cracked Concrete                                       | k <sub>cr</sub>     |            | 9                                                          |                    |                    |          | 1                | 7                       |                    |                  |                              |
| Modification Factor                                                           | $\psi_{c,N}$        |            | 9 1.00                                                     |                    |                    |          |                  |                         |                    |                  |                              |
| Strength Reduction Factor — Concrete Breakout Failure <sup>3</sup>            | $\phi_{cb}$         | _          |                                                            |                    |                    | 0.       | 65               |                         |                    |                  |                              |
| F                                                                             | Pullout Stre        | ngth in Te | ension (ACI 318 Se                                         | ection D.          | 5.3) <sup>12</sup> |          |                  |                         |                    |                  |                              |
| Pullout Strength, Cracked Concrete (f' <sub>C</sub> = 2,500 psi)              | N <sub>p,cr</sub>   | lb.        | 9                                                          | 1,7206             | 3,145 <sup>6</sup> | 2,5605   | 4,3055           | N/A <sup>4</sup>        | 6,5457             | N/A <sup>4</sup> | 8,2305                       |
| Pullout Strength, Uncracked Concrete (f' <sub>C</sub> = 2,500 psi)            | N <sub>p,uncr</sub> | lb.        | 1,925 <sup>7</sup>                                         | N/A <sup>4</sup>   | 4,7706             | 3,2305   | 4,4955           | N/A <sup>4</sup>        | 7,6155             | 7,7257           | 9,6257                       |
| Strength Reduction Factor — Pullout Failure <sup>8</sup>                      | $\phi_p$            | _          |                                                            |                    |                    | 0.       | 65               |                         |                    |                  |                              |
| Tensile S                                                                     | Strength fo         | r Seismic  | eismic Applications (ACI 318 Section D.3.3.) <sup>12</sup> |                    |                    |          |                  |                         |                    |                  |                              |
| Tension Strength of Single Anchor for Seismic Loads (f' $_{\it C}=2,500$ psi) | N <sub>p.eq</sub>   | lb.        | 9                                                          | 1,7206             | 2,830 <sup>6</sup> | 2,5605   | 4,3055           | N/A <sup>4</sup>        | 6,545 <sup>7</sup> | N/A <sup>4</sup> | 8,2305                       |
| Strength Reduction Factor — Pullout Failure <sup>8</sup>                      | $\phi_{eq}$         | _          |                                                            |                    |                    | 0.       | 65               |                         |                    |                  |                              |

- 1. The information presented in this table must be used in conjunction with the design criteria of ACI 318-14 Chapter 17 or ACI 318-11 Appendix D, as applicable, except as modified below.
- The tabulated value of  $\phi_{sa}$  applies when the load combinations of Section 1605.2.1 of the IBC, ACI 318-14 Section 5.3 or ACI 318-11 Section 9.2 are used. If the load combinations of ACI 318-11 Appendix C are used, the appropriate value of  $\phi_{sa}$  must be determined in accordance with ACI 318-11 D.4.4.
- 3. The tabulated value of  $\phi_{cb}$  applies when both the load combinations of Section 1605.2.1 of the IBC, ACI 318-14 Section 5.3 or ACI 318-11 Section 9.2 are used and the requirements of ACI 318-14 17.3.3(c) or ACI 318-11 D.4.3(c) for Condition B are met. Condition B applies where supplementary reinforcement is not provided. For installations where complying supplementary reinforcement can be verified, the  $\phi_{cb}$  factors described in ACI 318-14 17.3.3(c) or ACI 318-11 D.4.3(c) for Condition A are allowed. If the load combinations of ACI 318-11 Appendix C are used, the appropriate value of  $\phi_{cb}$  must be determined in accordance with ACI 318-11 D.4.4(c).
- 4. N/A (not applicable) denotes that pullout resistance does not need to be considered.
- 5. The characteristic pullout strength for greater concrete compressive strengths shall be increased by multiplying the tabular value by (f'c/2,500 psi)0.5.
- 6. The characteristic pullout strength for greater concrete compressive strengths shall be increased by multiplying the tabular value by (ff c/2,500 psi)0.3.
- The characteristic pullout strength for greater concrete compressive strengths shall be increased by multiplying the tabular value by (f'<sub>c</sub>/2,500 psi)<sup>0.4</sup>.
- The tabulated value of  $\phi_p$  or  $\phi_{eq}$  applies when the load combinations of Section 1605.2.1 of the IBC, ACI 318-14 Section 5.3 or ACI 318-11 Section 9.2 are used and the requirements of ACI 318-14 17.3.3.(c) or ACI 318-11 D.4.3(c) for Condition B are met. If the load combinations of ACI 318-11 Appendix C are used, appropriate value of  $\phi$  must be determined in accordance with ACl 318-11 Section D.4.4(c).
- 9. The 1/4"-diameter stainless-steel Strong-Bolt 2 anchor installation in cracked concrete is beyond the scope of this table.
- 10. The 1/4"-diameter (6.4mm) anchor may be installed in top of uncracked normal-weight and sand-lightweight concrete over profile steel deck, where concrete thickness above upper flute meets the minimum thickness specified in the table on p. 136.
- 11. The %"- through 34"-diameter (9.5mm through 19.1mm) anchors may be installed in top of cracked and uncracked normal-weight and sand-lightweight concrete over profile steel deck, where concrete thickness above upper flute meets the minimum thickness specified in the table on p. 136.

C-A-2018 @2018 SIMPSON STRONG-TIE COMPANY INC.

<sup>\*</sup> See p. 13 for an explanation of the load table icons.



# IB







## Carbon-Steel Strong-Bolt 2 Shear Strength Design Data<sup>1</sup>

|                                                                                     |                    | 0         |                                                                                                                                                    |                              |                 |           |                 |       |                 |       |                 |       |       |  |
|-------------------------------------------------------------------------------------|--------------------|-----------|----------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|-----------------|-----------|-----------------|-------|-----------------|-------|-----------------|-------|-------|--|
| Characteristic                                                                      | Cumbal             | Unito     | Nominal Anchor Diameter, d <sub>a</sub> (in.)  1/4 <sup>6</sup> 3/6 <sup>7</sup> 1/2 <sup>7</sup> 5/6 <sup>7</sup> 3/4 <sup>7</sup> 1 <sup>7</sup> |                              |                 |           |                 |       |                 |       |                 |       |       |  |
| Gharacteristic                                                                      | Symbol             | UIIIIS    | 1/46                                                                                                                                               | 3,                           | ⁄8 <sup>7</sup> | 1/        | ⁄2 <sup>7</sup> | 5,    | ⁄8 <sup>7</sup> | 3,    | ⁄4 <sup>7</sup> | 1     |       |  |
| Anchor Category                                                                     | 1, 2 or 3          | _         |                                                                                                                                                    |                              |                 | -         | 1               |       |                 |       |                 |       | 2     |  |
| Nominal Embedment Depth                                                             | h <sub>nom</sub>   | in.       | 13/4                                                                                                                                               | 17/8                         | 27/8            | 23/4      | 37/8            | 3%    | 51/8            | 41/8  | 5¾              | 51/4  | 9¾    |  |
|                                                                                     |                    |           | Steel Strength in                                                                                                                                  | Shear (A                     | ACI 318 S       | ection D. | 6.1)            |       |                 |       |                 |       |       |  |
| Steel Strength in Shear                                                             | V <sub>sa</sub>    | lb.       | 965                                                                                                                                                | 1,8                          | 300             | 7,2       | 235             | 11,   | 035             | 14,   | 480             | 15,   | 020   |  |
| Strength Reduction Factor —<br>Steel Failure <sup>2</sup>                           | $\phi_{sa}$        | _         |                                                                                                                                                    |                              |                 | 0.        | 65              |       |                 |       |                 | 0.    | 60    |  |
|                                                                                     | -                  | Concre    | ete Breakout Stre                                                                                                                                  | ngth in SI                   | hear (ACI       | 318 Sec   | tion D.6.2      | 2)8   |                 |       |                 |       |       |  |
| Outside Diameter                                                                    | d <sub>a</sub>     | in.       | 0.25                                                                                                                                               | 0.25 0.375 0.500 0.625 0.750 |                 |           |                 |       |                 |       |                 |       | 1.00  |  |
| Load-Bearing Length of<br>Anchor in Shear                                           | $\ell_e$           | in.       | 1.500                                                                                                                                              | 1.500                        | 2.500           | 2.250     | 3.375           | 2.750 | 4.500           | 3.375 | 5.000           | 4.500 | 8.000 |  |
| Strength Reduction Factor —<br>Concrete Breakout Failure <sup>2</sup>               | $\phi_{cb}$        | _         |                                                                                                                                                    |                              |                 |           | 0.              | 70    |                 |       |                 |       |       |  |
|                                                                                     | -                  | Conc      | rete Pryout Stren                                                                                                                                  | gth in Sh                    | ear (ACI        | 318 Secti | ion D.6.3)      |       |                 |       |                 |       |       |  |
| Coefficient for Pryout Strength                                                     | K <sub>CP</sub>    | _         | 1.0                                                                                                                                                |                              | 2.0             | 1.0       |                 |       |                 | 2.0   |                 |       |       |  |
| Effective Embedment Depth                                                           | h <sub>ef</sub>    | in.       | 1½                                                                                                                                                 | 1½                           | 2½              | 21/4      | 3%              | 23/4  | 4½              | 3%    | 5               | 4½    | 9     |  |
| Strength Reduction Factor —<br>Concrete Pryout Failure <sup>4</sup>                 | $\phi_{cp}$        | _         |                                                                                                                                                    | 0.70                         |                 |           |                 |       |                 |       |                 | '     |       |  |
|                                                                                     | St                 | eel Stren | ength in Shear for Seismic Applications(ACI 318 Section D.3.3.)                                                                                    |                              |                 |           |                 |       |                 |       |                 |       |       |  |
| Shear Strength of Single Anchor for Seismic Loads ( ${\rm f'}_{\rm C}=2,\!500$ psi) | V <sub>sa.eq</sub> | lb.       | 5 1,800 6,510 9,930 11,775 15,020                                                                                                                  |                              |                 |           |                 |       |                 |       |                 |       |       |  |
| Strength Reduction Factor —<br>Steel Failure <sup>2</sup>                           | $\phi_{sa}$        | _         |                                                                                                                                                    |                              |                 | 0.        | 65              |       |                 |       |                 | 0.    | 60    |  |

- The information presented in this table must be used in conjunction with the design criteria of ACI 318-14 Chapter 17 or ACI 318-11 Appendix D, except as modified below.
- 2. The tabulated value of  $\phi_{sa}$  applies when the load combinations of Section 1605.2.1 of the IBC, ACI 318-14 Section 5.3 or ACI 318-11 Section 9.2 are used. If the load combinations of ACI 318-11 Appendix C are used, the appropriate value of  $\phi_{sa}$  must be determined in accordance with ACI 318 D.4.4.
- 3. The tabulated value of  $\phi_{cb}$  applies when both the load combinations of Section 1605.2.1 of the IBC, ACI 318-14 Section 5.3 or ACI 318-11 Section 9.2 are used and the requirements of ACI 318-14 17.3.3(c) or ACI 318-11 D.4.3(c) for Condition B are met. Condition B applies where supplementary reinforcement is not provided. For installations where complying supplementary reinforcement can be verified, the  $\phi_{cb}$  factors described in ACI 318-14 17.3.3(c) or ACI 318-11 D.4.3(c) for Condition A are allowed. If the load combinations of ACI 318-11 Appendix C are used, the appropriate value of  $\phi_{cb}$  must be determined in accordance with ACI 318-11 D.4.4(c).
- 4. The tabulated value of φ<sub>CD</sub> applies when both the load combinations of IBC Section 1605.2, ACI 318-14 5.3 or ACI 318-11 Section 9.2 are used and the requirements of ACI 318-14 17.3.3(c) or ACI 318-11 D.4.3(c) for Condition B are met. If the load combinations of ACI 318-11 Appendix C are used, appropriate value of φ<sub>CD</sub> must be determined in accordance with ACI 318-11 Section D.4.4(c).
- 5. The 1/4"-diameter carbon steel Strong-Bolt 2 anchor installation in cracked concrete is beyond the scope of this table.
- 6. The ¼"-diameter (6.4mm) anchor may be installed in top of uncracked normal-weight and sand-lightweight concrete over profile steel deck, where concrete thickness above upper flute meets the minimum thickness specified in the table on p. 136.
- 7. The %"- through 1"-diameter (9.5mm through 25.4mm) anchors may be installed in top of cracked and uncracked normal-weight and sand-lightweight concrete over profile steel deck, where concrete thickness above upper flute meets the minimum thickness specified in the table on p. 136.



Stainless-Steel Strong-Bolt 2 Shear Strength Design Data<sup>1</sup>

| 1 | IBC |  |
|---|-----|--|
|   | IBC |  |

0.65





| Stairliess-Steel Strong-Dolt 2 Shear Strei                                    | igar boo           |            | Nominal Anchor Diameter, d <sub>a</sub> (in.) |            |                |         |       |       |        |       |       |  |
|-------------------------------------------------------------------------------|--------------------|------------|-----------------------------------------------|------------|----------------|---------|-------|-------|--------|-------|-------|--|
| Characteristic                                                                | Symbol             |            |                                               |            |                |         |       |       |        |       |       |  |
|                                                                               |                    |            | 1/46                                          | 3/         | 8 <sup>7</sup> | 1/27    |       | 5%7   |        | 3/47  |       |  |
| Anchor Category                                                               | 1, 2 or 3          | _          | 1                                             |            |                |         |       |       |        |       |       |  |
| Nominal Embedment Depth                                                       | h <sub>nom</sub>   | in.        | 1¾                                            | 23/4       | 3%             | 3%      | 51/8  | 41/8  | 5¾     |       |       |  |
|                                                                               | Steel Stre         | ngth in S  | hear (ACI 318 Sec                             | ction D.6. | 1)             |         |       |       |        |       |       |  |
| Steel Strength in Shear                                                       | V <sub>sa</sub>    | lb.        | 1,605                                         | 3,0        | )85            | 7,2     | 45    | 6,745 | 10,760 | 15,   | 045   |  |
| Strength Reduction Factor — Steel Failure <sup>2</sup>                        | $\phi_{sa}$        | _          | 0.65                                          |            |                |         |       |       |        |       |       |  |
| Concrete Breakout Strength in Shear (ACI 318 Section D.6.2) <sup>8</sup>      |                    |            |                                               |            |                |         |       |       |        |       |       |  |
| Outside Diameter                                                              | d <sub>a</sub>     | in.        | 0.250                                         | 0.3        | 375            | 0.500   |       | 0.625 |        | 0.750 |       |  |
| Load Bearing Length of Anchor in Shear                                        | $\ell_e$           | in.        | 1.500                                         | 1.500      | 2.500          | 2.250   | 3.375 | 2.750 | 4.500  | 3.375 | 5.000 |  |
| Strength Reduction Factor — Concrete Breakout Failure <sup>3</sup>            | фсь                | -          |                                               |            |                | 0.      | 70    |       |        |       |       |  |
| Conc                                                                          | crete Pryou        | t Strengt  | h in Shear (ACI 31                            | 8 Section  | n D.6.3)       |         |       |       |        |       |       |  |
| Coefficient for Pryout Strength                                               | K <sub>CP</sub>    | _          | 1.0                                           |            | 2.0            | 1.0     |       | 2.0   |        |       |       |  |
| Effective Embedment Depth                                                     | h <sub>ef</sub>    | in.        | 1½                                            | 1½         | 2½             | 21/4    | 3%    | 23/4  | 41/2   | 3%    | 5     |  |
| Strength Reduction Factor — Concrete Pryout Failure <sup>4</sup>              | фср                | _          | 0.70                                          |            |                |         |       |       |        |       |       |  |
| Steel Streng                                                                  | gth in Shea        | r for Seis | mic Applications                              | (ACI 318   | Section        | D.3.3.) |       |       |        |       |       |  |
| Shear Strength of Single Anchor for Seismic Loads (f' $_{\it C}=2,\!500$ psi) | V <sub>sa.eq</sub> | lb.        | 5                                             | 3,0        | )85            | 6,100   |       | 6,745 | 10,760 | 13,   | 620   |  |

1. The information presented in this table must be used in conjunction with the design criteria of ACI 318-14 Chapter 17 or ACI 318-11 Appendix D, except as modified below.

 $\phi_{sa}$ 

- 2. The tabulated value of  $\phi_{sa}$  applies when the load combinations of Section 1605.2.1 of the IBC, ACI 318-14 Section 5.3 or ACI 318-11 Section 9.2 are used. If the load combinations of ACI 318-11 Appendix C are used, the appropriate value of  $\phi_{sa}$  must be determined in accordance with ACI 318 D.4.4.
- 3. The tabulated value of φ<sub>cb</sub> applies when both the load combinations of Section 1605.2.1 of the IBC, ACI 318-14 Section 5.3 or ACI 318-11 Section 9.2 are used and the requirements of ACI 318-14 17.3.3(c) or ACI 318-11 D.4.3(c) for Condition B are met. Condition B applies where supplementary reinforcement is not provided. For installations where complying supplementary reinforcement can be verified, the φ<sub>cb</sub> factors described in ACI 318-14 17.3.3(c) or ACI 318-11 D.4.3(c) for Condition A are allowed. If the load combinations of ACI 318-11 Appendix C are used, the appropriate value of φ<sub>cb</sub> must be determined in accordance with ACI 318-11 D.4.4(c).
- 4. The tabulated value of  $\phi_{CP}$  applies when both the load combinations of IBC Section 1605.2, ACI 318-14 5.3 or ACI 318-11 Section 9.2 are used and the requirements of ACI 318-14 17.3.3(c) or ACI 318-11 D.4.3(c) for Condition B are met. If the load combinations of ACI 318-11 Appendix C are used, appropriate value of  $\phi_{CP}$  must be determined in accordance with ACI 318-11 Section D.4.4(c).
- 5. The 1/4"-diameter stainless-steel Strong-Bolt 2 anchor installation in cracked concrete is beyond the scope of this table.
- 6. The ¼"-diameter (6.4mm) anchor may be installed in top of uncracked normal-weight and sand-lightweight concrete over profile steel deck, where concrete thickness above upper flute meets the minimum thickness specified in the table on p. 136.
- 7. The %"- through %"-diameter (9.5mm through 19.1mm) anchors may be installed in top of cracked and uncracked normal-weight and sand-lightweight concrete over profile steel deck, where concrete thickness above upper flute meets the minimum thickness specified in the table on p. 136.

Strength Reduction Factor — Steel Failure<sup>2</sup>

C-A-2018 @2018 SIMPSON STRONG-TIE COMPANY INC.

<sup>\*</sup> See p. 13 for an explanation of the load table icons.



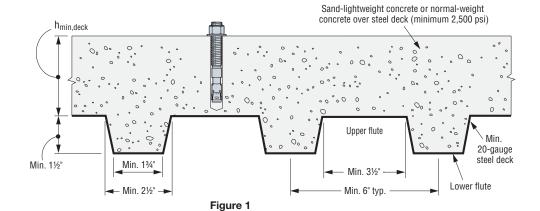
Carbon-Steel Strong-Bolt 2 Information for Installation in the Topside of Concrete-Filled Profile Steel Deck Floor and Roof Assemblies<sup>1,2,3,4</sup>

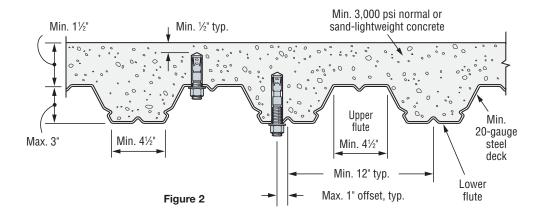


| Design Information                      | Cumbal                    | Units  | Nominal Anchor Diameter (in.) |       |      |  |  |  |
|-----------------------------------------|---------------------------|--------|-------------------------------|-------|------|--|--|--|
| Design information                      | Symbol                    | UIIILS | 3,                            | 1/2   |      |  |  |  |
| Nominal Embedment Depth                 | h <sub>nom</sub>          | in.    | 1                             | 1% 23 |      |  |  |  |
| Effective Embedment Depth               | h <sub>ef</sub>           | in.    | 1                             | 21/4  |      |  |  |  |
| Minimum Concrete Thickness <sup>5</sup> | h <sub>min,deck</sub>     | in.    | 21/2                          | 31/4  | 31/4 |  |  |  |
| Critical Edge Distance                  | C <sub>ac,deck,top</sub>  | in.    | 43/4                          | 4     | 4    |  |  |  |
| Minimum Edge Distance                   | C <sub>min,deck,top</sub> | in.    | 43/4 41/2                     |       | 43/4 |  |  |  |
| Minimum Spacing                         | S <sub>min,deck,top</sub> | in.    | 7                             | 61/2  | 8    |  |  |  |

For SI: 1 inch = 25.4mm; 1 lbf = 4.45N

- 1. Installation must comply with the table on p. 136 and Figure 1 below.
- Design capacity shall be based on calculations according to values in the tables on pp. 138 and 140.
- 3. Minimum flute depth (distance from top of flute to bottom of flute) is  $1\frac{1}{2}$ ".
- 4. Steel deck thickness shall be a minimum 20 gauge.
- 5. Minimum concrete thickness (*h<sub>min,deck</sub>*) refers to concrete thickness above upper flute.


Stainless-Steel Strong-Bolt 2 Information for Installation in the Topside of Concrete-Filled Profile Steel Deck Floor and Roof Assemblies<sup>1,2,3,4</sup>




| Decign Information                      | Cumbal                    | Units  | Nominal Anchor Diameter (in.) |      |      |  |  |  |
|-----------------------------------------|---------------------------|--------|-------------------------------|------|------|--|--|--|
| Design Information                      | Symbol                    | UIIILS | 3,                            | 1/2  |      |  |  |  |
| Nominal Embedment Depth                 | h <sub>nom</sub>          | in.    | 1                             | 23/4 |      |  |  |  |
| Effective Embedment Depth               | h <sub>ef</sub>           | in.    | 1                             | 21/4 |      |  |  |  |
| Minimum Concrete Thickness <sup>5</sup> | h <sub>min,deck</sub>     | in.    | 21/2 31/4                     |      | 31/4 |  |  |  |
| Critical Edge Distance                  | C <sub>ac,deck,top</sub>  | in.    | 43/4                          | 4    | 4    |  |  |  |
| Minimum Edge Distance                   | C <sub>min,deck,top</sub> | in.    | 43⁄4                          |      | 6    |  |  |  |
| Minimum Spacing                         | S <sub>min,deck,top</sub> | in.    | 6                             | 1/2  | 8    |  |  |  |

For SI: 1 inch = 25.4mm; 1 lbf = 4.45N

- 1. Installation must comply with the table on p. 137 and Figure 1 below.
- 2. Design capacity shall be based on calculations according to values in the tables on pp. 139 and 141.
- 3. Minimum flute depth (distance from top of flute to bottom of flute) is 1½".
- 4. Steel deck thickness shall be a minimum 20 gauge.
- 5. Minimum concrete thickness (*h<sub>min,deck</sub>*) refers to concrete thickness above upper flute.





\* See p. 13 for an explanation of the load table icons

**Mechanical** Anchors

# **Strong-Bolt® 2** Design Information — Concrete



Carbon-Steel Strong-Bolt 2 Tension and Shear Strength Design Data for the Soffit of Concrete over Profile Steel Deck Floor and Roof Assemblies<sup>1,2,6,8,9</sup>



|                                                                        |                          |        |                    |                    |                    | Nominal A          | nchor Dia          | meter (in.)        | )                  |                    |                    |  |
|------------------------------------------------------------------------|--------------------------|--------|--------------------|--------------------|--------------------|--------------------|--------------------|--------------------|--------------------|--------------------|--------------------|--|
| Characteristic                                                         | Oumbal                   | Units  | Carbon Steel       |                    |                    |                    |                    |                    |                    |                    |                    |  |
|                                                                        | Symbol                   |        |                    | Upper Flute        |                    |                    |                    |                    |                    |                    |                    |  |
|                                                                        |                          |        | 3,                 | / <sub>8</sub>     | 1,                 | /2                 | 5,                 | /s                 | 3/4                | 3/8                | 1/2                |  |
| Nominal Embedment Depth                                                | h <sub>nom</sub>         | in.    | 2                  | 3%                 | 2¾                 | 41/2               | 3%                 | 5%                 | 41/8               | 2                  | 2¾                 |  |
| Effective Embedment Depth                                              | h <sub>ef</sub>          | in.    | 15/8               | 3                  | 21/4               | 4                  | 23/4               | 5                  | 3%                 | 15/8               | 21/4               |  |
| Installation Torque                                                    | T <sub>inst</sub>        | ftlbf. | 3                  | 30                 | 60                 |                    | 90                 |                    | 150                | 30                 | 60                 |  |
| Pullout Strength, concrete on metal deck (cracked)3,4                  | N <sub>p,deck,cr</sub>   | lb.    | 1,040 <sup>7</sup> | 2,615 <sup>7</sup> | 2,040 <sup>7</sup> | 2,730 <sup>7</sup> | 2,615 <sup>7</sup> | 4,990 <sup>7</sup> | 2,815 <sup>7</sup> | 1,340 <sup>7</sup> | 3,785 <sup>7</sup> |  |
| Pullout Strength, concrete on metal deck (uncracked)3,4                | N <sub>p,deck,uncr</sub> | lb.    | 1,765 <sup>7</sup> | 3,150 <sup>7</sup> | 2,580 <sup>7</sup> | 3,8407             | 3,6857             | 6,565 <sup>7</sup> | 3,8007             | 2,275 <sup>7</sup> | 4,795 <sup>7</sup> |  |
| Pullout Strength, concrete on metal deck (seismic) <sup>3,4</sup>      | N <sub>p,deck,eq</sub>   | lb.    | 1,0407             | 2,615 <sup>7</sup> | 2,0407             | 2,730 <sup>7</sup> | 2,615 <sup>7</sup> | 4,990 <sup>7</sup> | 2,815 <sup>7</sup> | 1,340 <sup>7</sup> | 3,7857             |  |
| Steel Strength in Shear, concrete on metal deck <sup>5</sup>           | V <sub>sa,deck</sub>     | lb.    | 1,595              | 3,490              | 2,135              | 4,580              | 2,640              | 7,000              | 4,535              | 3,545              | 5,920              |  |
| Steel Strength in Shear, concrete on metal deck (seismic) <sup>5</sup> | V <sub>sa,deck,eq</sub>  | lb.    | 1,595              | 3,490              | 1,920              | 4,120              | 2,375              | 6,300              | 3,690              | 3,545              | 5,330              |  |

- The information presented in this table must be used in conjunction with the design criteria of ACI 318-14 Chapter 17 or ACI 318-11 Appendix D, except as modified below.
- 2. Profile steel deck must comply with the configuration in Figure 2 on the previous page, and have a minimum base-steel thickness of 0.035 inch (20 gauge). Steel must comply with ASTM A 653/A 653M SS Grade 33 with minimum yield strength of 33,000 psi. Concrete compressive strength shall be 3,000 psi minimum.
- 3. For anchors installed in the soffit of sand-lightweight or normal-weight concrete over metal deck floor and roof assemblies, calculation of the concrete breakout strength may be omitted.
- 4. In accordance with ACI 318-14 Section 17.4.3.2 or ACI 318-11 Section D.5.3.2, the nominal pullout strength in cracked concrete for anchors installed in the soffit of sand-lightweight or normal-weight concrete over metal deck floor and rood assemblies  $N_{\mathcal{D},deck,cr}$  shall be substituted for  $N_{\mathcal{D},cr}$ . Where analysis indicates no cracking at service loads, the normal pullout strength in

- uncracked concrete  $N_{p,deck,uncr}$  shall be substituted for  $N_{p,uncr}$ . For seismic loads,  $N_{p,deck,eq}$  shall be substituted for  $N_p$ .
- 5. In accordance with ACI 318-14 Section 17.5.1.2(C) or ACI 318-11 Section D.6.1.2(c), the shear strength for anchors installed in the soffit of sand-lightweight or normal-weight concrete over metal deck floor and rood assemblies V<sub>Sa</sub>, deck shall be substituted for V<sub>Sa</sub>. For seismic loads, V<sub>Sa,deck,eq</sub> shall be substituted for V<sub>Sa</sub>.
- 6. The minimum anchor spacing along the flute must be the greater of  $3.0h_{\it ef}$  or 1.5 times the flute width.
- 7. The characteristic pull-out strength for greater concrete compressive strengths shall be increased by multiplying the tabular value by  $(f_c/3,000~\mathrm{psi})^{0.5}$ .
- 8. Concrete shall be normal-weight or structural sand-lightweight concrete having a minimum specified compressive strength, f'<sub>C</sub>, of 3,000 psi.
- 9. Minimum distance to edge of panel is 2hef.

# Stainless-Steel Strong-Bolt 2 Tension and Shear Strength Design Data for the Soffit of Concrete over Profile Steel Deck Floor and Roof Assemblies<sup>1,2,6,10,11</sup>



|                                                                        |                          |        | Stainless Steel |                |                    |                    |                    |                    |        |        |                    |  |
|------------------------------------------------------------------------|--------------------------|--------|-----------------|----------------|--------------------|--------------------|--------------------|--------------------|--------|--------|--------------------|--|
| Characteristic                                                         | Symbol                   | Units  | Lower Flute     |                |                    |                    |                    |                    |        |        | Upper Flute        |  |
|                                                                        |                          |        | 3,              | / <sub>8</sub> | 1                  | /2                 | 5,                 | / <sub>8</sub>     | 3/4    | 3/8    | 1/2                |  |
| Nominal Embedment Depth                                                | h <sub>nom</sub>         | in.    | 2               | 3%             | 23/4               | 41/2               | 3%                 | 5%                 | 41/8   | 2      | 23/4               |  |
| Effective Embedment Depth                                              | h <sub>ef</sub>          | in.    | 1%              | 3              | 21/4               | 4                  | 23/4               | 5                  | 3%     | 1 5/8  | 21/4               |  |
| Installation Torque                                                    | T <sub>inst</sub>        | ftlbf. | 3               | 30 65          |                    | 80                 |                    | 150                | 30     | 65     |                    |  |
| Pullout Strength, concrete on metal deck (cracked) <sup>3</sup>        | N <sub>p,deck,cr</sub>   | lb.    | 1,2308          | 2,6058         | 1,990 <sup>7</sup> | 2,550 <sup>7</sup> | 1,750 <sup>9</sup> | 4,0209             | 3,0307 | 1,5508 | 2,055 <sup>7</sup> |  |
| Pullout Strength, concrete on metal deck (uncracked)3                  | N <sub>p,deck,uncr</sub> | lb.    | 1,5808          | 3,9508         | 2,475 <sup>7</sup> | 2,660 <sup>7</sup> | 2,470 <sup>7</sup> | 5,000 <sup>7</sup> | 4,2759 | 1,9908 | 2,560 <sup>7</sup> |  |
| Pullout Strength, concrete on metal deck (seismic) <sup>5</sup>        | N <sub>p,deck,eq</sub>   | lb.    | 1,2308          | 2,3458         | 1,990 <sup>7</sup> | 2,550 <sup>7</sup> | 1,750 <sup>9</sup> | 4,0209             | 3,0307 | 1,5508 | 2,055 <sup>7</sup> |  |
| Steel Strength in Shear, concrete on metal deck4                       | V <sub>sa,deck</sub>     | lb.    | 2,285           | 3,085          | 3,430              | 4,680              | 3,235              | 5,430              | 6,135  | 3,085  | 5,955              |  |
| Steel Strength in Shear, concrete on metal deck (seismic) <sup>5</sup> | V <sub>sa,deck,eq</sub>  | lb.    | 2,285           | 3,085          | 2,400              | 3,275              | 3,235              | 5,430              | 5,520  | 3,085  | 4,170              |  |

- The information presented in this table must be used in conjunction with the design criteria of ACI 318-14 Chapter 17 or ACI 318-11 Appendix D, except as modified below.
- Profile steel deck must comply with the configuration in Figure 2 on the previous page, and have a minimum base-steel thickness of 0.035 inch (20 gauge). Steel must comply with ASTM A 653/A 653M SS Grade 33 with minimum yield strength of 33,000 psi. Concrete compressive strength shall be 3,000 psi minimum.
- For anchors installed in the soffit of sand-lightweight or normal-weight concrete over metal deck floor and roof assemblies, calculation of the concrete breakout strength may be omitted.
- 4. In accordance with ACI 318-14 Section 17.4.3.2 or ACI 318-11 Section D.5.3.2, the nominal pullout strength in cracked concrete for anchors installed in the soffit of sand-lightweight or normal-weight concrete over metal deck floor and rood assemblies N<sub>D,deck,cr</sub> shall be substituted for N<sub>D,cr</sub>. Where analysis indicates no cracking at service loads, the normal pullout strength in uncracked concrete N<sub>D,deck,uncr</sub> shall be substituted for N<sub>D,uncr</sub>. For seismic loads, N<sub>D,deck,eq</sub> shall be substituted for N<sub>D</sub>.
- 5. In accordance with ACI 318-14 Section 17.5.1.2(C) or ACI 318-11 Section D.6.1.2(c), the shear strength for anchors installed in the soffit of sand-lightweight or normal-weight concrete over metal deck floor and rood assemblies V<sub>sa</sub>, deck shall be substituted for V<sub>sa</sub>. For seismic loads, V<sub>sa</sub>, deck,eg shall be substituted for V<sub>sa</sub>.
- The minimum anchor spacing along the flute must be the greater of 3.0hef or 1.5 times the flute width.
- The characteristic pull-out strength for greater concrete compressive strengths shall be increased by multiplying the tabular value by (f'<sub>C</sub> / 3,000 psi)<sup>0.5</sup>.
- 8. The characteristic pull-out strength for greater concrete compressive strengths shall be increased by multiplying the tabular value by  $(f_c^*/3,000~\mathrm{psi})^{0.3}$ .
- 9. The characteristic pull-out strength for greater concrete compressive strengths shall be increased by multiplying the tabular value by (f' $_{\rm C}$ / 3,000 psi) $^{0.4}$ .
- Concrete shall be normal-weight or structural sand-lightweight concrete having a minimum specified compressive strength, f'<sub>c</sub>, of 3,000 psi.
- 11. Minimum distance to edge of panel is 2hef.

<sup>\*</sup> See p. 13 for an explanation of the load table icons.



Carbon-Steel Strong-Bolt 2 Anchor Tension and Shear Strength Design Data for the Soffit of Concrete over Profile Steel Deck, Floor and Roof Assemblies<sup>1,2,6,8,9</sup>



|                                                                        |                          |        | Carbon Steel Nominal Anchor Diameter (in.)  Installed in Lower Flute |       |       |       |          |       |  |  |
|------------------------------------------------------------------------|--------------------------|--------|----------------------------------------------------------------------|-------|-------|-------|----------|-------|--|--|
| Characteristic                                                         | Symbol                   | Units  |                                                                      |       |       |       |          |       |  |  |
|                                                                        | 3/8                      |        | /8                                                                   | 1/2   |       | 5,    | <b>%</b> |       |  |  |
| Nominal Embedment Depth                                                | h <sub>nom</sub>         | in.    | 2                                                                    | 3%    | 23/4  | 41/2  | 3%       | 5%    |  |  |
| Effective Embedment Depth                                              | h <sub>ef</sub>          | in.    | 1%                                                                   | 3     | 21/4  | 4     | 2¾       | 5     |  |  |
| Minimum Hole Depth                                                     | h <sub>hole</sub>        | in.    | 21/8                                                                 | 3½    | 3     | 43/4  | 3%       | 5%    |  |  |
| Minimum Concrete Thickness                                             | h <sub>min,deck</sub>    | in.    | 2                                                                    | 2     | 2     | 31/4  | 2        | 31/4  |  |  |
| Installation Torque                                                    | T <sub>inst</sub>        | ftlbf. | 3                                                                    | 30 60 |       | 0     | 90       |       |  |  |
| Pullout Strength, concrete on metal deck (cracked)3,4,7                | N <sub>p,deck,cr</sub>   | lb.    | 1,295                                                                | 2,705 | 2,585 | 4,385 | 3,015    | 5,120 |  |  |
| Pullout Strength, concrete on metal deck (uncracked) <sup>3,4,7</sup>  | N <sub>p,deck,uncr</sub> | lb.    | 2,195                                                                | 3,260 | 3,270 | 6,165 | 4,250    | 6,735 |  |  |
| Pullout Strength, concrete on metal deck (seismic) <sup>3,4,7</sup>    | N <sub>p,deck,eq</sub>   | lb.    | 1,295                                                                | 2,705 | 2,585 | 4,385 | 3,015    | 5,120 |  |  |
| Steel Strength in Shear, concrete on metal deck <sup>5</sup>           | V <sub>sa,deck</sub>     | lb.    | 1,535                                                                | 3,420 | 2,785 | 5,950 | 3,395    | 6,745 |  |  |
| Steel Strength in Shear, concrete on metal deck (seismic) <sup>5</sup> | V <sub>sa,deck,eq</sub>  | lb.    | 1,535                                                                | 3,420 | 2,505 | 5,350 | 3,055    | 6,070 |  |  |

- The information presented in this table must be used in conjunction with the design criteria of ACI 318-14 Chapter 17 or ACI 318-11 Appendix D, except as modified below.
- 2. Profile steel deck must comply with the configuration in Figure 3 below, and have a minimum base-steel thickness of 0.035 inch (20 gauge). Steel must comply with ASTM A 653/A 653M SS Grade 50 with minimum yield strength of 50,000 psi. Concrete compressive strength shall be 3,000 psi minimum.
- For anchors installed in the soffit of sand-lightweight or normal-weight concrete over metal deck floor and roof assemblies, calculation of the concrete breakout strength may be omitted.
- 4. In accordance with ACI 318-14 Section 17.4.3.2 or ACI 318-11 Section D.5.3.2, the nominal pullout strength in cracked concrete for anchors installed in the soffit of sand-lightweight or normal-weight concrete over metal deck floor and rood assemblies  $N_{p,deck,cr}$  shall be substituted for  $N_{p,cr}$ . Where analysis indicates no cracking at service loads, the normal pullout strength in uncracked concrete  $N_{p,deck,uncr}$  shall be substituted for  $N_{p,uncr}$ . For seismic loads,  $N_{p,deck,eq}$  shall be substituted for  $N_p$ .
- 5. In accordance with ACI 318-14 Section 17.5.1.2(c) or ACI 318-11, the shear strength for anchors installed in the soffit of sand-lightweight or normal-weight concrete over metal deck floor and rood assemblies V<sub>sa</sub>, deck shall be substituted for V<sub>sa</sub>. For seismic loads, V<sub>sa,deck,eq</sub> shall be substituted for V<sub>sa</sub>.
- 6. The minimum anchor spacing along the flute must be the greater of  $3.0h_{ef}$  or 1.5 times the flute width.
- 7. The characteristic pull-out strength for greater concrete compressive strengths shall be increased by multiplying the tabular value by  $(f_c^i/3,000 \text{ ps})^{0.5}$ .
- 8. Concrete shall be normal-weight or structural sand-lightweight concrete having a minimum specified compressive strength, f'<sub>c</sub>, of 3,000 psi.
- 9. Minimum distance to edge of panel is  $2h_{ef}$

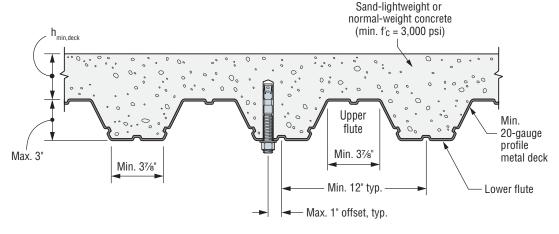



Figure 3

<sup>\*</sup> See p. 13 for an explanation of the load table icons

# Strong-Bolt® 2 Design Information — Masonry



**Mechanical** Anchors

Carbon-Steel Strong-Bolt 2 Tension and Shear Loads in 8" Lightweight, Medium-Weight and Normal-Weight Grout-Filled CMU

| Size              | Drill Bit                                                   | Min. Embed.         | Install. Torque    | Critical               | Critical              | Critical            | Tensio               | n Load                | Shear                | r Load                |
|-------------------|-------------------------------------------------------------|---------------------|--------------------|------------------------|-----------------------|---------------------|----------------------|-----------------------|----------------------|-----------------------|
| in.<br>(mm)       | Dia.<br>(in.)                                               | Depth<br>in. (mm)   | ftlb.<br>(N-m)     | Edge Dist.<br>in. (mm) | End Dist.<br>in. (mm) | Spacing<br>in. (mm) | Ultimate<br>lb. (kN) | Allowable<br>lb. (kN) | Ultimate<br>lb. (kN) | Allowable<br>lb. (kN) |
|                   | Anchor Installed in the Face of the CMU Wall (See Figure 1) |                     |                    |                        |                       |                     |                      |                       |                      |                       |
| <b>1/4</b> (6.4)  | 1/4                                                         | <b>13/4</b> (45)    | <b>4</b> (5.4)     | <b>12</b> (305)        | <b>12</b> (305)       | <b>8</b><br>(203)   | <b>1,150</b> (5.1)   | <b>230</b> (1.0)      | <b>1,500</b> (6.7)   | <b>300</b> (1.3)      |
| <b>3/8</b> (9.5)  | 3/8                                                         | <b>25%</b><br>(67)  | <b>20</b> (27.1)   | <b>12</b> (305)        | <b>12</b> (305)       | <b>8</b> (203)      | <b>2,185</b> (9.7)   | <b>435</b> (1.9)      | <b>3,875</b> (17.2)  | <b>775</b> (3.4)      |
| <b>½</b> (12.7)   | 1/2                                                         | <b>3½</b> (89)      | <b>35</b> (47.5)   | <b>12</b> (305)        | <b>12</b> (305)       | <b>8</b> (203)      | <b>2,645</b> (11.8)  | <b>530</b> (2.4)      | <b>5,055</b> (22.5)  | <b>1,010</b> (4.5)    |
| <b>5%</b> (15.9)  | 5/8                                                         | <b>4</b> %<br>(111) | <b>55</b> (74.6)   | <b>20</b> (508)        | <b>20</b> (508)       | <b>8</b> (203)      | <b>4,460</b> (19.8)  | <b>890</b> (4.0)      | <b>8,815</b> (39.2)  | <b>1,765</b> (7.9)    |
| <b>3/4</b> (19.1) | 3/4                                                         | <b>51⁄4</b> (133)   | <b>100</b> (135.6) | <b>20</b> (508)        | <b>20</b> (508)       | <b>8</b> (203)      | <b>5,240</b> (23.3)  | <b>1,050</b> (4.7)    | <b>12,450</b> (55.4) | <b>2,490</b> (11.1)   |

- 1. The tabulated allowable loads are based on a safety factor of 5.0 for installation under the IBC and IRC.
- 2. Listed loads may be applied to installations on the face of the CMU wall at least  $1\,^{1}\!4$ " away from headjoints.
- 3. Values for 8"-wide concrete masonry units (CMU) with a minimum specified compressive strength of masonry,  $f'_m$ , at 28 days is 1,500 psi.
- 4. Embedment depth is measured from the outside face of the concrete masonry unit.
- 5. Tension and shear loads may be combined using the parabolic interaction equation (n =  $\frac{4}{3}$ ).
- Refer to allowable load adjustment factors for edge distance and spacing on p. 146.
- Allowable loads may be increased 331/4% for short-term loading due to wind forces or seismic forces where permitted by code.

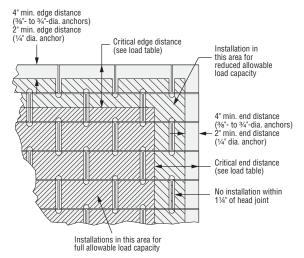



Figure 1

# Carbon-Steel Strong-Bolt 2 Tension and Shear Loads in 8" Lightweight Medium-weight and Normal-Weight Grout-Filled CMU

| o Ligitivi       | Lightweight, Mediani-weight and Normal-Weight Glodt-Filled ONO       |                          |                    |                     |                       |                     |                      |                       |                      |                       |                      |                       |
|------------------|----------------------------------------------------------------------|--------------------------|--------------------|---------------------|-----------------------|---------------------|----------------------|-----------------------|----------------------|-----------------------|----------------------|-----------------------|
| Size             | Drill Bit<br>Dia.                                                    | Min.<br>Embed.<br>Depth. | Install.<br>Torque | Min.<br>Edge. Dist. | Critical<br>End Dist. | Critical<br>Spacing | Tensio               | on Load               |                      | r Load<br>To Edge     |                      | r Load<br>To Edge     |
| in.<br>(mm)      | in.                                                                  | in.<br>(mm)              | ftİb.<br>(N-m)     | in.<br>(mm)         | in.<br>(mm)           | in.<br>(mm)         | Ultimate<br>lb. (kN) | Allowable<br>lb. (kN) | Ultimate<br>lb. (kN) | Allowable<br>lb. (kN) | Ultimate<br>lb. (kN) | Allowable<br>lb. (kN) |
|                  | Anchor Installed in Cell Opening or Web (Top of Wall) (See Figure 2) |                          |                    |                     |                       |                     |                      |                       |                      |                       |                      |                       |
| <b>½</b> (12.7)  | 1/2                                                                  | <b>3½</b> (89)           | <b>35</b> (47.5)   | <b>13/4</b> (45)    | <b>12</b> (305)       | <b>8</b> (203)      | <b>2,080</b> (9.3)   | <b>415</b> (1.8)      | <b>1,165</b> (5.2)   | <b>235</b> (1.0)      | <b>3,360</b> (14.9)  | <b>670</b> (3.0)      |
| <b>5%</b> (15.9) | 5/8                                                                  | <b>4</b> % (111)         | <b>55</b> (74.6)   | <b>1¾</b> (45)      | <b>12</b> (305)       | <b>8</b> (203)      | <b>3,200</b> (14.2)  | <b>640</b> (2.8)      | <b>1,370</b> (6.1)   | <b>275</b> (1.2)      | <b>3,845</b> (17.1)  | <b>770</b> (3.4)      |

- The tabulated allowable loads are based on a safety factor of 5.0 for installation under the IBC and IRC.
- 2. Values for 8"-wide concrete masonry units (CMU) with a minimum specified compressive strength of masonry,  $f'_m$ , at 28 days is 1,500 psi.
- 3. Tension and shear loads may be combined using the parabolic interaction equation (n = %).
- 4. Refer to allowable load adjustment factors for edge distance and spacing on p. 146.
- 5. Allowable loads may be increased 331/4% for short-term loading due to wind forces or seismic forces where permitted by code.

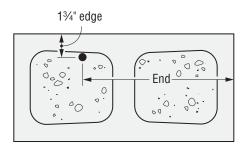



Figure 2

<sup>\*</sup> See p. 13 for an explanation of the load table icons.

# C-A-2018 @2018 SIMPSON STRONG-TIE COMPANY INC.

# **Strong-Bolt® 2** Design Information — Masonry



Carbon-Steel Strong-Bolt 2 Allowable Load Adjustment Factors for Face-of-Wall Installation in 8" Grout-Filled CMU: Edge Distance and Spacing, Tension and Shear Loads

**IBC** 

#### How to use these charts:

- 1. The following tables are for reduced edge distance and spacing.
- 2. Locate the anchor size to be used for either a tension and/or shear load application.
- 3. Locate the embedment (E) at which the anchor is to be installed.
- 4. Locate the edge distance (cact) or spacing (sact) at which the anchor is to be installed.

#### Edge or End Distance Tension (f<sub>a</sub>)

|                           | Dia.              | 1/4  | 3/8  | 1/2  | 5/8  | 3/4  |
|---------------------------|-------------------|------|------|------|------|------|
|                           | Ε                 | 13/4 | 2%   | 31/2 | 4%   | 51/4 |
| c <sub>act</sub><br>(in.) | C <sub>cr</sub>   | 12   | 12   | 12   | 20   | 20   |
| (111.)                    | C <sub>min</sub>  | 2    | 4    | 4    | 4    | 4    |
|                           | f <sub>cmin</sub> | 1.00 | 1.00 | 1.00 | 1.00 | 0.97 |
| 2                         |                   | 1.00 |      |      |      |      |
| 4                         |                   | 1.00 | 1.00 | 1.00 | 1.00 | 0.97 |
| 6                         |                   | 1.00 | 1.00 | 1.00 | 1.00 | 0.97 |
| 8                         |                   | 1.00 | 1.00 | 1.00 | 1.00 | 0.98 |
| 10                        |                   | 1.00 | 1.00 | 1.00 | 1.00 | 0.98 |
| 12                        |                   | 1.00 | 1.00 | 1.00 | 1.00 | 0.99 |
| 14                        |                   |      |      |      | 1.00 | 0.99 |
| 16                        |                   |      |      |      | 1.00 | 0.99 |
| 18                        |                   |      |      |      | 1.00 | 1.00 |
| 20                        |                   |      |      |      | 1.00 | 1.00 |

- 5. The load adjustment factor (f<sub>c</sub> or f<sub>s</sub>) is the intersection of the row and column.
- 6. Multiply the allowable load by the applicable load adjustment factor.
- 7. Reduction factors for multiple edges or spacings are multiplied together.

#### Edge or End Distance Shear (f<sub>c</sub>)

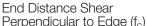
| Lage                      | J. L. 10          |      | .00 011 | 00 () |      |      |                 |
|---------------------------|-------------------|------|---------|-------|------|------|-----------------|
|                           | Dia.              | 1/4  | 3/8     | 1/2   | 5/8  | 3/4  | IBC             |
|                           | Ε                 | 13/4 | 25/8    | 31/2  | 43/8 | 51/4 |                 |
| c <sub>act</sub><br>(in.) | C <sub>cr</sub>   | 12   | 12      | 12    | 20   | 20   | <b>→</b>        |
| (111.)                    | C <sub>min</sub>  | 2    | 4       | 4     | 4    | 4    | 87 B.           |
|                           | f <sub>cmin</sub> | 0.88 | 0.71    | 0.60  | 0.36 | 0.28 | (22)2           |
| 2                         |                   | 0.88 |         |       |      |      |                 |
| 4                         |                   | 0.90 | 0.71    | 0.60  | 0.36 | 0.28 |                 |
| 6                         |                   | 0.93 | 0.78    | 0.70  | 0.44 | 0.37 | / J             |
| 8                         |                   | 0.95 | 0.86    | 0.80  | 0.52 | 0.46 | (Signalization) |
| 10                        |                   | 0.98 | 0.93    | 0.90  | 0.60 | 0.55 |                 |
| 12                        |                   | 1.00 | 1.00    | 1.00  | 0.68 | 0.64 |                 |
| 14                        |                   |      |         |       | 0.76 | 0.73 |                 |
| 16                        |                   |      |         |       | 0.84 | 0.82 |                 |
| 18                        |                   |      |         |       | 0.92 | 0.91 |                 |
| 20                        |                   |      |         |       | 1.00 | 1.00 |                 |



| - 1   | 0                 | ( ). | <i>'</i> |      |      |      |
|-------|-------------------|------|----------|------|------|------|
|       | Dia.              | 1/4  | 3/8      | 1/2  | 5/8  | 3/4  |
|       | Ε                 | 13/4 | 25/8     | 31/2 | 4%   | 51/4 |
| Sact  | Scr               | 8    | 8        | 8    | 8    | 8    |
| (in.) | Smin              | 4    | 4        | 4    | 4    | 4    |
|       | f <sub>smin</sub> | 1.00 | 1.00     | 0.93 | 0.86 | 0.80 |
| 4     |                   | 1.00 | 1.00     | 0.93 | 0.86 | 0.80 |
| 6     |                   | 1.00 | 1.00     | 0.97 | 0.93 | 0.90 |
| 8     |                   | 1.00 | 1.00     | 1.00 | 1.00 | 1.00 |



Spacing Shear (f<sub>s</sub>)


|       | Dia.              | 1/4  | 3/8  | 1/2  | 5/8  | 3/4  |
|-------|-------------------|------|------|------|------|------|
|       | Ε                 | 13/4 | 25/8 | 31/2 | 43/8 | 51/4 |
| Sact  | Scr               | 8    | 8    | 8    | 8    | 8    |
| (in.) | Smin              | 4    | 4    | 4    | 4    | 4    |
|       | f <sub>smin</sub> | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 |
| 4     |                   | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 |
| 6     |                   | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 |
| 8     |                   | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 |



Load Adjustment Factors for Carbon-Steel Strong-Bolt 2 Wedge Anchors in Top-of-Wall Installation in 8" Grout-Filled CMU: Edge Distance and Spacing, Tension and Shear Loads

**End Distance** 

| rensio                    | n (ī <sub>c</sub> ) |      |      |           |
|---------------------------|---------------------|------|------|-----------|
|                           | Dia.                | 1/2  | 5/8  | IBC       |
|                           | Ε                   | 31/2 | 4%   |           |
| s <sub>act</sub><br>(in.) | C <sub>cr</sub>     | 12   | 12   | <b>1</b>  |
| (111.)                    | C <sub>min</sub>    | 4    | 4    | 8V 88     |
|                           | f <sub>cmin</sub>   | 1.00 | 1.00 | ( = =   = |
| 4                         |                     | 1.00 | 1.00 |           |
| 6                         |                     | 1.00 | 1.00 |           |
| 8                         |                     | 1.00 | 1.00 |           |
| 10                        |                     | 1.00 | 1.00 | _         |
| 12                        |                     | 1.00 | 1.00 |           |



| i orportatodiai to Lago (10 |                   |      |      |  |  |
|-----------------------------|-------------------|------|------|--|--|
|                             | Dia.              | 1/2  | 5/8  |  |  |
|                             | Ε                 | 31/2 | 4%   |  |  |
| c <sub>act</sub><br>(in.)   | Ccr               | 12   | 12   |  |  |
| (111.)                      | C <sub>min</sub>  | 4    | 4    |  |  |
|                             | f <sub>cmin</sub> | 0.90 | 0.83 |  |  |
| 4                           |                   | 0.90 | 0.83 |  |  |
| 6                           |                   | 0.93 | 0.87 |  |  |
| 8                           |                   | 0.95 | 0.92 |  |  |
| 10                          |                   | 0.98 | 0.96 |  |  |
| 12                          |                   | 1.00 | 1.00 |  |  |

**End Distance** 

Shear Parallel to Edge (f.)

| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                     | Shear            | Paralle           |      | ige (i <sub>c</sub> ) |    |
|-----------------------------------------------------------------------------------------------------------|------------------|-------------------|------|-----------------------|----|
| $\begin{array}{c cccc} c_{\text{act}} & c_{cr} & 12 & 12 \\ \hline c_{min} & 4 & 4 \\ \hline \end{array}$ |                  | Dia.              | 1/2  | 5/8                   |    |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                     | _                | Ε                 | 31/2 | 4%                    | Ľ  |
| <i>c<sub>min</sub></i> 4 4                                                                                | C <sub>act</sub> | C <sub>cr</sub>   | 12   | 12                    |    |
| f <sub>cmin</sub> 0.53         0.50           4         0.53         0.50                                 | (111.)           | C <sub>min</sub>  | 4    | 4                     | 27 |
| 4 0.53 0.50                                                                                               |                  | f <sub>cmin</sub> | 0.53 | 0.50                  | ١  |
|                                                                                                           | 4                |                   | 0.53 | 0.50                  |    |
| 6 0.65 0.63                                                                                               | 6                |                   | 0.65 | 0.63                  |    |
| 8 0.77 0.75                                                                                               | 8                |                   | 0.77 | 0.75                  | l. |
| 10 0.88 0.88                                                                                              | 10               |                   | 0.88 | 0.88                  |    |
| 12 1.00 1.00                                                                                              | 12               |                   | 1.00 | 1.00                  |    |



| Spacir                    | ng Tens           | sion († <sub>s.</sub> | )    |                    |
|---------------------------|-------------------|-----------------------|------|--------------------|
|                           | Dia.              | 1/2                   | 5/8  | IBC                |
|                           | Ε                 | 31/2                  | 4%   |                    |
| s <sub>act</sub><br>(in.) | s <sub>cr</sub>   | 8                     | 8    |                    |
| (111.)                    | Smin              | 4                     | 4    |                    |
|                           | f <sub>cmin</sub> | 0.93                  | 0.86 | (22)               |
| 4                         |                   | 0.93                  | 0.86 |                    |
| 6                         |                   | 0.97                  | 0.93 | <del>n n</del>     |
| 8                         |                   | 1.00                  | 1.00 | Ĭ <del>4 →</del> N |

Spacing Shear Perpendicular or Parallel to Edge (f<sub>s</sub>)

| o: : di:di:o: to _digo (.5) |                   |      |      |  |  |  |
|-----------------------------|-------------------|------|------|--|--|--|
|                             | Dia.              | 1/2  | 5/8  |  |  |  |
|                             | Ε                 | 31/2 | 43/8 |  |  |  |
| s <sub>act</sub><br>(in.)   | s <sub>cr</sub>   | 8    | 8    |  |  |  |
| (111.)                      | Smin              | 4    | 4    |  |  |  |
|                             | f <sub>cmin</sub> | 1.00 | 1.00 |  |  |  |
| 4                           |                   | 1.00 | 1.00 |  |  |  |
| 6                           |                   | 1.00 | 1.00 |  |  |  |
| 8                           |                   | 1.00 | 1.00 |  |  |  |



**IBC** 

\* See p. 13 for an explanation of the load table icons.

# Strong-1

A non-bottom-bearing, wedge-style expansion anchor for use in solid concrete or grout-filled masonry. The Wedge-All wedge anchor is available in carbon steel with zinc or mechanically galvanized coating, as well as Types 303/304 and Type 316 stainless steel. Threaded studs are set by tightening the nut to the specified torque. The Wedge-All is code listed for grout-filled masonry applications.

#### **Features**

- Code-listed under IBC/IRC for grout-filled CMU per ICC-ES ESR-1396
- One-piece, wrap-around clip ensures uniform holding capacity
- Threaded end is chamfered for ease of starting nut
- · Available in a wide range of diameters and lengths

Codes: ICC-ES ESR-1396 (CMU); Florida FL-15730.7; FM 3017082 and 3131136; UL File Ex3605; Mulitiple DOT listings; meets the requirements of Federal Specification A-A-1923A, Type 4

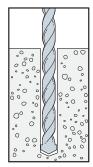
Material: Carbon or stainless steel (Types 303/304; Type 316)

Coating: Carbon steel anchors are available zinc plated or mechanically galvanized

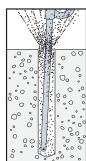
#### Installation

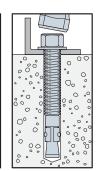
Do not use an impact wrench to set or tighten anchors.

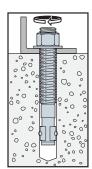
Caution: Oversized holes in the base material will make it difficult to set the anchor and will reduce the anchor's load capacity.


- 1. Drill a hole in base material using a carbide drill bit the same diameter as the nominal diameter of the anchor to be installed. Drill the hole to the specified embedment depth, and blow it clean using compressed air. (Overhead installations need not be blown clean.) Alternatively, drill the hole deep enough to accommodate the embedment depth and the dust from drilling.
- 2. Assemble the anchor with nut and washer so the top of the nut is flush with the top of the anchor. Place the anchor in the fixture, and drive it into the hole until the washer and nut are tight against the fixture.
- 3. Tighten to the required installation torque.







**Head Stamp** The head is stamped with the length identification letter.


#### Installation Sequence



C-A-2018 @ 2018 SIMPSON STRONG-TIE COMPANY INC.







#### Wedge-All Anchor

#### Wedge-All Anchor Installation Data

| Wedge-All Diameter (in.) | 1/4  | 3/8  | 1/2  | 5/8   | 3/4  | 7/8   | 1    | 11/4 |
|--------------------------|------|------|------|-------|------|-------|------|------|
| Drill Bit Size (in.)     | 1/4  | 3/8  | 1/2  | 5/8   | 3/4  | 7/8   | 1    | 11/4 |
| Min. Fixture Hole (in.)  | 5/16 | 7/16 | 9/16 | 11/16 | 7/8  | 1     | 11/8 | 1%   |
| Wrench Size (in.)        | 7/16 | 9/16 | 3/4  | 15/16 | 11/8 | 15/16 | 1½   | 1%   |

Length Identification Head Marks on Wedge-All Anchors (corresponds to length of anchor — inches)

| 1, | оопоор                        | oriac | , 10 1 | origi | 11 01 | ai ioi | 101 | 11.15 | 01100 | ·)· |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
|----|-------------------------------|-------|--------|-------|-------|--------|-----|-------|-------|-----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|
|    | Mark                          | Α     | В      | С     | D     | Ε      | F   | G     | Н     | 1   | J  | K  | L  | M  | N  | 0  | Р  | Q  | R  | S  | T  | U  | ٧  | W  | Х  | Υ  | Z  |
|    | From                          | 1½    | 2      | 2½    | 3     | 3½     | 4   | 4½    | 5     | 5½  | 6  | 6½ | 7  | 7½ | 8  | 8½ | 9  | 9½ | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 |
|    | Up To<br>But Not<br>Including | 2     | 2½     | 3     | 3½    | 4      | 4½  | 5     | 5½    | 6   | 6½ | 7  | 7½ | 8  | 8½ | 9  | 9½ | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 |

# Wedge-All® Wedge Anchor



Wedge-All Anchor Product Data — Carbon Steel: Zinc Plated and Mechanically Galvanized

| Size        | Zinc Plated | Mechanically<br>Galvanized | Drill Bit<br>Dia. | Thread<br>Length | Qua | ntity  |
|-------------|-------------|----------------------------|-------------------|------------------|-----|--------|
| (in.)       | Model No.   | Model No.                  | (in.)             | (in.)            | Вох | Carton |
| 1/4 x 1 3/4 | _           | WA25134MG                  |                   | 15/16            | 100 | 500    |
| 1/4 x 2 1/4 | _           | WA25214MG                  | 1/4               | 1 7/16           | 100 | 500    |
| 1/4 x 3 1/4 | _           | WA25314MG                  |                   | 27/16            | 100 | 500    |
| 3/8 X 2 1/4 | WA37214     | WA37214MG                  |                   | 11/8             | 50  | 250    |
| 3/8 X 23/4  | WA37234     | WA37234MG                  |                   | 1%               | 50  | 250    |
| % x 3       | WA37300     | WA37300MG                  |                   | 17/8             | 50  | 250    |
| 3% x 3½     | WA37312     | WA37312MG                  | 3/8 21/2          |                  | 50  | 250    |
| 3/8 X 33/4  | WA37334     | WA37334MG                  |                   | 2%               | 50  | 250    |
| 3% x 5      | WA37500     | WA37500MG                  |                   | 37/8             | 50  | 200    |
| 3% x 7      | WA37700     | WA37700MG                  |                   | 57/8             | 50  | 200    |
| ½ x 2¾      | WA50234     | WA50234MG                  |                   | 15/16            | 25  | 125    |
| ½ x 3¾      | WA50334     | WA50334MG                  |                   | 25/16            | 25  | 125    |
| ½ x 4¼      | WA50414     | WA50414MG                  |                   | 213/16           | 25  | 100    |
| ½ x 5½      | WA50512     | WA50512MG                  | 1/                | 41/16            | 25  | 100    |
| ½ x 7       | WA50700     | WA50700MG                  | - 1/2             | 49/16            | 25  | 100    |
| ½ x 8½      | WA50812     | WA50812MG                  |                   | 6                | 25  | 50     |
| ½ x 10      | WA50100     | WA50100MG                  |                   | 6                | 25  | 50     |
| ½ x 12      | WA50120     | WA50120MG                  | 6                 |                  | 25  | 50     |
| 5/8 X 3 1/2 | WA62312     | WA62312MG                  |                   | 17/8             | 20  | 80     |
| 5/8 X 4 1/2 | WA62412     | WA62412MG                  |                   | 27/8             | 20  | 80     |
| % x 5       | WA62500     | WA62500MG                  |                   | 3%               | 20  | 80     |
| 5⁄8 x 6     | WA62600     | WA62600MG                  | - 5/8             | 4%               | 20  | 80     |
| 5% x 7      | WA62700     | WA62700MG                  | 78                | 5%               | 20  | 80     |
| % x 8½      | WA62812     | WA62812MG                  |                   | 6                | 20  | 40     |
| % x 10      | WA62100     | WA62100MG                  |                   | 6                | 10  | 20     |
| % x 12      | WA62120     | WA62120MG                  |                   | 6                | 10  | 20     |
| 3/4 x 4 1/4 | WA75414     | WA75414MG                  |                   | 2%               | 10  | 40     |
| 3/4 x 43/4  | WA75434     | WA75434MG                  |                   | 27/8             | 10  | 40     |
| 3/4 x 5 1/2 | WA75512     | WA75512MG                  |                   | 3%               | 10  | 40     |
| 3/4 x 6 1/4 | WA75614     | WA75614MG                  | 3/4               | 4%               | 10  | 40     |
| 3/4 x 7     | WA75700     | WA75700MG                  | /4                | 51/8             | 10  | 40     |
| 3/4 X 8 1/2 | WA75812     | WA75812MG                  |                   | 6                | 10  | 20     |
| 3⁄4 x 10    | WA75100     | WA75100MG                  |                   | 6                | 10  | 20     |
| 3⁄4 x 12    | WA75120     | WA75120MG                  |                   | 6                | 5   | 10     |
| 7⁄8 x 6     | WA87600     | WA87600MG                  |                   | 21/8             | 5   | 20     |
| 7⁄8 x 8     | WA87800     | WA87800MG                  | 7/8               | 21/8             | 5   | 10     |
| 7⁄8 x 10    | WA87100     | WA87100MG                  | /8                | 21/8             | 5   | 10     |
| 7⁄8 x 12    | WA87120     | WA87120MG                  |                   | 21/8             | 5   | 10     |
| 1 x 6       | WA16000     | WA16000MG                  |                   | 21/4             | 5   | 20     |
| 1 x 9       | WA19000     | WA19000MG                  | 1                 | 21/4             | 5   | 10     |
| 1 x 12      | WA11200     | WA11200MG                  |                   | 21/4             | 5   | 10     |
| 11/4 x 9    | WA12590     | _                          | 1 1/4             | 23/4             | 5   | 10     |
| 11/4 x 12   | WA12512     | _                          | 1 /4              | 23/4             | 5   | 10     |

<sup>1.</sup> The published length is the overall length of the anchor. Allow one anchor diameter for the nut and washer thickness plus the fixture thickness when selecting the minimum length.

#### Material Specifications

| Car                                                         | Carbon Steel — Zinc Plated             |                 |                 |  |  |  |  |  |  |
|-------------------------------------------------------------|----------------------------------------|-----------------|-----------------|--|--|--|--|--|--|
| Component Materials                                         |                                        |                 |                 |  |  |  |  |  |  |
| Anchor Body                                                 | Washer                                 | Clip            |                 |  |  |  |  |  |  |
| Material meets<br>minimum<br>70,000 psi<br>tensile strength | Carbon Steel<br>ASTM A 563,<br>Grade A | Carbon<br>Steel | Carbon<br>Steel |  |  |  |  |  |  |

#### Material Specifications

| Carbon Steel — Mechanically Galvanized <sup>1</sup>         |                                        |                 |                 |  |  |  |  |  |
|-------------------------------------------------------------|----------------------------------------|-----------------|-----------------|--|--|--|--|--|
| Component Materials                                         |                                        |                 |                 |  |  |  |  |  |
| Anchor Body                                                 | Washer                                 | Clip            |                 |  |  |  |  |  |
| Material meets<br>minimum<br>70,000 psi<br>tensile strength | Carbon Steel<br>ASTM A 563,<br>Grade A | Carbon<br>Steel | Carbon<br>Steel |  |  |  |  |  |

<sup>1.</sup> Mechanical Galvanizing meets ASTM B695, Class 55, Type 1.

# SIMPSON Strong-Tie

#### Wedge-All Anchor Product Data — Stainless Steel

| 90,           | All Anchor Prod           |                       |                   |                  |     |        |
|---------------|---------------------------|-----------------------|-------------------|------------------|-----|--------|
| Size<br>(in.) | Type 303/304<br>Stainless | Type 316<br>Stainless | Drill<br>Bit Dia. | Thread<br>Length | Qua | ntity  |
| (,            | Model No. <sup>2</sup>    | Model No.             | (in.)             | (in.)            | Box | Carton |
| 3/8 X 21/4    | WA37214 <b>4SS</b>        | WA37214 <b>6SS</b>    |                   | 11/8             | 50  | 250    |
| 3/8 x 23/4    | WA37234 <b>4SS</b>        | WA37234 <b>6SS</b>    |                   | 1%               | 50  | 250    |
| 3⁄8 x 3       | WA37300 <b>4SS</b>        | WA37300 <b>6SS</b>    |                   | 17/8             | 50  | 250    |
| 3/8 x 3 1/2   | WA37312 <b>4SS</b>        | WA37312 <b>6SS</b>    | 3/8               | 21/2             | 50  | 250    |
| 3/8 X 33/4    | WA37334 <b>4SS</b>        | WA37334 <b>6SS</b>    |                   | 2%               | 50  | 250    |
| % x 5         | WA37500 <b>4SS</b>        | WA37500 <b>6SS</b>    |                   | 37⁄8             | 50  | 200    |
| 3⁄8 x 7       | WA37700 <b>4SS</b>        | WA37700 <b>6SS</b>    |                   | 57/8             | 50  | 200    |
| ½ x 2¾        | WA50234 <b>4SS</b>        | WA50234 <b>6SS</b>    |                   | 1 5/16           | 25  | 125    |
| ½ x 3¾        | WA50334 <b>4SS</b>        | WA50334 <b>6SS</b>    |                   | 25/16            | 25  | 125    |
| ½ x 4½        | WA50414 <b>4SS</b>        | WA50414 <b>6SS</b>    |                   | 213/16           | 25  | 100    |
| ½ x 5½        | WA50512 <b>4SS</b>        | WA50512 <b>6SS</b>    | ] ,,              | 41/16            | 25  | 100    |
| ½ x 7         | WA50700 <b>4SS</b>        | WA50700 <b>6SS</b>    | - 1/2             | 5%16             | 25  | 100    |
| ½ x 8½        | WA50812 <b>4SS</b>        | WA50812 <b>6SS</b>    |                   | 2                | 25  | 50     |
| ½ x 10        | WA50100 <b>SS</b>         | _                     |                   | 2                | 25  | 50     |
| ½ x 12        | WA50120 <b>SS</b>         | _                     |                   | 2                | 25  | 50     |
| 5% x 3½       | WA62312 <b>4SS</b>        | WA62312 <b>6SS</b>    |                   | 17/8             | 20  | 80     |
| % x 4½        | WA62412 <b>4SS</b>        | WA62412 <b>6SS</b>    |                   | 27/8             | 20  | 80     |
| % x 5         | WA62500 <b>4SS</b>        | WA62500 <b>6SS</b>    |                   | 3%               | 20  | 80     |
| % x 6         | WA62600 <b>4SS</b>        | WA62600 <b>6SS</b>    | j                 | 43/8             | 20  | 80     |
| 5⁄8 x 7       | WA62700 <b>4SS</b>        | WA62700 <b>6SS</b>    | - 5/8             | 5%               | 20  | 80     |
| % x 8 ½       | WA62812 <b>4SS</b>        | WA62812 <b>6SS</b>    |                   | 2                | 20  | 40     |
| % x 10        | WA62100 <b>SS</b>         | WA62100 <b>3SS</b>    |                   | 2                | 10  | 20     |
| % x 12        | WA62120 <b>SS</b>         | WA62120 <b>3SS</b>    |                   | 2                | 10  | 20     |
| 3/4 x 4 1/4   | WA75414 <b>4SS</b>        | WA75414 <b>6SS</b>    |                   | 2%               | 10  | 40     |
| 3/4 x 43/4    | WA75434 <b>4SS</b>        | WA75434 <b>6SS</b>    |                   | 27/8             | 10  | 40     |
| 3/4 x 5 1/2   | WA75512 <b>4SS</b>        | WA75512 <b>6SS</b>    |                   | 3%               | 10  | 40     |
| 3/4 x 6 1/4   | WA75614 <b>4SS</b>        | WA75614 <b>6SS</b>    | 1                 | 43/8             | 10  | 40     |
| 3/4 x 7       | WA75700 <b>4SS</b>        | WA75700 <b>6SS</b>    | 3/4               | 51/8             | 10  | 40     |
| 3/4 x 8 1/2   | WA75812 <b>4SS</b>        | WA75812 <b>6SS</b>    | 1                 | 21/4             | 10  | 20     |
| 3⁄4 x 10      | WA75100 <b>SS</b>         | WA75100 <b>3SS</b>    | 1                 | 21/4             | 10  | 20     |
| 3/4 x 12      | WA75120 <b>SS</b>         | WA75120 <b>3SS</b>    | 1                 | 21/4             | 5   | 10     |
| 7⁄8 x 6       | WA87600 <b>SS</b>         | WA87600 <b>3SS</b>    |                   | 21/8             | 5   | 20     |
| 7⁄8 x 8       | WA87800 <b>SS</b>         | WA87800 <b>3SS</b>    | 7,                | 21/8             | 5   | 10     |
| 7⁄8 x 10      | WA87100 <b>SS</b>         | WA87100 <b>3SS</b>    | - 7/8             | 21/8             | 5   | 10     |
| 7⁄8 x 12      | WA87120 <b>SS</b>         | _                     |                   | 21/8             | 5   | 10     |
| 1 x 6         | WA16000 <b>SS</b>         | WA16000 <b>3SS</b>    |                   | 21/4             | 5   | 20     |
| 1 x 9         | WA19000 <b>SS</b>         | WA19000 <b>3SS</b>    | 1                 | 21/4             | 5   | 10     |
| 1 x 12        | WA11200 <b>SS</b>         | WA11200 <b>3SS</b>    | 1                 | 21/4             | 5   | 10     |
|               | I.                        |                       |                   |                  |     |        |

The published length is the overall length of the anchor.
 Allow one anchor diameter for the nut and washer thickness plus the fixture thickness when selecting a length.

C-A-2018 @2018 SIMPSON STRONG-TIE COMPANY INC.

#### Material Specifications

| Type 303/304 Stainless Steel <sup>1</sup> |                                |                                |                                          |  |  |  |  |
|-------------------------------------------|--------------------------------|--------------------------------|------------------------------------------|--|--|--|--|
| Component Materials                       |                                |                                |                                          |  |  |  |  |
| Anchor Body                               | Nut                            | Washer                         | Clip                                     |  |  |  |  |
| Type 303<br>or 304<br>stainless<br>steel  | Type 304<br>stainless<br>steel | Type 304<br>stainless<br>steel | Type 304<br>or 316<br>stainless<br>steel |  |  |  |  |

 Types 303 and 304 stainless steels perform equally well in certain corrosive environments. Larger sizes are manufactured from Type 303.

#### Material Specifications

|                                | Type 316 Stainless Steel <sup>1</sup> |                                |                                |  |  |  |  |  |  |
|--------------------------------|---------------------------------------|--------------------------------|--------------------------------|--|--|--|--|--|--|
| Component Materials            |                                       |                                |                                |  |  |  |  |  |  |
| Anchor Body                    | Nut                                   | Washer                         | Clip                           |  |  |  |  |  |  |
| Type 316<br>stainless<br>steel | Type 316<br>stainless<br>steel        | Type 316<br>stainless<br>steel | Type 316<br>stainless<br>steel |  |  |  |  |  |  |

<sup>1.</sup> Type 316 stainless steel provides the greatest degree of corrosion resistance offered by Simpson Strong-Tie.

<sup>2.</sup> Anchors with the "SS" suffix in the model number are manufactured from Type 303 stainless steel; the remaining anchors (with the "4SS" suffix) are manufactured from Type 304 stainless steel. Types 303 and 304 stainless steel perform equally well in certain corrosive environments.

# Wedge-All® Design Information — Concrete



Carbon-Steel Wedge-All Allowable Tension Loads in Normal-Weight Concrete





| 17    |
|-------|
| 1     |
| <br>ı |
| 1     |
|       |

|                   |                        |                           |                                            |                      |                                            |                       | Tension Load                                       |                       |                                            |                       |                             |  |
|-------------------|------------------------|---------------------------|--------------------------------------------|----------------------|--------------------------------------------|-----------------------|----------------------------------------------------|-----------------------|--------------------------------------------|-----------------------|-----------------------------|--|
| Size<br>in.       | Embed.<br>Depth<br>in. | Critical<br>Edge<br>Dist. | Critical<br>Spacing<br>in.                 | (13                  | f' <sub>c</sub> ≥ 2,000 ps<br>.8 MPa) Conc | i<br>rete             | f' <sub>c</sub> ≥ 3,000 psi<br>(20.7 MPa) Concrete | (27.                  | f' <sub>c</sub> ≥ 4,000 ps<br>.6 MPa) Conc | i<br>rete             | Install.<br>Torque<br>ftlb. |  |
| (mm)              | (mm)                   | in.<br>(mm)               | (mm)                                       | Ultimate<br>lb. (kN) | Std. Dev.<br>lb. (kN)                      | Allowable<br>lb. (kN) | Allowable<br>lb. (kN)                              | Ultimate<br>lb. (kN)  | Std. Dev.<br>lb. (kN)                      | Allowable<br>lb. (kN) | (N-m)                       |  |
| 1/4               | <b>1</b>               | <b>2½</b> (64)            | <b>1</b> % (41)                            | <b>680</b> (3.0)     | <b>167</b> (0.7)                           | <b>170</b> (0.8)      | <b>205</b> (0.9)                                   | <b>960</b> (4.3)      | <b>233</b> (1.0)                           | <b>240</b> (1.1)      | 8                           |  |
| (6.4)             | <b>2½</b> (57)         | <b>2½</b> (64)            | <b>3</b> 1/8<br>(79)                       | <b>1,920</b> (8.5)   | <b>286</b> (1.3)                           | <b>480</b> (2.1)      | <b>530</b> (2.4)                                   | <b>2,320</b> (10.3)   | <b>105</b> (0.5)                           | <b>580</b> (2.6)      | (10.8)                      |  |
|                   | <b>13/4</b> (44)       | <b>3¾</b> (95)            | <b>2</b> % (60)                            | <b>1,560</b> (6.9)   | <b>261</b> (1.2)                           | <b>390</b> (1.7)      | <b>555</b> (2.5)                                   | <b>2,880</b> (12.8)   | <b>588</b> (2.6)                           | <b>720</b> (3.2)      |                             |  |
| <b>3/8</b> (9.5)  | <b>25/8</b> (67)       | <b>3¾</b> (95)            | <b>35/8</b> (92)                           | <b>3,360</b> (14.9)  | <b>464</b> (2.1)                           | <b>840</b> (3.7)      | <b>1,100</b> (4.9)                                 | <b>5,440</b> (24.2)   | <b>553</b> (2.5)                           | <b>1,360</b> (6.0)    | <b>30</b> (40.7)            |  |
|                   | <b>3</b> % (86)        | <b>3¾</b> (95)            | <b>4¾</b> (121)                            | <b>3,680</b> (16.4)  | <b>585</b> (2.6)                           | <b>920</b> (4.1)      | <b>1,140</b> (5.1)                                 | <b>5,440</b> (24.2)   | <b>318</b> (1.4)                           | <b>1,360</b> (6.0)    |                             |  |
|                   | <b>21/4</b> (57)       | <b>5</b> (127)            | <b>3½</b> (79)                             | <b>3,280</b> (14.6)  | <b>871</b> (3.9)                           | <b>820</b> (3.6)      | <b>1,070</b> (4.8)                                 | <b>5,280</b> (23.5)   | <b>849</b> (3.8)                           | <b>1,320</b> (5.9)    |                             |  |
| <b>½</b> (12.7)   | <b>3</b> % (86)        | <b>5</b> (127)            | <b>4</b> 3/ <sub>4</sub> (121)             | <b>6,040</b> (26.9)  | <b>654</b> (2.9)                           | <b>1,510</b> (6.7)    | <b>1,985</b> (8.8)                                 | <b>9,840</b> (43.8)   | <b>1,303</b> (5.8)                         | <b>2,460</b> (10.9)   | <b>60</b> (81.3)            |  |
|                   | <b>4½</b> (114)        | <b>5</b> (127)            | <b>61/4</b> (159)                          | <b>6,960</b> (31.0)  | <b>839</b> (3.7)                           | <b>1,740</b> (7.7)    | <b>2,350</b> (10.5)                                | <b>11,840</b> (52.7)  | <b>2,462</b> (11.0)                        | <b>2,960</b> (13.2)   |                             |  |
|                   | <b>23/4</b> (70)       | <b>61/4</b> (159)         | <b>37/8</b> (98)                           | <b>4,520</b> (20.1)  | <b>120</b> (0.5)                           | <b>1,130</b> (5.0)    | <b>1,640</b> (7.3)                                 | <b>8,600</b> (38.3)   | <b>729</b> (3.2)                           | <b>2,150</b> (9.6)    |                             |  |
| <b>5%</b> (15.9)  | <b>4½</b> (114)        | <b>6 1/4</b> (159)        | <b>61/4</b> (159)                          | <b>8,200</b> (36.5)  | <b>612</b> (2.7)                           | <b>2,050</b> (9.1)    | <b>2,990</b> (13.3)                                | <b>15,720</b> (69.9)  | <b>1,224</b> (5.4)                         | <b>3,930</b> (17.5)   | <b>90</b> (122.0)           |  |
|                   | <b>5½</b> (140)        | <b>61/4</b> (159)         | <b>7</b> 3/4 (197)                         | <b>8,200</b> (36.5)  | <b>639</b> (2.8)                           | <b>2,050</b> (9.1)    | <b>2,990</b> (13.3)                                | <b>15,720</b> (69.9)  | <b>1,116</b> (5.0)                         | <b>3,930</b> (17.5)   |                             |  |
|                   | <b>3</b> % (86)        | <b>7½</b> (191)           | <b>4¾</b> (121)                            | <b>6,760</b> (30.1)  | <b>1,452</b> (6.5)                         | <b>1,690</b> (7.5)    | <b>2,090</b> (9.3)                                 | <b>9,960</b> (44.3)   | <b>1,324</b> (5.9)                         | <b>2,490</b> (11.1)   |                             |  |
| <b>3/4</b> (19.1) | <b>5</b> (127)         | <b>7½</b> (191)           | <b>7</b> (178)                             | <b>10,040</b> (44.7) | <b>544</b> (2.4)                           | <b>2,510</b> (11.2)   | <b>3,225</b> (14.3)                                | <b>15,760</b> (70.1)  | <b>1,550</b> (6.9)                         | <b>3,940</b> (17.5)   | <b>150</b> (203.4)          |  |
|                   | <b>6¾</b> (171)        | <b>7½</b> (191)           | <b>9½</b> (241)                            | <b>10,040</b> (44.7) | <b>1,588</b> (7.1)                         | <b>2,510</b> (11.2)   | <b>3,380</b> (15.0)                                | <b>17,000</b> (75.6)  | <b>1,668</b> (7.4)                         | <b>4,250</b> (18.9)   |                             |  |
| 7/8               | <b>3</b> % (98)        | <b>8¾</b> (222)           | <b>5</b> % (137)                           | <b>7,480</b> (33.3)  | <b>821</b> (3.7)                           | <b>1,870</b> (8.3)    | <b>2,275</b> (10.1)                                | <b>10,720</b> (47.7)  | <b>1,253</b> (5.6)                         | <b>2,680</b> (11.9)   | 200                         |  |
| (22.2)            | <b>7</b> 7/8 (200)     | <b>8¾</b> (222)           | <b>11</b> (279)                            | <b>17,040</b> (75.8) | <b>1,566</b> (7.0)                         | <b>4,260</b> (18.9)   | <b>4,670</b> (20.8)                                | <b>20,320</b> (90.4)  | <b>2,401</b> (10.7)                        | <b>5,080</b> (22.6)   | (271.2)                     |  |
| 1                 | <b>4½</b> (114)        | <b>10</b> (254)           | <b>6 ½</b> (159)                           | <b>11,550</b> (51.4) | <b>1,830</b> (8.1)                         | <b>2,888</b> (12.8)   | <b>2,891</b> (12.9)                                | <b>11,760</b> (52.3)  | <b>1,407</b> (6.3)                         | <b>2,940</b> (13.1)   | 225                         |  |
| (25.4)            | <b>9</b> (229)         | <b>10</b> (254)           | <b>12</b> 5/8<br>(321)                     | <b>15,570</b> (69.3) | <b>2,337</b> (10.4)                        | <b>3,893</b> (17.3)   | <b>4,766</b> (21.2)                                | <b>22,560</b> (100.4) | <b>1,209</b> (5.4)                         | <b>5,640</b> (25.1)   | (305.1)                     |  |
| 11/4              | <b>5</b> % (143)       | <b>12½</b> (318)          | <b>7</b> <sup>7</sup> / <sub>8</sub> (200) | <b>11,370</b> (50.6) | <b>1,010</b> (4.5)                         | <b>2,843</b> (12.6)   | <b>3,743</b> (16.6)                                | <b>18,570</b> (82.6)  | <b>469</b> (2.1)                           | <b>4,643</b> (20.7)   | 400                         |  |
| (31.8)            | <b>9½</b> (241)        | <b>12½</b> (318)          | <b>13</b> 1/4 (337)                        | <b>15,120</b> (67.3) | <b>2,438</b> (10.8)                        | <b>3,780</b> (16.8)   | <b>6,476</b> (28.8)                                | <b>36,690</b> (163.2) | <b>1,270</b> (5.6)                         | <b>9,173</b> (40.8)   | (542.3)                     |  |

<sup>1.</sup> The allowable loads listed are based on a safety factor of 4.0.  $\,$ 

 $<sup>2.\, \</sup>text{Refer to allowable load-adjustment factors for edge distance and spacing on pp.\,155 and\,157.}$ 

<sup>3.</sup> Drill bit diameter used in base material corresponds to nominal anchor diameter.

<sup>4.</sup> Allowable loads may be linearly interpolated between concrete strengths listed.

<sup>5.</sup> The minimum concrete thickness is  $1\frac{1}{2}$  times the embedment depth.

# **Wedge-All®** Design Information — Concrete



#### Carbon-Steel Wedge-All Allowable Shear Loads in Normal-Weight Concrete

| IBC | • | <b>&gt;</b> |
|-----|---|-------------|
|     |   | è           |

| 1 | ľ |
|---|---|
|   |   |
|   |   |

|                   |                        |                           |                            |                       |                                               | sh                    | ear Load                                         |                                                  |                             |
|-------------------|------------------------|---------------------------|----------------------------|-----------------------|-----------------------------------------------|-----------------------|--------------------------------------------------|--------------------------------------------------|-----------------------------|
| Size<br>in.       | Embed.<br>Depth<br>in. | Critical<br>Edge<br>Dist. | Critical<br>Spacing<br>in. | (13                   | f' <sub>c</sub> ≥ 2,000 psi<br>3.8 MPa) Concr | ete                   | $f'_c \ge 3,000 \text{ psi}$ (20.7 MPa) Concrete | $f'_c \ge 4,000 \text{ psi}$ (27.6 MPa) Concrete | Install.<br>Torque<br>ftlb. |
| (mm)              | (mm)                   | in.<br>(mm)               | (mm)                       | Ultimate<br>lb. (kN)  | Std. Dev.<br>lb. (kN)                         | Allowable<br>lb. (kN) | Allowable<br>lb. (kN)                            | Allowable<br>lb. (kN)                            | (N-m)                       |
| 1/4               | <b>1</b> 1/8 (29)      | <b>2½</b><br>(64)         | <b>1</b> 5/8<br>(41)       | <b>920</b> (4.1)      | <b>47</b> (0.2)                               | <b>230</b> (1.0)      | <b>230</b> (1.0)                                 | <b>230</b> (1.0)                                 | 8                           |
| (6.4)             | <b>21/4</b> (57)       | <b>2½</b> (64)            | <b>31/8</b> (79)           | _                     | _                                             | <b>230</b> (1.0)      | <b>230</b> (1.0)                                 | <b>230</b> (1.0)                                 | (10.8)                      |
|                   | <b>13/4</b> (44)       | <b>3¾</b> (95)            | <b>2</b> % (60)            | <b>2,280</b> (10.1)   | <b>96</b> (0.4)                               | <b>570</b> (2.5)      | <b>570</b> (2.5)                                 | <b>570</b> (2.5)                                 |                             |
| <b>3/8</b> (9.5)  | <b>25</b> /8 (67)      | <b>3¾</b> (95)            | <b>35/8</b> (92)           | <b>4,220</b> (18.8)   | <b>384</b> (1.7)                              | <b>1,055</b> (4.7)    | <b>1,055</b> (4.7)                               | <b>1,055</b> (4.7)                               | <b>30</b> (40.7)            |
|                   | <b>3</b> % (86)        | <b>3¾</b> (95)            | <b>4¾</b> (121)            | _                     | _                                             | <b>1,055</b> (4.7)    | <b>1,055</b> (4.7)                               | <b>1,055</b> (4.7)                               |                             |
|                   | <b>21/4</b> (57)       | <b>5</b> (127)            | <b>31/8</b> (79)           | <b>6,560</b> (29.2)   | <b>850</b> (3.8)                              | <b>1,345</b> (6.0)    | <b>1,485</b> (6.6)                               | <b>1,625</b> (7.2)                               |                             |
| <b>½</b> (12.7)   | <b>3</b> % (86)        | <b>5</b> (127)            | <b>4¾</b> (121)            | <b>8,160</b> (36.3)   | <b>880</b> (3.9)                              | <b>1,675</b> (7.5)    | <b>1,850</b> (8.2)                               | <b>2,020</b> (9.0)                               | <b>60</b> (81.3)            |
|                   | <b>4½</b> (114)        | <b>5</b> (127)            | <b>61⁄4</b> (159)          | _                     | _                                             | <b>1,675</b> (7.5)    | <b>1,850</b> (8.2)                               | <b>2,020</b> (9.0)                               |                             |
|                   | <b>23/4</b> (70)       | <b>6½</b> (159)           | <b>37/8</b> (98)           | <b>8,720</b> (38.8)   | <b>1,699</b> (7.6)                            | <b>1,620</b> (7.2)    | <b>1,900</b> (8.5)                               | <b>2,180</b> (9.7)                               |                             |
| <b>5/8</b> (15.9) | <b>4½</b> (114)        | <b>6½</b> (159)           | <b>61⁄4</b> (159)          | <b>12,570</b> (55.9)  | <b>396</b> (1.8)                              | <b>2,330</b> (10.4)   | <b>2,740</b> (12.2)                              | <b>3,145</b> (14.0)                              | <b>90</b> (122.0)           |
|                   | <b>5½</b> (140)        | <b>61/4</b> (159)         | <b>7</b> 3/4<br>(197)      | _                     | _                                             | <b>2,330</b> (10.4)   | <b>2,740</b> (12.2)                              | <b>3,145</b> (14.0)                              |                             |
|                   | <b>3</b> % (86)        | <b>7½</b> (191)           | <b>4¾</b> (121)            | <b>11,360</b> (50.5)  | <b>792</b> (3.5)                              | <b>2,840</b> (12.6)   | <b>2,840</b> (12.6)                              | <b>2,840</b> (12.6)                              |                             |
| <b>3/4</b> (19.1) | <b>5</b> (127)         | <b>7½</b> (191)           | <b>7</b> (178)             | <b>18,430</b> (82.0)  | <b>1,921</b> (8.5)                            | <b>4,610</b> (20.5)   | <b>4,610</b> (20.5)                              | <b>4,610</b> (20.5)                              | <b>150</b> (203.4)          |
|                   | <b>6¾</b> (171)        | <b>7½</b> (191)           | <b>9½</b> (241)            | _                     | _                                             | <b>4,610</b> (20.5)   | <b>4,610</b> (20.5)                              | <b>4,610</b> (20.5)                              |                             |
| 7/8               | <b>3</b> % (98)        | <b>8¾</b> (222)           | <b>5</b> % (137)           | <b>13,760</b> (61.2)  | <b>2,059</b> (9.2)                            | <b>3,440</b> (15.3)   | <b>3,440</b> (15.3)                              | <b>3,440</b> (15.3)                              | 200                         |
| (22.2)            | <b>7</b> % (200)       | <b>8¾</b> (222)           | <b>11</b> (279)            | <b>22,300</b> (99.2)  | <b>477</b> (2.1)                              | <b>5,575</b> (24.8)   | <b>5,575</b> (24.8)                              | <b>5,575</b> (24.8)                              | (271.2)                     |
| 1                 | <b>4½</b> (114)        | <b>10</b> (254)           | <b>61⁄4</b> (159)          | <b>22,519</b> (100.2) | <b>1,156</b> (5.1)                            | <b>5,730</b> (25.5)   | <b>5,730</b> (25.5)                              | <b>5,730</b> (25.5)                              | 300                         |
| (25.4)            | <b>9</b> (229)         | <b>10</b> (254)           | <b>12%</b><br>(321)        | <b>25,380</b> (112.9) | <b>729</b> (3.2)                              | <b>6,345</b> (28.2)   | <b>6,345</b> (28.2)                              | <b>6,345</b> (28.2)                              | (406.7)                     |
| 11/4              | <b>5</b> 5/8 (143)     | <b>12½</b> (318)          | <b>7</b> 7/8 (200)         | <b>29,320</b> (130.4) | <b>2,099</b> (9.3)                            | <b>7,330</b> (32.6)   | <b>7,330</b> (32.6)                              | <b>7,330</b> (32.6)                              | 400                         |
| (31.8)            | <b>9½</b> (241)        | <b>12½</b> (318)          | <b>131/4</b> (337)         | _                     | _                                             | <b>7,330</b> (32.6)   | <b>7,330</b> (32.6)                              | <b>7,330</b> (32.6)                              | (542.3)                     |

<sup>1.</sup> The allowable loads listed are based on a safety factor of 4.0.

C-A-2018 @ 2018 SIMPSON STRONG-TIE COMPANY INC.

<sup>2.</sup> Refer to allowable load-adjustment factors for spacing and edge distance on pp. 155, 156 and 158.

<sup>3.</sup> Drill bit diameter used in base material corresponds to nominal anchor diameter.

<sup>4.</sup> Allowable loads may be linearly interpolated between concrete strengths listed.

<sup>5.</sup> The minimum concrete thickness is 11/2 times the embedment depth.

#### Strong-Tie

# Wedge-All® Design Information — Concrete

| <u> </u>             | Embed.                | Critical                     | Critical               | Allo                                                  | wable Tension Load lb.                                | (kN)                                                  | Install.                 |
|----------------------|-----------------------|------------------------------|------------------------|-------------------------------------------------------|-------------------------------------------------------|-------------------------------------------------------|--------------------------|
| Size<br>in.<br>(mm)  | Depth<br>in.<br>(mm)  | Edge<br>Dist.<br>in.<br>(mm) | Spacing<br>in.<br>(mm) | f' <sub>c</sub> ≥ 2,000 psi<br>(13.8 MPa)<br>Concrete | f' <sub>c</sub> ≥ 3,000 psi<br>(20.7 MPa)<br>Concrete | f' <sub>c</sub> ≥ 4,000 psi<br>(27.6 MPa)<br>Concrete | Torque<br>ftlb.<br>(N-m) |
| 1/4                  | <b>1 1/8</b> (29)     | <b>2½</b> (64)               | <b>1 %</b><br>(41)     | <b>155</b> (0.7)                                      | <b>185</b> (0.8)                                      | <b>215</b> (1.0)                                      | 8                        |
| (6.4)                | <b>21/4</b> (57)      | <b>2½</b> (64)               | <b>3 1/8</b> (79)      | <b>430</b> (1.9)                                      | <b>475</b> (2.1)                                      | <b>520</b> (2.3)                                      | (10.8)                   |
|                      | <b>13/4</b> (44)      | <b>3¾</b> (95)               | <b>2</b> %<br>(60)     | <b>350</b> (1.6)                                      | <b>500</b> (2.2)                                      | <b>650</b> (2.9)                                      |                          |
| <b>3/8</b> (9.5)     | <b>25/8</b> (67)      | <b>3¾</b> (95)               | <b>35/8</b> (92)       | <b>755</b> (3.4)                                      | <b>990</b> (4.4)                                      | <b>1,225</b> (5.4)                                    | <b>30</b> (40.7)         |
|                      | <b>3</b> % (86)       | <b>3¾</b> (95)               | <b>4¾</b> (121)        | <b>830</b> (3.7)                                      | <b>1,025</b> (4.6)                                    | <b>1,225</b> (5.4)                                    |                          |
|                      | <b>21/4</b> (57)      | <b>5</b> (127)               | <b>3</b> 1/8<br>(79)   | <b>740</b> (3.3)                                      | <b>965</b> (4.3)                                      | <b>1,190</b> (5.3)                                    |                          |
| <b>½</b><br>(12.7)   | <b>3</b> % (86)       | <b>5</b> (127)               | <b>4¾</b> (121)        | <b>1,360</b> (6.0)                                    | <b>1,785</b> (7.9)                                    | <b>2,215</b> (9.9)                                    | <b>60</b> (81.3)         |
|                      | <b>4½</b> (114)       | <b>5</b> (127)               | <b>61/4</b> (159)      | <b>1,565</b> (7.0)                                    | <b>2,115</b> (9.4)                                    | <b>2,665</b> (11.9)                                   | 7                        |
|                      | <b>2¾</b> (70)        | <b>6½</b> (159)              | <b>37/8</b> (98)       | <b>1,015</b> (4.5)                                    | <b>1,475</b> (6.6)                                    | <b>1,935</b> (8.6)                                    |                          |
| <b>5/8</b><br>(15.9) | <b>4½</b> (114)       | <b>6½</b> (159)              | <b>61/4</b> (159)      | <b>1,845</b> (8.2)                                    | <b>2,690</b> (12.0)                                   | <b>3,535</b> (15.7)                                   | <b>90</b> (122.0)        |
|                      | <b>5½</b> (140)       | <b>6½</b> (159)              | <b>7</b> 3/4<br>(197)  | <b>1,845</b> (8.2)                                    | <b>2,690</b> (12.0)                                   | <b>3,535</b> (15.7)                                   |                          |
|                      | <b>3</b> % (86)       | <b>7½</b> (191)              | <b>4</b> 3/4<br>(121)  | <b>1,520</b> (6.8)                                    | <b>1,880</b> (8.4)                                    | <b>2,240</b> (10.0)                                   |                          |
| <b>3/4</b><br>(19.1) | <b>5</b> (127)        | <b>7½</b> (191)              | <b>7</b> (178)         | <b>2,260</b> (10.1)                                   | <b>2,905</b> (12.9)                                   | <b>3,545</b> (15.8)                                   | <b>150</b> (203.4)       |
|                      | <b>6¾</b> (171)       | <b>7½</b> (191)              | <b>9½</b> (241)        | <b>2,260</b> (10.1)                                   | <b>3,040</b> (13.5)                                   | <b>3,825</b> (17.0)                                   |                          |
| 7/8                  | <b>37/8</b> (98)      | <b>8¾</b> (222)              | <b>5</b> % (137)       | <b>1,685</b> (7.5)                                    | <b>2,050</b> (9.1)                                    | <b>2,410</b> (10.7)                                   | 200                      |
| 22.2)                | <b>77/8</b> (200)     | <b>8¾</b> (222)              | <b>11</b> (279)        | <b>3,835</b> (17.1)                                   | <b>4,205</b> (18.7)                                   | <b>4,570</b> (20.3)                                   | (271.2)                  |
| 1                    | <b>4½</b> (114)       | <b>10</b> (254)              | <b>61/4</b> (159)      | <b>2,599</b> (11.6)                                   | <b>2,621</b> (11.7)                                   | <b>2,648</b> (11.8)                                   | 225                      |
| 25.4)                | <b>9</b> (229)        | <b>10</b> (254)              | <b>12</b> % (321)      | <b>3,503</b> (15.6)                                   | <b>4,290</b> (19.1)                                   | <b>5,078</b> (22.6)                                   | (305.1)                  |
| 11/4                 | <b>5</b> 5/8<br>(143) | <b>12½</b> (318)             | <b>7</b> 7/8 (200)     | <b>2,558</b> (11.4)                                   | <b>3,368</b> (15.0)                                   | <b>4,178</b> (18.6)                                   | 400                      |
| 11 (1)               |                       |                              |                        |                                                       |                                                       |                                                       | ( ( ( ( ) ( ) ( )        |

3,401

(15.1)

5,828

(25.9)

121/2 (318) 131/4

(337)

**9½** (241)

11/4 (31.8)

(542.3)

8,254

(36.7)

<sup>1.</sup> The allowable loads listed are based on a safety factor of 4.0.

 $<sup>2.\, \</sup>text{Refer to allowable load-adjustment factors for edge distance and spacing on pp. \,155 \, \text{and} \, 157.}$ 

<sup>3.</sup> Drill bit diameter used in base material corresponds to nominal anchor diameter.

<sup>4.</sup> Allowable loads may be linearly interpolated between concrete strengths listed.

<sup>5.</sup> The minimum concrete thickness is  $1\frac{1}{2}$  times the embedment depth.

# Wedge-All® Design Information — Concrete



| Size                 | Embed.                                     | Critical<br>Edge     | Critical                                   | Alle                                                  | owable Shear Load lb. (                               | (kN)                                                  | Install.<br>Torque |
|----------------------|--------------------------------------------|----------------------|--------------------------------------------|-------------------------------------------------------|-------------------------------------------------------|-------------------------------------------------------|--------------------|
| in.<br>(mm)          | Depth<br>in.<br>(mm)                       | Dist.<br>in.<br>(mm) | Spacing<br>in.<br>(mm)                     | f' <sub>c</sub> ≥ 2,000 psi<br>(13.8 MPa)<br>Concrete | f' <sub>c</sub> ≥ 3,000 psi<br>(20.7 MPa)<br>Concrete | f' <sub>c</sub> ≥ 4,000 psi<br>(27.6 MPa)<br>Concrete | ftlb.<br>(N-m)     |
| 1/4                  | 1 1/8<br>(29)                              | <b>2½</b> (64)       | <b>1</b> 5/8<br>(41)                       | <b>265</b> (1.2)                                      | <b>265</b> (1.2)                                      | <b>265</b> (1.2)                                      | 8                  |
| (6.4)                | <b>21/4</b> (57)                           | <b>2½</b> (64)       | <b>3</b> 1/8<br>(79)                       | <b>265</b> (1.2)                                      | <b>265</b> (1.2)                                      | <b>265</b> (1.2)                                      | (10.8)             |
|                      | 13/4<br>(44)                               | <b>3¾</b> (95)       | <b>2</b> % (60)                            | <b>655</b> (2.9)                                      | <b>655</b> (2.9)                                      | <b>655</b> (2.9)                                      |                    |
| <b>3/8</b><br>(9.5)  | <b>25/8</b> (67)                           | <b>3¾</b> (95)       | <b>35/8</b> (92)                           | <b>1,215</b> (5.4)                                    | <b>1,215</b> (5.4)                                    | <b>1,215</b> (5.4)                                    | <b>30</b> (40.7)   |
|                      | <b>3</b> % (86)                            | <b>3¾</b> (95)       | <b>4¾</b> (121)                            | <b>1,215</b> (5.4)                                    | <b>1,215</b> (5.4)                                    | <b>1,215</b> (5.4)                                    |                    |
|                      | <b>2½</b> (57)                             | <b>5</b> (127)       | <b>3</b> ½<br>(79)                         | <b>1,545</b> (6.9)                                    | <b>1,710</b> (7.6)                                    | <b>1,870</b> (8.3)                                    |                    |
| <b>½</b><br>12.7)    | <b>3</b> % (86)                            | <b>5</b> (127)       | <b>4¾</b> (121)                            | <b>1,925</b> (8.6)                                    | <b>2,130</b> (9.5)                                    | <b>2,325</b> (10.3)                                   | <b>60</b> (81.3)   |
|                      | <b>4½</b> (114)                            | <b>5</b> (127)       | <b>61/4</b> (159)                          | <b>1,925</b> (8.6)                                    | <b>2,130</b> (9.5)                                    | <b>2,325</b> (10.3)                                   |                    |
|                      | <b>2¾</b> (70)                             | <b>61/4</b> (159)    | <b>3</b> 7/8 (98)                          | <b>1,865</b> (8.3)                                    | <b>2,185</b> (9.7)                                    | <b>2,505</b> (11.1)                                   |                    |
| <b>5/8</b><br>(15.9) | <b>4½</b> (114)                            | <b>61/4</b> (159)    | <b>61/4</b> (159)                          | <b>2,680</b> (11.9)                                   | <b>3,150</b> (14.0)                                   | <b>3,615</b> (16.1)                                   | <b>90</b> (122.0)  |
|                      | <b>5½</b> (140)                            | <b>61⁄4</b> (159)    | <b>73/4</b> (197)                          | <b>2,680</b> (11.9)                                   | <b>3,150</b> (14.0)                                   | <b>3,615</b> (16.1)                                   |                    |
|                      | <b>3</b> % (86)                            | <b>7½</b> (191)      | <b>4¾</b> (121)                            | <b>3,265</b> (14.5)                                   | <b>3,265</b> (14.5)                                   | <b>3,265</b> (14.5)                                   |                    |
| <b>3/4</b><br>(19.1) | <b>5</b> (127)                             | <b>7½</b> (191)      | <b>7</b> (178)                             | <b>5,300</b> (23.6)                                   | <b>5,300</b> (23.6)                                   | <b>5,300</b> (23.6)                                   | <b>150</b> (203.4) |
|                      | <b>6¾</b> (171)                            | <b>7½</b> (191)      | <b>9½</b> (241)                            | <b>5,300</b> (23.6)                                   | <b>5,300</b> (23.6)                                   | <b>5,300</b> (23.6)                                   |                    |
| 7/8                  | <b>37/8</b> (98)                           | <b>8¾</b> (222)      | <b>5</b> % (137)                           | <b>3,955</b> (17.6)                                   | <b>3,955</b> (17.6)                                   | <b>3,955</b> (17.6)                                   | 200                |
| 22.2)                | <b>7</b> <sup>7</sup> / <sub>8</sub> (200) | <b>8¾</b> (222)      | <b>11</b> (279)                            | <b>6,410</b> (28.5)                                   | <b>6,410</b> (28.5)                                   | <b>6,410</b> (28.5)                                   | (271.2)            |
| 1                    | <b>4½</b> (114)                            | <b>10</b> (254)      | <b>6½</b> (159)                            | <b>6,590</b> (29.3)                                   | <b>6,590</b> (29.3)                                   | <b>6,590</b> (29.3)                                   | 300                |
| 25.4)                | <b>9</b> (229)                             | <b>10</b> (254)      | <b>12</b> 5/8<br>(321)                     | <b>7,295</b> (32.4)                                   | <b>7,295</b> (32.4)                                   | <b>7,295</b> (32.4)                                   | (406.7)            |
| 11/4                 | <b>5</b> %<br>(143)                        | <b>12½</b> (318)     | <b>7</b> <sup>7</sup> / <sub>8</sub> (200) | <b>8,430</b> (37.5)                                   | <b>8,430</b> (37.5)                                   | <b>8,430</b> (37.5)                                   | 400                |
| 31.8)                | <b>9½</b> (241)                            | <b>12½</b> (318)     | <b>131/4</b> (337)                         | <b>8,430</b> (37.5)                                   | <b>8,430</b> (37.5)                                   | <b>8,430</b> (37.5)                                   | (542.3)            |

<sup>1.</sup> The allowable loads listed are based on a safety factor of 4.0.

C-A-2018 @ 2018 SIMPSON STRONG-TIE COMPANY INC.

<sup>2.</sup> Refer to allowable load-adjustment factors for spacing and edge distance on pp. 155, 156 and 158.

 $<sup>3.\,\</sup>mathrm{Drill}$  bit diameter used in base material corresponds to nominal anchor diameter.

<sup>4.</sup> Allowable loads may be linearly interpolated between concrete strengths listed.

<sup>5.</sup> The minimum concrete thickness is 11/2 times the embedment depth.

# **Wedge-All®** Design Information — Concrete and Masonry



#### Carbon-Steel Wedge-All Allowable Tension Loads in Sand-Lightweight Concrete over Metal Deck

| IBC | <b>1</b> |  |
|-----|----------|--|
|-----|----------|--|

| C:                  | Embed.           | Critical             | Critical              |                                                    |                       |                    | _                    | ension Loa<br>hrough Met |                    | Install.                 |
|---------------------|------------------|----------------------|-----------------------|----------------------------------------------------|-----------------------|--------------------|----------------------|--------------------------|--------------------|--------------------------|
| Size<br>in.<br>(mm) | Depth<br>in.     | Edge<br>Dist.<br>in. | Spacing in.           | f¹ <sub>c</sub> ≥ 3,000 psi (20.7 MPa)<br>Concrete |                       |                    | $f'_c \ge 3$ ,       | 000 psi (20.<br>Concrete | 7 MPa)             | Torque<br>ftlb.<br>(N-m) |
| ()                  | (mm)             | (mm)                 | (mm)                  | Ultimate<br>lb. (kN)                               | Std. Dev.<br>lb. (kN) | Allow.<br>lb. (kN) | Ultimate<br>lb. (kN) | Std. Dev.<br>lb. (kN)    | Allow.<br>lb. (kN) | (,                       |
| <b>1/4</b> (6.4)    | <b>1½</b> (38)   | <b>3</b> %<br>(86)   | <b>2¾</b> (70)        | _                                                  | _                     | _                  | <b>1,440</b> (6.4)   | <b>167</b> (0.7)         | <b>360</b> (1.6)   | _                        |
| <b>½</b> (12.7)     | <b>21/4</b> (57) | <b>6¾</b> (171)      | <b>4½</b> (105)       | <b>3,880</b> (17.3)                                | <b>228</b> (1.0)      | <b>970</b> (4.3)   | <b>3,860</b> (17.2)  | <b>564</b> (2.5)         | <b>965</b> (4.3)   | <b>60</b> (81.3)         |
| <b>5%</b><br>(15.9) | <b>23/4</b> (70) | <b>8</b> % (213)     | <b>5</b> (127)        | <b>5,920</b> (26.3)                                | <b>239</b> (1.1)      | <b>1,480</b> (6.6) | <b>5,220</b> (23.2)  | <b>370</b> (1.6)         | <b>1,305</b> (5.8) | <b>90</b> (122.0)        |
| <b>3/4</b> (19.1)   | <b>3</b> % (>86) | <b>10</b> (254)      | <b>6</b> 1/8<br>(156) | <b>7,140</b> (31.8)                                | <b>537</b> (2.4)      | <b>1,785</b> (7.9) | <b>6,600</b> (29.4)  | <b>903</b> (4.0)         | <b>1,650</b> (7.3) | <b>150</b> (203.4)       |

**Shear Load** 

(Install in Concrete)

 $f'_c \ge 3,000 \text{ psi } (20.7 \text{ MPa})$ 

Concrete

Std. Dev

Ib. (kN)

377

(1.7)

742

(3.3)

495

(2.2)

Allow.

lb. (kN)

1,395

(6.2)

2,225

(9.9)

2,600

(11.6)

See notes 1-7 below.

Size

(mm)

(6.4)

1/2

(12.7)

(15.9)

(19.1)

#### Carbon-Steel Wedge-All Allowable Shear Loads in Sand-Lightweight Concrete over Metal Deck

Critical

**Spacing** 

in.

(mm)

23/4

(70)

41/8

(105)

(127)

61/8

(156)

**Ultimate** 

lb. (kN)

5,575

(24.8)

8,900

(39.6)

10,400

(46.3)

Critical

Edge

Dist.

in.

(mm)

3%

(86)

63/4

(171)

8%

(213)

10

(254)

**Embed** 

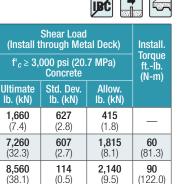
Depth

(mm)

11/2

(38)

21/4


(57)

23/4

(70)

3%

(86)



2,760

(12.3)

150

(203.4)

- 1. The allowable loads listed are based on a safety factor of 4.0.
- 2. Refer to allowable load-adjustment factors for edge distance on p. 159.
- 3. 100% of the allowable load is permitted at critical spacing. Loads at reduced spacing have not been determined.
- 4. Drill bit diameter used in base material corresponds to
- nominal anchor diameter
- 5. The minimum concrete thickness is 11/2 times the embedment depth.
- Metal deck must be minimum 20 gauge.

lb. (kN)

1,660

(7.4)

7,260

(32.3)

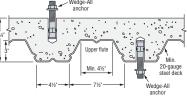
8,560

(38.1)

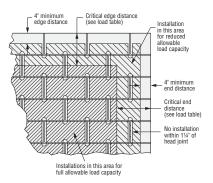
11,040

(49.1)

7. Anchors installed in the bottom flute of the steel deck must have a minimum allowable edge distance of 11/21 from the inclined edge of the bottom flute.


321

(1.4)


#### Carbon-Steel Wedge-All Allowable Tension and Shear Loads in Grout-Filled CMU

| Cimo              | Embed.                                                                                            | Critical         | Critical         | nd Critical          | 8" Grout              | t-Filled CMI       | J Allowable          | Load Base             | ed on CMU S        | Strength           | Install.           |
|-------------------|---------------------------------------------------------------------------------------------------|------------------|------------------|----------------------|-----------------------|--------------------|----------------------|-----------------------|--------------------|--------------------|--------------------|
| Size<br>in.       | Depth                                                                                             | Edge<br>Dist.    | Dist.            | Spacing in.          | T                     | ension Loa         | d                    |                       | Shear Load         |                    | Torque<br>ftlb.    |
| (mm)              | (mm) (mm)                                                                                         |                  | (mm)             | Ultimate<br>lb. (kN) | Std. Dev.<br>lb. (kN) | Allow.<br>lb. (kN) | Ultimate<br>lb. (kN) | Std. Dev.<br>lb. (kN) | Allow.<br>lb. (kN) | (N-m)              |                    |
|                   | Anchor Installed on the Face of the CMU Wall at Least 11/4 inch Away from Head Joint (See Figure) |                  |                  |                      |                       |                    |                      |                       |                    |                    |                    |
| <b>3/8</b> (9.5)  | <b>2</b> 5/8 (67)                                                                                 | <b>10½</b> (267) | <b>10½</b> (267) | <b>10½</b> (267)     | <b>1,700</b> (7.6)    | <b>129</b> (0.6)   | <b>340</b> (1.5)     | <b>3,360</b> (14.9)   | <b>223</b> (1.0)   | <b>670</b> (3.0)   | <b>30</b> (40.7)   |
| <b>½</b> (12.7)   | <b>3½</b> (89)                                                                                    | <b>14</b> (356)  | <b>14</b> (356)  | <b>14</b> (356)      | <b>2,120</b> (9.4)    | <b>129</b> (0.6)   | <b>425</b> (1.9)     | <b>5,360</b> (23.8)   | <b>617</b> (2.7)   | <b>1,070</b> (4.8) | <b>35</b> (47.4)   |
| <b>5/8</b> (15.9) | <b>4</b> % (111)                                                                                  | <b>17½</b> (445) | <b>17½</b> (445) | <b>17½</b> (445)     | <b>3,120</b> (13.9)   | <b>342</b> (1.5)   | <b>625</b> (2.8)     | <b>8,180</b> (36.4)   | <b>513</b> (2.3)   | <b>1,635</b> (7.3) | <b>55</b> (74.5)   |
| <b>3/4</b> (19.1) | <b>5½</b> (133)                                                                                   | <b>21</b> (533)  | <b>21</b> (533)  | <b>21</b> (533)      | <b>4,320</b> (19.2)   | <b>248</b> (1.1)   | <b>865</b> (3.8)     | <b>10,160</b> (45.2)  | <b>801</b> (3.6)   | <b>2,030</b> (9.0) | <b>120</b> (162.6) |

- 1. The tabulated allowable loads are based on a safety factor of 5.0 for installations under the IBC and IRC.
- 2. Listed loads may be applied to installations on the face of the CMU wall at least 11/4" away from headjoints.
- 3. Values for 8"-wide concrete masonry units (CMU) with a minimum specified compressive strength of masonry, f'm, at 28 days is 1,500 psi.
- 4. Embedment depth is measured from the outside face of the concrete masonry unit.
- \* See p. 13 for an explanation of the load table icons.
- 5. Drill bit diameter used in base material corresponds to nominal anchor diameter.
- 6. Allowable loads may be increased 331/3% for shortterm loading due to wind and seismic forces, where permitted by code.
- 7. Tension and shear loads for the Wedge-All anchor may be combined using the parabolic interaction equation ( $n = \frac{5}{3}$ ).
- 8. Refer to allowable load-adjustment factors for edge distance on p. 159.



**Lightweight Concrete** on Metal Deck



Shaded area = Placement for Full and Reduced Allowable Load Capacity in Grout-Filled CMU

**Mechanical** Anchors

# **Wedge-All**<sup>®</sup> Design Information — Concrete



Allowable Load-Adjustment Factors for Carbon-Steel and Stainless-Steel Wedge-All Anchors in Normal-Weight Concrete: Edge Distance, Tension and Shear Loads

#### How to use these charts:

- 1. The following tables are for reduced edge distance.
- 2. Locate the anchor size to be used for either a tension and/or shear load application.
- 3. Locate the edge distance ( $c_{act}$ ) at which the anchor is to be installed.
- 4. The load adjustment factor ( $f_{\text{c}}$ ) is the intersection of the row and column.
- 5. Multiply the allowable load by the applicable load adjustment factor.
- 6. Reduction factors for multiple edges are multiplied together.

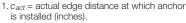
#### Edge Distance Tension (f<sub>c</sub>)

| Edge                      | Size              | 1/4  | 3/8  | 1/2  | 5/8  | 3/4  | 7/8  | 1    | 11/4  |
|---------------------------|-------------------|------|------|------|------|------|------|------|-------|
| Dist.                     | C <sub>cr</sub>   | 21/2 | 3¾   | 5    | 61/4 | 71/2 | 83/4 | 10   | 121/2 |
| c <sub>act</sub><br>(in.) | C <sub>min</sub>  | 1    | 11/2 | 2    | 21/2 | 3    | 31/2 | 4    | 5     |
| (in.)                     | f <sub>cmin</sub> | 0.70 | 0.70 | 0.70 | 0.70 | 0.70 | 0.70 | 0.70 | 0.70  |
| 1                         |                   | 0.70 |      |      |      |      |      |      |       |
| 1 ½                       |                   | 0.80 | 0.70 |      |      |      |      |      |       |
| 2                         |                   | 0.90 | 0.77 | 0.70 |      |      |      |      |       |
| 21/2                      |                   | 1.00 | 0.83 | 0.75 | 0.70 |      |      |      |       |
| 3                         |                   |      | 0.90 | 0.80 | 0.74 | 0.70 |      |      |       |
| 31/2                      |                   |      | 0.97 | 0.85 | 0.78 | 0.73 | 0.70 |      |       |
| 3¾                        |                   |      | 1.00 | 0.88 | 0.80 | 0.75 | 0.71 |      |       |
| 4                         |                   |      |      | 0.90 | 0.82 | 0.77 | 0.73 | 0.70 |       |
| 41/2                      |                   |      |      | 0.95 | 0.86 | 0.80 | 0.76 | 0.73 |       |
| 5                         |                   |      |      | 1.00 | 0.90 | 0.83 | 0.79 | 0.75 | 0.70  |
| 5½                        |                   |      |      |      | 0.94 | 0.87 | 0.81 | 0.78 | 0.72  |
| 6                         |                   |      |      |      | 0.98 | 0.90 | 0.84 | 0.80 | 0.74  |
| 61/4                      |                   |      |      |      | 1.00 | 0.92 | 0.86 | 0.81 | 0.75  |
| 6½                        |                   |      |      |      |      | 0.93 | 0.87 | 0.83 | 0.76  |
| 7                         |                   |      |      |      |      | 0.97 | 0.90 | 0.85 | 0.78  |
| 71/2                      |                   |      |      |      |      | 1.00 | 0.93 | 0.88 | 0.80  |
| 8                         |                   |      |      |      |      |      | 0.96 | 0.90 | 0.82  |
| 81/2                      |                   |      |      |      |      |      | 0.99 | 0.93 | 0.84  |
| 83/4                      |                   |      |      |      |      |      | 1.00 | 0.94 | 0.85  |
| 10                        |                   |      |      |      |      |      |      | 1.00 | 0.90  |
| 121/2                     |                   |      |      |      |      |      |      |      | 1.00  |
| 15                        |                   |      |      |      |      |      |      |      |       |



See notes below.

#### Edge Distance Shear (f<sub>c</sub>) (Shear Applied Perpendicular to Edge)


| Edge  | Size              | 1/4  | 3/8  | 1/2  | 5/8  | 3/4  | 7/8  | 1    | 11/4  |
|-------|-------------------|------|------|------|------|------|------|------|-------|
| Dist. | C <sub>cr</sub>   | 21/2 | 3¾   | 5    | 61/4 | 71/2 | 83/4 | 10   | 121/2 |
| Cact  | C <sub>min</sub>  | 1    | 11/2 | 2    | 21/2 | 3    | 31/2 | 4    | 5     |
| (in.) | f <sub>cmin</sub> | 0.30 | 0.30 | 0.30 | 0.30 | 0.30 | 0.30 | 0.30 | 0.30  |
| 1     |                   | 0.30 |      |      |      |      |      |      |       |
| 1 1/2 |                   | 0.53 | 0.30 |      |      |      |      |      |       |
| 2     |                   | 0.77 | 0.46 | 0.30 |      |      |      |      |       |
| 21/2  |                   | 1.00 | 0.61 | 0.42 | 0.30 |      |      |      |       |
| 3     |                   |      | 0.77 | 0.53 | 0.39 | 0.30 |      |      |       |
| 31/2  |                   |      | 0.92 | 0.65 | 0.49 | 0.38 | 0.30 |      |       |
| 3¾    |                   |      | 1.00 | 0.71 | 0.53 | 0.42 | 0.33 |      |       |
| 4     |                   |      |      | 0.77 | 0.58 | 0.46 | 0.37 | 0.30 |       |
| 41/2  |                   |      |      | 0.88 | 0.67 | 0.53 | 0.43 | 0.36 |       |
| 5     |                   |      |      | 1.00 | 0.77 | 0.61 | 0.50 | 0.42 | 0.30  |
| 51/2  |                   |      |      |      | 0.86 | 0.69 | 0.57 | 0.48 | 0.35  |
| 6     |                   |      |      |      | 0.95 | 0.77 | 0.63 | 0.53 | 0.39  |
| 61/4  |                   |      |      |      | 1.00 | 0.81 | 0.67 | 0.56 | 0.42  |
| 61/2  |                   |      |      |      |      | 0.84 | 0.70 | 0.59 | 0.44  |
| 7     |                   |      |      |      |      | 0.92 | 0.77 | 0.65 | 0.49  |
| 71/2  |                   |      |      |      |      | 1.00 | 0.83 | 0.71 | 0.53  |
| 8     |                   |      |      |      |      |      | 0.90 | 0.77 | 0.58  |
| 81/2  |                   |      |      |      |      |      | 0.97 | 0.83 | 0.63  |
| 83/4  |                   |      |      |      |      |      | 1.00 | 0.85 | 0.65  |
| 10    |                   |      |      |      |      |      |      | 1.00 | 0.77  |
| 121/2 |                   |      |      |      |      |      |      |      | 1.00  |
| 15    |                   |      |      |      |      |      |      |      |       |











 $<sup>2.</sup>c_{cr}$  = critical edge distance for 100% load (inches).

- 5. f<sub>ccr</sub> = adjustment factor for allowable load at critical edge distance.  $f_{ccr}$  is always = 1.00.
- 6. f<sub>cmin</sub> = adjustment factor for allowable load at minimum edge distance.
- 7.  $f_C = f_{cmin} + [(1 f_{cmin}) (c_{act} c_{min} / (c_{cr} c_{min}))].$

#### Load-Adjustment Factors for Reduced Spacing:

Critical spacing is listed in the load tables. No adjustment in load is required when the anchors are spaced at critical spacing.

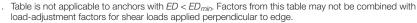
No additional testing has been performed to determine the adjustment factors for spacing dimensions less than those listed in the load tables.

<sup>3.</sup>  $c_{min}$  = minimum edge distance for reduced load (inches).

<sup>4.</sup>  $f_c$  = adjustment factor for allowable load at actual edge distance.

# Wedge-All® Design Information — Concrete




Allowable Load-Adjustment Factors for Carbon-Steel and Stainless-Steel Wedge-All Anchors in Normal-Weight Concrete: Edge Distance and Shear Load Applied Parallel to Edge

#### How to use these charts:

- 1. The following tables are for reduced edge distance.
- 2. Locate the anchor size to be used for a shear load application.
- 3. Locate the edge distance  $(c_{act|l})$  at which the anchor is to be installed.
- 4. The load adjustment factor  $(\phi_{c/||})$  is the intersection of the row and column.
- 5. Multiply the allowable load by the applicable load adjustment factor.
- 6. Reduction factors for multiple edges are multiplied together.

#### Edge Distance Shear (f<sub>c||</sub>) (Shear Applied Parallel to Edge with End Distance ≥ ED<sub>min</sub>)

|        | Size                     | 1/4  | 3/8  | 1/2  | 5/8  | 3/4  | 7/8   | 1    | 11/4  |
|--------|--------------------------|------|------|------|------|------|-------|------|-------|
| Edge   | Ε                        | 21/4 | 3%   | 41/2 | 5½   | 6¾   | 71//8 | 9    | 91/2  |
| Dist.  | <b>ED</b> <sub>min</sub> | 9    | 13½  | 18   | 22   | 27   | 311/2 | 36   | 38    |
| Cactll | C <sub>crll</sub>        | 21/2 | 3¾   | 5    | 61/4 | 71/2 | 8¾    | 10   | 121/2 |
| (in.)  | C <sub>min  </sub>       | 1    | 11/2 | 2    | 21/2 | 3    | 31/2  | 4    | 5     |
|        | f <sub>cmin//</sub>      | 1.00 | 0.93 | 0.70 | 0.62 | 0.62 | 0.62  | 0.62 | 0.62  |
| 1      |                          | 1.00 |      |      |      |      |       |      |       |
| 1 1/2  |                          | 1.00 | 0.93 |      |      |      |       |      |       |
| 2      |                          | 1.00 | 0.95 | 0.70 |      |      |       |      |       |
| 21/2   |                          | 1.00 | 0.96 | 0.75 | 0.62 |      |       |      |       |
| 3      |                          |      | 0.98 | 0.80 | 0.67 | 0.62 |       |      |       |
| 31/2   |                          |      | 0.99 | 0.85 | 0.72 | 0.66 | 0.62  |      |       |
| 4      |                          |      | 1.00 | 0.90 | 0.77 | 0.70 | 0.66  | 0.62 |       |
| 5      |                          |      |      | 1.00 | 0.87 | 0.79 | 0.73  | 0.68 | 0.62  |
| 6      |                          |      |      |      | 0.97 | 0.87 | 0.80  | 0.75 | 0.67  |
| 7      |                          |      |      |      | 1.00 | 0.96 | 0.87  | 0.81 | 0.72  |
| 8      |                          |      |      |      |      | 1.00 | 0.95  | 0.87 | 0.77  |
| 9      |                          |      |      |      |      |      | 1.00  | 0.94 | 0.82  |
| 10     |                          |      |      |      |      |      |       | 1.00 | 0.87  |
| 11     |                          |      |      |      |      |      |       |      | 0.92  |
| 12     |                          |      |      |      |      |      |       |      | 0.97  |
| 13     |                          |      |      |      |      |      |       |      | 1.00  |



c<sub>act||</sub> = actual edge distance (measured perpendicular to direction of shear load) at which anchor is installed (inches).

- 3.  $c_{cr|l}$  = critical edge distance (measured perpendicular to direction of shear load) for 100% load (inches).
- 4.  $c_{min||}$  = minimum edge distance (measured perpendicular to direction of shear load) for reduced load (inches).
- 5. ED = actual end distance (measured parallel to direction of shear load) at which anchor is installed (inches).
- 6.  $ED_{min}$  = minimum edge distance (measured parallel to direction of shear load).
- 7.  $f_{c/l}$  = adjustment factor for allowable load at actual edge distance.
- 8.  $f_{ccrll}$  = adjustment factor for allowable load at critical edge distance.  $f_{ccrll}$  is always = 1.00.
- 9. f<sub>cmin||</sub> = adjustment factor for allowable load at minimum edge distance.
- 10.  $f_{c||} = f_{cmin||} + [(1 f_{cmin||}) (c_{act||} c_{min||}) / (c_{cr||} c_{min||})].$



# **Wedge-All**<sup>®</sup> Design Information — Concrete



Allowable Load-Adjustment Factors for Carbon-Steel and Stainless-Steel Wedge-All Anchors in Normal-Weight Concrete: Spacing, Tension Loads

#### How to use these charts:

- 1. The following tables are for reduced spacing.
- 2. Locate the anchor size to be used for a tension load application.
- 3. Locate the anchor embedment (E) used for a tension load application. 6. Multiply the allowable load by the applicable load adjustment factor.
- 4. Locate the spacing (s<sub>act</sub>) at which the anchor is to be installed.
- 5. The load adjustment factor (f<sub>s</sub>) is the intersection of the row and column.
- 7. Reduction factors for multiple spacings are multiplied together.

#### Spacing Tension (f<sub>s</sub>)

|                           | Dia.              | 1,   | /4   |      | 3/8  |      |      | 1/2  |      |      | 5/8  |      |
|---------------------------|-------------------|------|------|------|------|------|------|------|------|------|------|------|
| _                         | Ε                 | 11/8 | 21/4 | 13/4 | 25/8 | 3%   | 21/4 | 3%   | 41/2 | 23/4 | 41/2 | 51/2 |
| s <sub>act</sub><br>(in.) | Scr               | 1%   | 31/8 | 2%   | 35/8 | 43/4 | 31/8 | 43/4 | 61/4 | 37/8 | 61/4 | 73/4 |
| (111.)                    | S <sub>min</sub>  | 5/8  | 11/8 | 7/8  | 1%   | 13/4 | 11/8 | 13/4 | 21/4 | 1%   | 21/4 | 23/4 |
|                           | f <sub>smin</sub> | 0.43 | 0.70 | 0.43 | 0.43 | 0.70 | 0.43 | 0.43 | 0.70 | 0.43 | 0.43 | 0.70 |
| 3/4                       |                   | 0.50 |      |      |      |      |      |      |      |      |      |      |
| 1                         |                   | 0.64 |      | 0.48 |      |      |      |      |      |      |      |      |
| 1 1/4                     |                   | 0.79 | 0.72 | 0.57 |      |      | 0.47 |      |      |      |      |      |
| 1 1/2                     |                   | 0.93 | 0.76 | 0.67 | 0.46 |      | 0.54 |      |      | 0.46 |      |      |
| 13/4                      |                   | 1.00 | 0.79 | 0.76 | 0.53 | 0.70 | 0.61 | 0.43 |      | 0.52 |      |      |
| 2                         |                   |      | 0.83 | 0.86 | 0.59 | 0.73 | 0.68 | 0.48 |      | 0.57 |      |      |
| 21/4                      |                   |      | 0.87 | 0.95 | 0.65 | 0.75 | 0.75 | 0.53 | 0.70 | 0.63 | 0.43 |      |
| 21/2                      |                   |      | 0.91 | 1.00 | 0.72 | 0.78 | 0.82 | 0.57 | 0.72 | 0.69 | 0.47 |      |
| 23/4                      |                   |      | 0.94 |      | 0.78 | 0.80 | 0.89 | 0.62 | 0.74 | 0.74 | 0.50 | 0.70 |
| 3                         |                   |      | 0.98 |      | 0.84 | 0.83 | 0.96 | 0.67 | 0.76 | 0.80 | 0.54 | 0.72 |
| 31/2                      |                   |      | 1.00 |      | 0.97 | 0.88 | 1.00 | 0.76 | 0.79 | 0.91 | 0.61 | 0.75 |
| 4                         |                   |      |      |      | 1.00 | 0.93 |      | 0.86 | 0.83 | 1.00 | 0.68 | 0.78 |
| 41/2                      |                   |      |      |      |      | 0.98 |      | 0.95 | 0.87 |      | 0.75 | 0.81 |
| 5                         |                   |      |      |      |      | 1.00 |      | 1.00 | 0.91 |      | 0.82 | 0.84 |
| 6                         |                   |      |      |      |      |      |      |      | 0.98 |      | 0.96 | 0.90 |
| 7                         |                   |      |      |      |      |      |      |      | 1.00 |      | 1.00 | 0.96 |
| 8                         |                   |      |      |      |      |      |      |      |      |      |      | 1.00 |









**Mechanical** Anchors

See notes below.

#### Spacing Tension (f<sub>s</sub>)

|                           | Dia.              |      | 3/4  |      | 7,   | /8   | -    | I    | 1             | 1/4   |
|---------------------------|-------------------|------|------|------|------|------|------|------|---------------|-------|
| _                         | Ε                 | 3%   | 5    | 6¾   | 37/8 | 77/8 | 41/2 | 9    | 5%            | 91/2  |
| s <sub>act</sub><br>(in.) | S <sub>cr</sub>   | 4¾   | 7    | 91/2 | 5%   | 11   | 61/4 | 12%  | <b>7</b> 7⁄/8 | 131/4 |
| (111.)                    | Smin              | 1¾   | 21/2 | 3%   | 2    | 4    | 21/4 | 41/2 | 27/8          | 43/4  |
|                           | f <sub>smin</sub> | 0.43 | 0.43 | 0.70 | 0.43 | 0.70 | 0.43 | 0.70 | 0.43          | 0.70  |
| 2                         |                   | 0.48 |      |      | 0.43 |      |      |      |               |       |
| 3                         |                   | 0.67 | 0.49 |      | 0.60 |      | 0.54 |      | 0.46          |       |
| 4                         |                   | 0.86 | 0.62 | 0.73 | 0.77 | 0.70 | 0.68 |      | 0.57          |       |
| 5                         |                   | 1.00 | 0.75 | 0.78 | 0.94 | 0.74 | 0.82 | 0.72 | 0.68          | 0.71  |
| 6                         |                   |      | 0.87 | 0.83 | 1.00 | 0.79 | 0.96 | 0.76 | 0.79          | 0.74  |
| 7                         |                   |      | 1.00 | 0.88 |      | 0.83 | 1.00 | 0.79 | 0.90          | 0.78  |
| 8                         |                   |      |      | 0.93 |      | 0.87 |      | 0.83 | 1.00          | 0.81  |
| 9                         |                   |      |      | 0.98 |      | 0.91 |      | 0.87 |               | 0.85  |
| 10                        |                   |      |      | 1.00 |      | 0.96 |      | 0.90 |               | 0.89  |
| 11                        |                   |      |      |      |      | 1.00 |      | 0.94 |               | 0.92  |
| 12                        |                   |      |      |      |      |      |      | 0.98 |               | 0.96  |
| 13                        |                   |      |      |      |      |      |      | 1.00 |               | 0.99  |
| 14                        |                   |      |      |      |      |      |      |      |               | 1.00  |



 $<sup>2.</sup> s_{act} = actual spacing distance at which anchors are installed (inches).$ 

 $<sup>3.</sup>s_{cr}$  = critical spacing distance for 100% load (inches).

 $<sup>4.</sup> s_{min}$  = minimum spacing distance for reduced load (inches).

 $<sup>5.\,</sup>f_{\rm S}=$  adjustment factor for allowable load at actual spacing distance.

 $<sup>6.</sup> f_{SCr} = adjustment factor for allowable load at critical spacing distance. <math>f_{SCr}$  is always = 1.00.

 $<sup>7.</sup>f_{\text{Smin}}$  = adjustment factor for allowable load at minimum spacing distance.

<sup>8.</sup>  $f_s = f_{smin} + [(1 - f_{smin}) (s_{act} - s_{min}) / (s_{cr} - s_{min})].$ 

<sup>\*</sup> See p. 13 for an explanation of the load table icons.

### **Wedge-All**<sup>®</sup> Design Information — Concrete



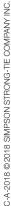
Allowable Load-Adjustment Factors for Carbon-Steel and Stainless-Steel Wedge-All Anchors in Normal-Weight Concrete: Spacing, Shear Loads

#### How to use these charts:

- 1. The following tables are for reduced spacing.
- 2. Locate the anchor size to be used for a shear load application.
- 3. Locate the anchor embedment (E) used for a shear load application.
- 4. Locate the spacing (s<sub>act</sub>) at which the anchor is to be installed.
- 5. The load adjustment factor (f<sub>s</sub>) is the intersection of the row and column.
- 6. Multiply the allowable load by the applicable load adjustment factor.
- 7. Reduction factors for multiple spacings are multiplied together.

#### Spacing Shear (f<sub>s</sub>)

|                           | Dia.              | 1,   | /4   |      | 3/8  |      |      | 1/2  |      |      | 5/8  |      |
|---------------------------|-------------------|------|------|------|------|------|------|------|------|------|------|------|
| _                         | Ε                 | 11/8 | 21/4 | 13/4 | 25/8 | 3%   | 21/4 | 3%   | 41/2 | 23/4 | 41/2 | 51/2 |
| s <sub>act</sub><br>(in.) | S <sub>cr</sub>   | 1%   | 31/8 | 23/8 | 3%   | 43/4 | 31/8 | 43/4 | 61/4 | 37/8 | 61/4 | 73/4 |
| ()                        | Smin              | 5/8  | 11/8 | 7/8  | 1%   | 13/4 | 11/8 | 13/4 | 21/4 | 1%   | 21/4 | 23/4 |
|                           | f <sub>smin</sub> | 0.79 | 0.79 | 0.79 | 0.79 | 0.79 | 0.79 | 0.79 | 0.79 | 0.79 | 0.79 | 0.79 |
| 3/4                       |                   | 0.82 |      |      |      |      |      |      |      |      |      |      |
| 1                         |                   | 0.87 |      | 0.81 |      |      |      |      |      |      |      |      |
| 11/4                      |                   | 0.92 | 0.80 | 0.84 |      |      | 0.80 |      |      |      |      |      |
| 1 ½                       |                   | 0.97 | 0.83 | 0.88 | 0.80 |      | 0.83 |      |      | 0.80 |      |      |
| 13/4                      |                   | 1.00 | 0.86 | 0.91 | 0.83 | 0.79 | 0.86 | 0.79 |      | 0.82 |      |      |
| 2                         |                   |      | 0.88 | 0.95 | 0.85 | 0.81 | 0.88 | 0.81 |      | 0.84 |      |      |
| 21/4                      |                   |      | 0.91 | 0.98 | 0.87 | 0.83 | 0.91 | 0.83 | 0.79 | 0.86 | 0.79 |      |
| 21/2                      |                   |      | 0.93 | 1.00 | 0.90 | 0.84 | 0.93 | 0.84 | 0.80 | 0.88 | 0.80 |      |
| 2¾                        |                   |      | 0.96 |      | 0.92 | 0.86 | 0.96 | 0.86 | 0.82 | 0.91 | 0.82 | 0.79 |
| 3                         |                   |      | 0.99 |      | 0.94 | 0.88 | 0.99 | 0.88 | 0.83 | 0.93 | 0.83 | 0.80 |
| 31/2                      |                   |      | 1.00 |      | 0.99 | 0.91 | 1.00 | 0.91 | 0.86 | 0.97 | 0.86 | 0.82 |
| 4                         |                   |      |      |      | 1.00 | 0.95 |      | 0.95 | 0.88 | 1.00 | 0.88 | 0.84 |
| 41/2                      |                   |      |      |      |      | 0.98 |      | 0.98 | 0.91 |      | 0.91 | 0.86 |
| 5                         |                   |      |      |      |      | 1.00 |      | 1.00 | 0.93 |      | 0.93 | 0.88 |
| 6                         |                   |      |      |      |      |      |      |      | 0.99 |      | 0.99 | 0.93 |
| 7                         |                   |      |      |      |      |      |      |      | 1.00 |      | 1.00 | 0.97 |
| 8                         |                   |      |      |      |      |      |      |      |      |      |      | 1.00 |




#### Spacing Shear (f<sub>s</sub>)

|                           | Dia.              |      | 3/4  |      | 7,   | /8   | -    | 1    | 1    | 1/4   |
|---------------------------|-------------------|------|------|------|------|------|------|------|------|-------|
|                           | Ε                 | 3%   | 5    | 6¾   | 37/8 | 77/8 | 41/2 | 9    | 5%   | 91/2  |
| s <sub>act</sub><br>(in.) | S <sub>cr</sub>   | 43/4 | 7    | 91/2 | 5%   | 11   | 61/4 | 12%  | 71/8 | 131/4 |
| (111.)                    | Smin              | 13/4 | 21/2 | 3%   | 2    | 4    | 21/4 | 41/2 | 21/8 | 43/4  |
|                           | f <sub>smin</sub> | 0.79 | 0.79 | 0.79 | 0.79 | 0.79 | 0.79 | 0.79 | 0.79 | 0.79  |
| 2                         |                   | 0.81 |      |      | 0.79 |      |      |      |      |       |
| 3                         |                   | 0.88 | 0.81 |      | 0.85 |      | 0.83 |      | 0.80 |       |
| 4                         |                   | 0.95 | 0.86 | 0.81 | 0.91 | 0.79 | 0.88 |      | 0.84 |       |
| 5                         |                   | 1.00 | 0.91 | 0.85 | 0.98 | 0.82 | 0.93 | 0.80 | 0.88 | 0.80  |
| 6                         |                   |      | 0.95 | 0.88 | 1.00 | 0.85 | 0.99 | 0.83 | 0.92 | 0.82  |
| 7                         |                   |      | 1.00 | 0.91 |      | 0.88 | 1.00 | 0.85 | 0.96 | 0.85  |
| 8                         |                   |      |      | 0.95 |      | 0.91 |      | 0.88 | 1.00 | 0.87  |
| 9                         |                   |      |      | 0.98 |      | 0.94 |      | 0.91 |      | 0.90  |
| 10                        |                   |      |      | 1.00 |      | 0.97 |      | 0.93 |      | 0.92  |
| 11                        |                   |      |      |      |      | 1.00 |      | 0.96 |      | 0.94  |
| 12                        |                   |      |      |      |      |      |      | 0.98 |      | 0.97  |
| 13                        |                   |      |      |      |      |      |      | 1.00 |      | 0.99  |
| 14                        |                   |      |      |      |      |      |      |      |      | 1.00  |



 $<sup>2. \,</sup> s_{act} = actual \, spacing \, distance \, at \, which \, anchors \, are installed (inches).$ 



 $<sup>3.</sup> s_{cr}$  = critical spacing distance for 100% load (inches).

 $<sup>4.</sup> s_{min}$  = minimum spacing distance for reduced load (inches).

<sup>5.</sup>  $f_s$  = adjustment factor for allowable load at actual spacing distance.

 $<sup>6.</sup> f_{SCr} = adjustment factor for allowable load at critical spacing distance. <math>f_{SCr}$  is always = 1.00.

 $<sup>7.</sup>f_{Smin}$  = adjustment factor for allowable load at minimum spacing distance.

<sup>8.</sup>  $f_s = f_{smin} + [(1 - f_{smin}) (s_{act} - s_{min}) / (s_{cr} - s_{min})].$ 

<sup>\*</sup> See p. 13 for an explanation of the load table icons.

## **Wedge-All®** Design Information — Concrete and Masonry



Allowable Load-Adjustment Factors for Carbon-Steel Wedge-All Anchors in Sand-Lightweight Concrete: Edge Distance, Tension and Shear Loads

#### How to use these charts:

- 1. The following tables are for reduced edge distance.
- 2. Locate the anchor size to be used for either a tension and/or shear load application.
- 3. Locate the edge distance (cact) at which the anchor is to be installed.

#### 4. The load adjustment factor ( $f_c$ ) is the intersection of the row and column.

- 5. Multiply the allowable load by the applicable load adjustment factor.
- 6. Reduction factors for multiple edges are multiplied together.

#### Edgo Dietanco Toncion (f.)

| Luge L |                   | e lensi | OII (I <sub>C</sub> ) |      |      |
|--------|-------------------|---------|-----------------------|------|------|
| Edge   | Size              | 1/4     | 1/2                   | 5/8  | 3/4  |
| Dist.  | c <sub>cr</sub>   | 3%      | 6¾                    | 8%   | 10   |
| Cact   | C <sub>min</sub>  | 1%      | 23/4                  | 3%   | 4    |
| (in.)  | f <sub>cmin</sub> | 0.70    | 0.70                  | 0.70 | 0.70 |
| 1%     |                   | 0.70    |                       |      |      |
| 1 ½    |                   | 0.72    |                       |      |      |
| 2      |                   | 0.79    |                       |      |      |
| 21/2   |                   | 0.87    |                       |      |      |
| 23/4   |                   | 0.91    | 0.70                  |      |      |
| 3      |                   | 0.94    | 0.72                  |      |      |
| 3%     |                   | 1.00    | 0.75                  | 0.70 |      |
| 31/2   |                   |         | 0.76                  | 0.71 |      |
| 4      |                   |         | 0.79                  | 0.74 | 0.70 |
| 41/2   |                   |         | 0.83                  | 0.77 | 0.73 |
| 5      |                   |         | 0.87                  | 0.80 | 0.75 |
| 51/2   |                   |         | 0.91                  | 0.83 | 0.78 |
| 6      |                   |         | 0.94                  | 0.86 | 0.80 |
| 61/2   |                   |         | 0.98                  | 0.89 | 0.83 |
| 6¾     |                   |         | 1.00                  | 0.90 | 0.84 |
| 7      |                   |         |                       | 0.92 | 0.85 |
| 71/2   |                   |         |                       | 0.95 | 0.88 |
| 8      |                   |         |                       | 0.98 | 0.90 |
| 8%     |                   |         |                       | 1.00 | 0.92 |
| 81/2   |                   |         |                       |      | 0.93 |
| 9      |                   |         |                       |      | 0.95 |
| 91/2   |                   |         |                       |      | 0.98 |
| 10     |                   |         |                       |      | 1.00 |



| Edge  | Size              | 1/4  | 1/2  | 5/8  | 3/4  |
|-------|-------------------|------|------|------|------|
| Dist. | c <sub>cr</sub>   | 3%   | 63/4 | 8%   | 10   |
| Cact  | C <sub>min</sub>  | 1%   | 23/4 | 3%   | 4    |
| (in.) | f <sub>cmin</sub> | 0.30 | 0.30 | 0.30 | 0.30 |
| 13/8  |                   | 0.30 |      |      |      |
| 1 1/2 |                   | 0.34 |      |      |      |
| 2     |                   | 0.52 |      |      |      |
| 21/2  |                   | 0.69 |      |      |      |
| 23/4  |                   | 0.78 | 0.30 |      |      |
| 3     |                   | 0.87 | 0.34 |      |      |
| 3%    |                   | 1.00 | 0.41 | 0.30 |      |
| 31/2  |                   |      | 0.43 | 0.32 |      |
| 4     |                   |      | 0.52 | 0.39 | 0.30 |
| 41/2  |                   |      | 0.61 | 0.46 | 0.36 |
| 5     |                   |      | 0.69 | 0.53 | 0.42 |
| 51/2  |                   |      | 0.78 | 0.60 | 0.48 |
| 6     |                   |      | 0.87 | 0.67 | 0.53 |
| 61/2  |                   |      | 0.96 | 0.74 | 0.59 |
| 6¾    |                   |      | 1.00 | 0.77 | 0.62 |
| 7     |                   |      |      | 0.81 | 0.65 |
| 71/2  |                   |      |      | 0.88 | 0.71 |
| 8     |                   |      |      | 0.95 | 0.77 |
| 8%    |                   |      |      | 1.00 | 0.81 |
| 81/2  |                   |      |      |      | 0.83 |
| 9     |                   |      |      |      | 0.88 |
| 91/2  |                   |      |      |      | 0.94 |
| 10    |                   |      |      |      | 1.00 |

See notes below.

Load Adjustment Factors for Carbon-Steel Wedge-All® Anchors in Face-of-Wall Installation in 8" Grout-Filled CMU: Edge Distance, Tension and Shear Loads

#### Edga Diatanaa Tanaian (f.)

See notes below.

C-A-2018 @2018 SIMPSON STRONG-TIE COMPANY INC.

| Eage L                       | Jistanc           | e Iensi | on (t <sub>c</sub> ) |       |      |     |
|------------------------------|-------------------|---------|----------------------|-------|------|-----|
|                              | Size              | 3/8     | 1/2                  | 5/8   | 3/4  |     |
| Edge                         | Ccr               | 101/2   | 14                   | 171/2 | 21   | l   |
| Dist. c <sub>act</sub> (in.) | C <sub>min</sub>  | 4       | 4                    | 4     | 4    | ſ   |
| ()                           | f <sub>cmin</sub> | 1.00    | 1.00                 | 0.80  | 0.80 |     |
| 4                            |                   | 1.00    | 1.00                 | 0.80  | 0.80 | ] [ |
| 6                            |                   | 1.00    | 1.00                 | 0.83  | 0.82 |     |
| 8                            |                   | 1.00    | 1.00                 | 0.86  | 0.85 | _ ر |
| 101/2                        |                   | 1.00    | 1.00                 | 0.90  | 0.88 |     |
| 12                           |                   |         | 1.00                 | 0.92  | 0.89 | ] " |
| 14                           |                   |         | 1.00                 | 0.95  | 0.92 |     |
| 16                           |                   |         |                      | 0.98  | 0.94 |     |
| 171/2                        |                   |         |                      | 1.00  | 0.96 |     |
| 21                           |                   |         |                      |       | 1.00 |     |



#### Load-Adjustment Factors for Reduced Spacing:

Critical spacing is listed in the load tables. No adjustment in load is required when the anchors are spaced at critical spacing. No additional testing has been performed to determine the adjustment factors for spacing dimensions less than those listed in the load tables.

Edge Distance Shear (fa)

|                                | Size              | 3/8   | 1/2  | 5/8   | 3/4  |
|--------------------------------|-------------------|-------|------|-------|------|
| Edge                           | Ccr               | 101/2 | 14   | 171/2 | 21   |
| ist. c <sub>act</sub><br>(in.) | C <sub>min</sub>  | 4     | 4    | 4     | 4    |
| ()                             | f <sub>cmin</sub> | 0.79  | 0.52 | 0.32  | 0.32 |
| 4                              |                   | 0.79  | 0.52 | 0.32  | 0.32 |
| 6                              |                   | 0.85  | 0.62 | 0.42  | 0.40 |
| 8                              |                   | 0.92  | 0.71 | 0.52  | 0.48 |
| 10½                            |                   | 1.00  | 0.83 | 0.65  | 0.58 |
| 12                             |                   |       | 0.90 | 0.72  | 0.64 |
| 14                             |                   |       | 1.00 | 0.82  | 0.72 |
| 16                             |                   |       |      | 0.92  | 0.80 |
| 17½                            |                   |       |      | 1.00  | 0.86 |
| 21                             |                   |       |      |       | 1.00 |

- 1.  $c_{act}$  = actual edge distance at which anchor is installed (inches).
- 2.  $c_{cr}$  = critical edge distance for 100% load (inches).
- 3.  $c_{min}$  = minimum edge distance for reduced load (inches).
- $4. f_{c}$  = adjustment factor for allowable load at actual edge distance.
- 5.  $f_{ccr}$  = adjustment factor for allowable load at critical edge distance.  $f_{ccr}$  is always = 1.00.
- 6. f<sub>cmin</sub> = adjustment factor for allowable load at minimum edge distance.

\* See p. 13 for an explanation of the load table icons.

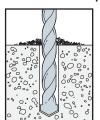
<sup>7.</sup>  $f_c = f_{cmin} + [(1 - f_{cmin})(c_{act} - c_{min}) / (c_{cr} - c_{min})].$ 

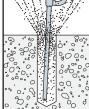
### Sleeve-All® Sleeve Anchor

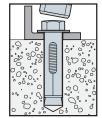
Sleeve-All expanding anchors are pre-assembled, expanding sleeve anchors for use in all types of solid base materials. This anchor is available in acorn, hex, rod coupler, flat or round head style for a wide range of applications.

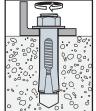
Codes: Factory Mutual 3017082, 3026805 and 3029959 (%" – ½" diameter); Underwriters Laboratories File Ex3605 (%" – ¾" diameter); Mulitiple DOT listings; meets the requirements of Federal Specification A-A-1922A

Material: Carbon steel or stainless steel


Coating: Carbon steel anchors are zinc plated


#### Installation


- Drill a hole in the base material using a carbide drill bit the same diameter as the nominal diameter of the anchor to be installed.
- Drill the hole to the specified embedment depth, and blow it clean using compressed air. (Overhead installations need not be blown clean.) Alternatively, drill the hole deep enough to accommodate embedment depth and the dust from drilling.
- 3. Place the anchor in the fixture, and drive it into the hole until the washer and nut are tight against the fixture.
- 4. Tighten to required installation torque.


Caution: Oversized holes will make it difficult to set the anchor and will reduce the anchor's load capacity.

#### Installation Sequence









#### Material Specifications

| Anchor<br>Component | Zinc-Plated Carbon Steel                                  | 304<br>Stainless Steel |
|---------------------|-----------------------------------------------------------|------------------------|
| Anchor Body         | Material meets minimum 50,000 psi tensile                 | Type 304               |
| Sleeve              | SAE J403, Grade 1008 cold-rolled steel                    | Type 304               |
| Nut                 | Commercial Grade, meets requirements of ASTM A563 Grade A | Type 304               |
| Washer              | SAE J403, Grade 1008/1010<br>cold-rolled steel            | Type 304               |

#### Sleeve-All Anchor Installation Data

| Sleeve-All Diameter<br>(in.)   | 1/4     | <sup>5</sup> ⁄16 | 3/8 | 1/2  | 5/8 | 3/4                           |
|--------------------------------|---------|------------------|-----|------|-----|-------------------------------|
| Installation Torque (ftlb.)    | 5       | 8                | 15  | 25   | 50  | 90                            |
| Drill Bit Size (in.)           | 1/4     | 5/16             | 3/8 | 1/2  | 5/8 | 3/4                           |
| Wrench Size <sup>1</sup> (in.) | 3/8     | 7/16             | 1/2 | 9/16 | 3/4 | <sup>15</sup> / <sub>16</sub> |
| Wrench Size for Coupler Nut    | t (in.) |                  | 1/2 | 5/8  | 3/4 | _                             |

<sup>1.</sup> Applies to acorn- and hex-head configurations only.





### Sleeve-All® Sleeve Anchor



Sleeve-All Anchor Product Data — Zinc-Plated Carbon Steel

| Size         | Model     | Head        | Bolt<br>Diameter –  | Max.<br>Fixture    | Qua | intity |
|--------------|-----------|-------------|---------------------|--------------------|-----|--------|
| (in.)        | No.       | Style       | Threads<br>per inch | Thickness<br>(in.) | Box | Carton |
| 1/4 X 13/8   | SL25138A  | Acorn Head  | 3/ 04               | 1/4                | 100 | 500    |
| 1/4 x 21/4   | SL25214A  | ACOITI HEAU | 3/16-24             | 1 1/8              | 100 | 500    |
| 5/16 X 1 1/2 | SL31112H  |             | 1/ 00               | 3/8                | 100 | 500    |
| 5/16 X 21/2  | SL31212H  |             | 1/4–20              | 1 1/16             | 50  | 250    |
| 3/8 X 17/8   | SL37178H  |             |                     | 3/8                | 50  | 250    |
| 3/8 X 3      | SL37300H  |             | 5/16-18             | 1 1/2              | 50  | 200    |
| 3/8 X 4      | SL37400H  |             |                     | 21/4               | 50  | 200    |
| ½ x 21/4     | SL50214H  |             |                     | 1/2                | 50  | 200    |
| ½ x 3        | SL50300H  |             | 3/ 10               | 3/4                | 25  | 100    |
| ½ x 4        | SL50400H  | lloy llood  | <b>%</b> –16        | 13/4               | 25  | 100    |
| ½ x 6        | SL50600H  | Hex Head    |                     | 3%                 | 20  | 80     |
| 5/8 X 21/4   | SL62214H  |             |                     | 1/2                | 25  | 100    |
| % x 3        | SL62300H  |             | 1/2–13              | 3/4                | 20  | 80     |
| 5/8 x 4 1/4  | SL62414H  |             | ½-13                | 1 1/2              | 10  | 40     |
| % x 6        | SL62600H  |             |                     | 31/4               | 10  | 40     |
| 3/4 X 21/2   | SL75212H  |             |                     | 1/2                | 10  | 40     |
| 3/4 X 4 1/4  | SL75414H  |             | 5⁄8 <b>−</b> 11     | 7/8                | 10  | 40     |
| 3/4 x 61/4   | SL75614H  |             |                     | 27/8               | 5   | 20     |
| 1/4 x 2      | SL25200PF |             | 3/ 04               | 7/8                | 100 | 500    |
| 1/4 x 3      | SL25300PF |             | 3/16-24             | 1 1/8              | 50  | 250    |
| 5/16 X 21/2  | SL31212PF |             | 1/ 00               | 1 1/16             | 50  | 250    |
| 5/16 X 3 1/2 | SL31312PF | Phillips    | 1/4–20              | 21/16              | 50  | 250    |
| 3/8 X 23/4   | SL37234PF | Flat Head   |                     | 1 1/4              | 50  | 200    |
| 3/8 x 4      | SL37400PF |             | 5/ 10               | 21/2               | 50  | 200    |
| 3% x 5       | SL37500PF |             | 5/16-18             | 31/2               | 50  | 200    |
| 3/8 x 6      | SL37600PF |             |                     | 41/2               | 50  | 200    |
| 1/4 x 23/4   | SL25234R  | Round Head  | 3/16-24             | 7/8                | 50  | 250    |

#### Sleeve-All Anchor Product Data — Stainless Steel

| Size       | Model      | Head     | Bolt Diameter –  | Max. Fixture    | Qua | ntity  |
|------------|------------|----------|------------------|-----------------|-----|--------|
| (in.)      | No.        | Style    | Threads per inch | Thickness (in.) | Вох | Carton |
| 3/8 x 17/8 | SL37178HSS |          | 5∕16—18          | 3/8             | 50  | 250    |
| 3/8 X 3    | SL37300HSS | Hex Head | 916—TO           | 1 ½             | 50  | 200    |
| ½ x 3      | SL50300HSS | пех пеац | 2/ 10            | 3/4             | 25  | 100    |
| ½ x 4      | SL50400HSS |          | <b>%</b> –16     | 13⁄4            | 25  | 100    |

# Sleeve-All Anchor (with rod coupler) Product Data - Zinc-Plated Carbon Steel $\,$

C-A-2018 @ 2018 SIMPSON STRONG-TIE COMPANY INC.

| Size        | Model        | Accepts<br>Rod Diameter | Wrench | Quantity |        |  |  |  |  |
|-------------|--------------|-------------------------|--------|----------|--------|--|--|--|--|
| (in.)       | No.          | (in.)                   | Size   | Вох      | Carton |  |  |  |  |
| 3/8 x 1 7/8 | SL37178C     | 3/8                     | 1/2    | 50       | 200    |  |  |  |  |
| ½ x 21/4    | SL50214C     | 1/2                     | 5/8    | 25       | 100    |  |  |  |  |
| 5/8 x 21/4  | SL62214C 5/8 |                         | 3/4    | 20       | 80     |  |  |  |  |

# Length Identification Head Marks on Sleeve-All Anchors (corresponds to length of anchor — inches)

| Ų | oncopi                       | oriac | , LO I | origi | 1101 | arioi | 101  | 11 15 |    | '/ |    |    |    |    |      |      |    |    |    |    |    |    |    |    |    |    |    |
|---|------------------------------|-------|--------|-------|------|-------|------|-------|----|----|----|----|----|----|------|------|----|----|----|----|----|----|----|----|----|----|----|
|   | Mark                         | Α     | В      | C     | D    | Е     | F    | G     | Н  | 1  | J  | K  | L  | M  | N    | 0    | Р  | Q  | R  | S  | T  | U  | ٧  | W  | Х  | Υ  | Z  |
|   | From                         | 1½    | 2      | 2½    | 3    | 3½    | 4    | 41/2  | 5  | 5½ | 6  | 6½ | 7  | 7½ | 8    | 81/2 | 9  | 9½ | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 |
|   | Up To<br>But Not<br>ncluding | 2     | 2½     | 3     | 3½   | 4     | 41/2 | 5     | 5½ | 6  | 6½ | 7  | 7½ | 8  | 81/2 | 9    | 9½ | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 |

# **Sleeve-All**<sup>®</sup> Design Information — Concrete and Masonry



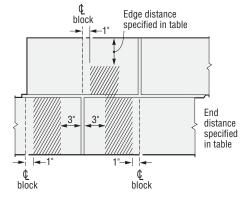
| Allowable Tension and Shear Loads for Sleeve-All in Normal-Weight Concrete |                        |                      |                  |                      |                           |                    |                      |                           |                     |                      |                       |                     |                 |
|----------------------------------------------------------------------------|------------------------|----------------------|------------------|----------------------|---------------------------|--------------------|----------------------|---------------------------|---------------------|----------------------|-----------------------|---------------------|-----------------|
|                                                                            | Embed.                 | Critical             | Critical         |                      |                           | Tensio             | n Load               |                           |                     |                      | Shear Load            |                     | Install.        |
| Size<br>in.                                                                | Depth<br>in.           | Edge<br>Dist.        | Spacing<br>Dist. | $f'_c \geq 2$ ,      | 000 psi (13.)<br>Concrete | 8 МРа)             | f' <sub>c</sub> ≥ 4, | 000 psi (27.0<br>Concrete | 6 MPa)              | $f'_c \geq 2$ ,      | Torque<br>ftlb.       |                     |                 |
| (mm)                                                                       | (mm)                   | in.<br>(mm)          | in.<br>(mm)      | Ultimate<br>lb. (kN) | Std. Dev.<br>lb. (kN)     | Allow.<br>lb. (kN) | Ultimate<br>lb. (kN) | Std. Dev.<br>lb. (kN)     | Allow.<br>lb. (kN)  | Ultimate<br>lb. (kN) | Std. Dev.<br>lb. (kN) | Allow.<br>lb. (kN)  | (N-m)           |
| <b>1/4</b> (6.4)                                                           | <b>1 1/8</b> (29)      | <b>2½</b> (64)       | <b>4½</b> (114)  | <b>880</b> (3.9)     | <b>94</b> (0.4)           | <b>220</b> (1.0)   | <b>1,320</b> (5.9)   | <b>189</b> (0.8)          | <b>330</b> (1.5)    | <b>1,440</b> (6.4)   | <b>90</b> (0.4)       | <b>360</b> (1.6)    | <b>5</b> (7)    |
| 5/16                                                                       | (25)                   | <b>3</b> 1/8<br>(79) | <b>5¾</b> (146)  | <b>930</b> (4.1)     | <b>201</b> (0.9)          | <b>230</b> (1.0)   | <b>1,095</b> (4.9)   | <b>118</b> (0.5)          | <b>275</b> (1.2)    | <b>1,480</b> (6.6)   | <b>264</b> (1.2)      | <b>370</b> (1.6)    | 8<br>(11)       |
| (7.9)                                                                      | 17/ <sub>16</sub> (37) | <b>3</b> 1/8<br>(79) | <b>5</b> % (146) | <b>1,120</b> (5.0)   | <b>113</b> (0.5)          | <b>280</b> (1.2)   | <b>1,320</b> (5.9)   | <b>350</b> (1.6)          | <b>330</b> (1.5)    | <b>2,160</b> (9.6)   | <b>113</b> (0.5)      | <b>540</b> (2.4)    | 8<br>(11)       |
| <b>3/8</b> (9.5)                                                           | <b>1½</b> (38)         | <b>3¾</b> (95)       | <b>6</b> (152)   | <b>1,600</b> (7.1)   | <b>294</b> (1.3)          | <b>400</b> (1.8)   | <b>2,680</b> (11.9)  | <b>450</b> (2.0)          | <b>670</b> (3.0)    | <b>3,080</b> (13.7)  | <b>223</b> (1.0)      | <b>770</b> (3.4)    | <b>15</b> (20)  |
| 1/2                                                                        | <b>13/4</b> (45)       | <b>5</b> (127)       | <b>9</b> (229)   | <b>2,900</b> (12.9)  | <b>369</b> (1.6)          | <b>725</b> (3.2)   | <b>3,480</b> (15.5)  | <b>529</b> (2.4)          | <b>870</b> (3.9)    | <b>4,250</b> (18.9)  | <b>659</b> (2.9)      | <b>1,060</b> (4.7)  | <b>25</b> (34)  |
| (12.7)                                                                     | <b>2½</b> (57)         | <b>5</b> (127)       | <b>9</b> (229)   | <b>3,160</b> (14.1)  | <b>254</b> (1.1)          | <b>790</b> (3.5)   | <b>4,760</b> (21.2)  | <b>485</b> (2.2)          | <b>1,190</b> (5.3)  | <b>5,000</b> (22.2)  | <b>473</b> (2.1)      | <b>1,250</b> (5.6)  | <b>25</b> (34)  |
| 5/8                                                                        | <b>13/4</b> (45)       | <b>61/4</b> (159)    | <b>11</b> (279)  | <b>3,200</b> (14.2)  | <b>588</b> (2.6)          | <b>800</b> (3.6)   | <b>3,825</b> (17.0)  | <b>243</b> (1.1)          | <b>955</b> (4.2)    | <b>4,625</b> (20.6)  | <b>747</b> (3.3)      | <b>1,155</b> (5.1)  | <b>50</b> (68)  |
| (15.9)                                                                     | <b>23/4</b> (70)       | <b>6½</b> (159)      | <b>11</b> (279)  | <b>4,200</b> (18.7)  | <b>681</b> (3.0)          | <b>1,050</b> (4.7) | <b>6,160</b> (27.4)  | <b>1,772</b> (7.9)        | <b>1,540</b> (6.9)  | <b>8,520</b> (37.9)  | <b>713</b> (3.2)      | <b>2,130</b> (9.5)  | <b>50</b> (68)  |
| 3/4                                                                        | <b>2</b> (51)          | <b>7½</b> (191)      | 13½<br>(343)     | <b>3,200</b> (14.2)  | <b>588</b> (2.6)          | <b>800</b> (3.6)   | <b>4,465</b> (19.9)  | <b>1,017</b> (4.5)        | <b>1,115</b> (5.0)  | <b>5,080</b> (22.6)  | <b>771</b> (3.4)      | <b>1,270</b> (5.6)  | <b>90</b> (122) |
| (19.1)                                                                     | <b>3</b> % (86)        | <b>7½</b><br>(191)   | <b>13½</b> (343) | <b>6,400</b> (28.5)  | <b>665</b> (3.0)          | <b>1,600</b> (7.1) | <b>9,520</b> (42.3)  | <b>674</b> (3.0)          | <b>2,380</b> (10.6) | <b>10,040</b> (44.7) | <b>955</b> (4.2)      | <b>2,510</b> (11.2) | <b>90</b> (122) |

- 1. The tabulated allowable loads are based on a safety factor of 4.0.
- 2. Allowable loads may not be increased for short-term loading due to wind or seismic forces.
- 3. Refer to allowable load-adjustment factors for spacing and edge distance on p. 163.
- 4. Drill bit diameter used in base material corresponds to nominal anchor diameter.
- 5. Allowable tension loads may be linearly interpolated between concrete strengths listed.
- 6. The minimum concrete thickness is 11/2 times the embedment depth.

#### Allowable Tension and Shear Loads for %" Sleeve-All in Grout-Filled CMU (Anchor Installed in Horizontal Mortar Joint or Face Shell)

| Size                | Embed. Min. Edge<br>Depth Dist. |                 | Min. End<br>Dist. | Min.<br>Spacing | Tension Load         |                    | Shear Load           |                    | Install.<br>Torque |
|---------------------|---------------------------------|-----------------|-------------------|-----------------|----------------------|--------------------|----------------------|--------------------|--------------------|
| in.<br>(mm)         | in.<br>(mm)                     | in.<br>(mm)     | in.               | in.<br>(mm)     | Ultimate<br>lb. (kN) | Allow.<br>lb. (kN) | Ultimate<br>lb. (kN) | Allow.<br>lb. (kN) | ftlb.<br>(N-m)     |
| <b>3/8</b><br>(9.5) | <b>1 ½</b><br>(38)              | <b>16</b> (406) | <b>16</b> (406)   | <b>24</b> (610) | <b>2,000</b> (8.9)   | <b>400</b> (1.8)   | <b>2,300</b> (10.2)  | <b>460</b> (2.0)   | <b>15</b> (20)     |




See notes beneath following table.

#### Allowable Tension and Shear Loads for Sleeve-All in Grout-Filled CMU

| Size                      | Embed.<br>Depth                         | Min. Edge<br>Dist. | Min. End<br>Dist. | Min.<br>Spacing | Tensio               | n Load             | Shear                | Load                | Install.<br>Torque |  |  |
|---------------------------|-----------------------------------------|--------------------|-------------------|-----------------|----------------------|--------------------|----------------------|---------------------|--------------------|--|--|
| in.<br>(mm)               | in.<br>(mm)                             | in.<br>(mm)        | in.<br>(mm)       | in.<br>(mm)     | Ultimate<br>lb. (kN) | Allow.<br>lb. (kN) | Ultimate<br>lb. (kN) | Allow.<br>lb. (kN)  | ftlb.<br>(N-m)     |  |  |
|                           | Anchor Installed in a Single Face Shell |                    |                   |                 |                      |                    |                      |                     |                    |  |  |
| <b>3/8</b> (9.5)          | <b>1½</b> (38)                          | <b>12</b> (305)    | <b>12</b> (305)   | <b>24</b> (610) | <b>1,746</b> (7.8)   | <b>350</b> (1.6)   | <b>2,871</b> (12.8)  | <b>575</b> (2.6)    | <b>15</b> (20)     |  |  |
| 1/2<br>(12.7)             | <b>21/4</b> (57)                        | <b>12</b> (305)    | <b>12</b> (305)   | <b>24</b> (610) | <b>3,384</b> (15.1)  | <b>675</b> (3.0)   | <b>5,670</b> (25.2)  | <b>1,135</b> (5.0)  | <b>25</b> (34)     |  |  |
| <b>5/8</b> (15.9)         | <b>2¾</b> (70)                          | <b>12</b> (305)    | <b>12</b> (305)   | <b>24</b> (610) | <b>3,970</b> (17.7)  | <b>795</b> (3.5)   | <b>8,171</b> (36.3)  | <b>1,635</b> (7.3)  | <b>50</b> (68)     |  |  |
| 3/ <sub>4</sub><br>(19.1) | <b>3</b> %<br>(86)                      | <b>12</b> (305)    | <b>12</b> (305)   | <b>24</b> (610) | <b>6,395</b> (28.4)  | <b>1,280</b> (5.7) | <b>12,386</b> (55.1) | <b>2,475</b> (11.0) | <b>90</b> (122)    |  |  |
|                           |                                         |                    | Anchor            | Installed i     | n Mortar "1          | " Joint            |                      |                     |                    |  |  |
| 3/8<br>(9.5)              | <b>1 ½</b> (38)                         | <b>8</b> (203)     | <b>8</b> (203)    | <b>24</b> (610) | <b>1,927</b> (8.6)   | <b>385</b> (1.7)   | <b>3,436</b> (15.3)  | <b>685</b> (3.0)    | <b>15</b> (20)     |  |  |
| 1/2<br>(12.7)             | <b>2½</b><br>(57)                       | <b>8</b> (203)     | <b>8</b> (203)    | <b>24</b> (610) | <b>3,849</b> (17.1)  | <b>770</b> (3.4)   | <b>5,856</b> (26.0)  | <b>1,170</b> (5.2)  | <b>25</b> (34)     |  |  |
| <b>5/8</b> (15.9)         | <b>2¾</b><br>(70)                       | <b>8</b> (203)     | <b>8</b> (203)    | <b>24</b> (610) | <b>4,625</b> (20.6)  | <b>925</b> (4.1)   | <b>7,040</b> (31.3)  | <b>1,410</b> (6.3)  | <b>50</b> (68)     |  |  |
| <b>3/4</b> (19.1)         | <b>3</b> %<br>(86)                      | <b>8</b> (203)     | <b>8</b><br>(203) | <b>24</b> (610) | <b>5,483</b> (24.4)  | <b>1,095</b> (4.9) | <b>7,869</b> (35.0)  | <b>1,575</b> (7.0)  | <b>90</b> (122)    |  |  |

- 1. The tabulated allowable loads are based on a safety factor of 5.0.
- 2. Listed loads may be applied to installations through a face shell with the following placement guidélines:
- a. Minimum 3" from vertical mortar joint.b. Minimum 1" from vertical cell centerline.
- 3. Values for 6"- and 8"-wide concrete masonry units (CMU) with a minimum specified compressive strength of masonry, f'm, at 28 days is 1,500 psi.
- $4. \, \mbox{Embedment}$  depth is measured from the outside face of the concrete masonry unit.
- 5. Drill bit diameter used in base material corresponds to nominal anchor diameter.





#### **Face Shell Installation**

Allowable anchor placement in grout-filled CMU shown by shaded areas.

<sup>\*</sup> See p. 13 for an explanation of the load table icons

# **Sleeve-All®** Design Information — Concrete



Allowable Load-Adjustment Factors for Sleeve-All Anchors in Normal-Weight Concrete: Edge Distance and Spacing, Tension and Shear Loads

#### How to use these charts:

- 1. The following tables are for reduced edge distance and spacing.
- Locate the anchor size to be used for either a tension and/or shear load application.
- Locate the edge distance (c<sub>act</sub>) or spacing (s<sub>act</sub>) at which the anchor is to be installed.
- 4. The load adjustment factor (f  $_{\rm C}$  or f  $_{\rm S}\!)$  is the intersection of the row and column.
- 5. Multiply the allowable load by the applicable load adjustment factor.
- Reduction factors for multiple edges or spacing are multiplied together.

#### Edge Distance Tension (f<sub>c</sub>)

| Edge  | Size              | 1/4  | 5/16 | 3/8   | 1/2  | 5/8  | 3/4  |
|-------|-------------------|------|------|-------|------|------|------|
| Dist. | C <sub>cr</sub>   | 21/2 | 31/8 | 3¾    | 5    | 61/4 | 71/2 |
| Cact  | C <sub>min</sub>  | 11/4 | 1%16 | 11//8 | 21/2 | 31/8 | 3¾   |
| (in.) | f <sub>cmin</sub> | 0.60 | 0.60 | 0.60  | 0.60 | 0.60 | 0.60 |
| 1 1/4 |                   | 0.60 |      |       |      |      |      |
| 1 ½   |                   | 0.68 |      |       |      |      |      |
| 1%16  |                   | 0.70 | 0.60 |       |      |      |      |
| 11//8 |                   | 0.80 | 0.68 | 0.60  |      |      |      |
| 2     |                   | 0.84 | 0.71 | 0.63  |      |      |      |
| 21/2  |                   | 1.00 | 0.84 | 0.73  | 0.60 |      |      |
| 3     |                   |      | 0.97 | 0.84  | 0.68 |      |      |
| 31/8  |                   |      | 1.00 | 0.87  | 0.70 | 0.60 |      |
| 31/2  |                   |      |      | 0.95  | 0.76 | 0.65 |      |
| 3¾    |                   |      |      | 1.00  | 0.80 | 0.68 | 0.60 |
| 4     |                   |      |      |       | 0.84 | 0.71 | 0.63 |
| 41/2  |                   |      |      |       | 0.92 | 0.78 | 0.68 |
| 5     |                   |      |      |       | 1.00 | 0.84 | 0.73 |
| 5½    |                   |      |      |       |      | 0.90 | 0.79 |
| 6     |                   |      |      |       |      | 0.97 | 0.84 |
| 61/4  |                   |      |      |       |      | 1.00 | 0.87 |
| 61/2  |                   |      |      |       |      |      | 0.89 |
| 7     |                   |      |      |       |      |      | 0.95 |
| 71/2  |                   |      |      |       |      |      | 1.00 |

See notes below.

#### Edge Distance Shear (f.)

| Edge  | Distar            | nce Sr | iear (f <sub>c</sub> | )     |      |      |      |
|-------|-------------------|--------|----------------------|-------|------|------|------|
| Edge  | Size              | 1/4    | 5/16                 | 3/8   | 1/2  | 5/8  | 3/4  |
| Dist. | C <sub>cr</sub>   | 21/2   | 31/8                 | 3¾    | 5    | 61/4 | 71/2 |
| cact  | C <sub>min</sub>  | 11/4   | 1%16                 | 11//8 | 21/2 | 31/8 | 3¾   |
| (in.) | f <sub>cmin</sub> | 0.30   | 0.30                 | 0.30  | 0.30 | 0.30 | 0.30 |
| 1 1/4 |                   | 0.30   |                      |       |      |      |      |
| 1 1/2 |                   | 0.44   |                      |       |      |      |      |
| 1%16  |                   | 0.48   | 0.30                 |       |      |      |      |
| 17/8  |                   | 0.65   | 0.44                 | 0.30  |      |      |      |
| 2     |                   | 0.72   | 0.50                 | 0.35  |      |      |      |
| 21/2  |                   | 1.00   | 0.72                 | 0.53  | 0.30 |      |      |
| 3     |                   |        | 0.94                 | 0.72  | 0.44 |      |      |
| 31/8  |                   |        | 1.00                 | 0.77  | 0.48 | 0.30 |      |
| 31/2  |                   |        |                      | 0.91  | 0.58 | 0.38 |      |
| 3¾    |                   |        |                      | 1.00  | 0.65 | 0.44 | 0.30 |
| 4     |                   |        |                      |       | 0.72 | 0.50 | 0.35 |
| 41/2  |                   |        |                      |       | 0.86 | 0.61 | 0.44 |
| 5     |                   |        |                      |       | 1.00 | 0.72 | 0.53 |
| 51/2  |                   |        |                      |       |      | 0.83 | 0.63 |
| 6     |                   |        |                      |       |      | 0.94 | 0.72 |
| 61/4  |                   |        |                      |       |      | 1.00 | 0.77 |
| 61/2  |                   |        |                      |       |      |      | 0.81 |
| 7     |                   |        |                      |       |      |      | 0.91 |
| 71/2  |                   |        |                      |       |      |      | 1.00 |

- 1.  $c_{act}$  = actual edge distance at which anchor is installed (inches).
- 2.  $c_{CT}$  = critical edge distance for 100% load (inches).
- 3.  $c_{min}$  = minimum edge distance for reduced load (inches).
- $4. f_c = adjustment factor for allowable load at actual edge distance.$
- 5.  $f_{\it cccr}$  = adjustment factor for allowable load at critical edge distance.  $f_{\it cccr}$  is always = 1.00.
- 6.  $f_{\textit{cmin}} = \text{adjustment factor for allowable load at minimum edge distance.}$
- $7.\,f_{\text{C}} = f_{\text{cmin}} + [(1-f_{\text{smin}})\,(c_{\text{act}} c_{\text{min}})\,/\,(c_{\text{cr}} c_{\text{min}})].$

#### Spacing Tension and Shear (fs)

|       | Size              | 1/4  | 5/16 | 3/8  | 1/2  | 5/8  | 3/4   |
|-------|-------------------|------|------|------|------|------|-------|
| Sact  | Scr               | 41/2 | 5¾   | 6    | 9    | 11   | 131/2 |
| (in.) | Smin              | 21/4 | 21/8 | 3    | 41/2 | 51/2 | 63/4  |
|       | f <sub>smin</sub> | 0.50 | 0.50 | 0.50 | 0.50 | 0.50 | 0.50  |
| 21/4  |                   | 0.50 |      |      |      |      |       |
| 21/2  |                   | 0.56 |      |      |      |      |       |
| 27/8  |                   | 0.64 | 0.50 |      |      |      |       |
| 3     |                   | 0.67 | 0.52 | 0.50 |      |      |       |
| 31/2  |                   | 0.78 | 0.61 | 0.58 |      |      |       |
| 4     |                   | 0.89 | 0.70 | 0.67 |      |      |       |
| 41/2  |                   | 1.00 | 0.78 | 0.75 | 0.50 |      |       |
| 5     |                   |      | 0.87 | 0.83 | 0.56 |      |       |
| 5½    |                   |      | 0.96 | 0.92 | 0.61 | 0.50 |       |
| 5¾    |                   |      | 1.00 | 0.96 | 0.64 | 0.52 |       |
| 6     |                   |      |      | 1.00 | 0.67 | 0.55 |       |
| 61/2  |                   |      |      |      | 0.72 | 0.59 |       |
| 6¾    |                   |      |      |      | 0.75 | 0.61 | 0.50  |
| 7     |                   |      |      |      | 0.78 | 0.64 | 0.52  |
| 8     |                   |      |      |      | 0.89 | 0.73 | 0.59  |
| 9     |                   |      |      | _    | 1.00 | 0.82 | 0.67  |
| 10    |                   |      |      |      |      | 0.91 | 0.74  |
| 11    |                   |      |      |      |      | 1.00 | 0.81  |
| 12    |                   |      |      |      |      |      | 0.89  |
| 13    |                   |      |      |      |      |      | 0.96  |
| 13½   |                   |      |      |      |      |      | 1.00  |

- 1. E = Embedment depth (inches).
- 2.  $s_{act}$  = actual spacing distance at which anchors are installed (inches).
- 3.  $s_{cr}$  = critical spacing distance for 100% load (inches).
- 4.  $s_{min}$  = minimum spacing distance for reduced load (inches).
- $5.\,f_{\rm S}=$  adjustment factor for allowable load at actual spacing distance.
- $6.f_{SCr}=$  adjustment factor for allowable load at critical spacing distance.  $f_{SCr}$  is always = 1.00.
- 7. f<sub>smin</sub> = adjustment factor for allowable load at minimum spacing distance.
- 8.  $f_s = f_{smin} + [(1 f_{smin}) (s_{act} s_{min}) / (s_{cr} s_{min})].$



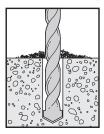
<sup>\*</sup> See p. 13 for an explanation of the load table icons.

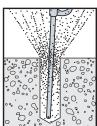
### Easy-Set Pin-Drive Expansion Anchor

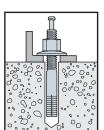


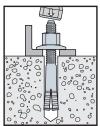
The Easy-Set is a pin-drive expansion anchor for medium- and heavy-duty fastening applications into concrete and grout-filled block. Integrated nut and washer help keep track of parts.

Material: Carbon steel


Coating: Yellow zinc dichromate plated


#### Installation


Caution: Oversized holes in the base material will make it difficult to set the anchor and will reduce the anchor's load capacity.


- 1. Drill a hole in the base material using a carbide drill bit the same diameter as the nominal diameter of the anchor to be installed. Drill the hole to the specified embedment depth plus ¼" to allow for pin extension and blow it clean using compressed air. (Overhead installations need not be blown clean.) Alternatively, drill the hole deep enough to accommodate embedment depth and the dust from drilling.
- 2. Adjust the nut for required embedment. Place the anchor through the fixture and into the hole.
- 3. Hammer the center pin until the bottom of the head is flush with top of anchor.

#### Installation Sequence









#### **EZAC Product Data**

| Size       | Model            | Thread<br>Length | Quantity |        |  |  |
|------------|------------------|------------------|----------|--------|--|--|
| (in.)      | No.              | (in.)            | Вох      | Carton |  |  |
| 3/8 x 23/8 | EZAC37238        | 1                | 50       | 250    |  |  |
| 3/8 X 31/2 | EZAC37312        | 11/8             | 50       | 250    |  |  |
| 3/8 X 43/4 | EZAC37434        | 1½               | 50       | 200    |  |  |
| ½ x 2¾     | EZAC50234        | 1                | 25       | 125    |  |  |
| ½ x 3½     | EZAC50312        | 11/8             | 25       | 125    |  |  |
| ½ x 4¾     | EZAC50434        | 1 1/2            | 25       | 100    |  |  |
| ½ x 6      | EZAC50600        | 2                | 25       | 100    |  |  |
| 5/8 x 4    | EZAC62400        | 1 %              | 15       | 60     |  |  |
| 5⁄8 X 43⁄4 | % x 4¾ EZAC62434 |                  | 15       | 60     |  |  |
| % x 6      | EZAC62600        | 2                | 15       | 60     |  |  |

Easy-Set Anchor Installation Data

| Easy-Set Diameter<br>(in.)   | 3/8  | 1/2  | 5/8   |
|------------------------------|------|------|-------|
| Drill Bit Size (in.)         | 3/8  | 1/2  | 5/8   |
| Min. Fixture Hole Size (in.) | 7/16 | 9/16 | 11/16 |
| Wrench Size (in.)            | 9/16 | 3/4  | 15/16 |

#### EZAC Allowable Tension and Shear Loads in Normal-Weight Concrete

|          | Embed.            |                          | Critical Edge   | Critical                | Tension Load       | Shear Load              |  |  |
|----------|-------------------|--------------------------|-----------------|-------------------------|--------------------|-------------------------|--|--|
| Size in. | Depth<br>in.      | Drill Bit<br>Dia.<br>In. | Dist.<br>In.    | Spacing<br>Dist.<br>In. |                    | ,000 psi<br>a) Concrete |  |  |
|          | (mm)              |                          | (mm)            | (mm)                    | Allowable lb. (kN) |                         |  |  |
| 3/8      | <b>1</b> 3/4 (44) | 3/8                      | <b>2¾</b> (70)  | <b>51⁄4</b> (133)       | <b>630</b> (2.8)   | <b>645</b> (2.9)        |  |  |
| 1/2      | <b>2½</b> (64)    | 1/2                      | <b>3</b> % (86) | <b>6¾</b> (171)         | <b>1,005</b> (4.5) | <b>1,230</b> (5.5)      |  |  |
| 5/8      | <b>3</b> (76)     | 5/8                      | <b>4½</b> (108) | <b>9</b> (229)          | <b>1,515</b> (6.7) | <b>1,325</b> (5.9)      |  |  |



1. The allowable loads listed are based on a safety factor of 4.0.

Easy-Set (EZAC)

- 100% of the allowable load is permitted at critical spacing and critical edge distance. Allowable loads at lesser spacings and edge distance have not been determined.
- 4. Tension and shear loads for the EZAC anchor may be combined using the straight-line interaction equation (n = 1).

<sup>\*</sup> See p. 13 for an explanation of the load table icons

# Tie-Wire Wedge Anchor



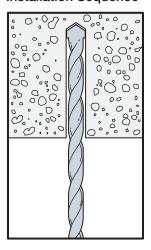
The Simpson Strong-Tie tie-wire anchor is a wedge-style expansion anchor for use in normal-weight concrete or in concrete over metal deck. With a tri-segmented, dual-embossed clip, the tie-wire anchor is ideal for the installation of acoustic ceiling grid and is easily set with the claw of a hammer.

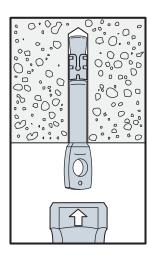
#### **Features**

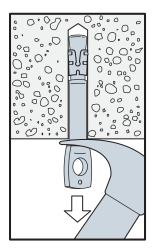
- 1/4" eyelet for easy threading of wire
- · Sets with claw of hammer
- Tri-segmented clip each segment adjusts independently to hole irregularities
- Dual embossments on each clip segment enable the clip to undercut into the concrete, increasing follow-up expansion
- Wedge-style expansion anchor for use in normal weight concrete or concrete over metal deck

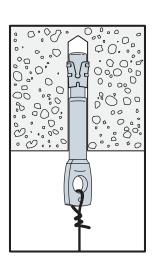
Material: Carbon steel
Coating: Zinc plated

#### Installation


- 1. Drill a hole at least 11/2" deep using a 1/4"-diameter carbide tipped bit.
- 2. Drive the anchor into the hole until the bottom of the head is flush with the base material.
- 3. Set the anchor by prying/pulling the head with the claw end of the hammer.


| Size          | Model   | Drill Bit<br>Diameter | Eyelet<br>Hole Size | Quantity |        |  |
|---------------|---------|-----------------------|---------------------|----------|--------|--|
| (in.)         | No.     | (in.)                 | (in.)               | Вох      | Carton |  |
| 1⁄4" x 1 1⁄2" | TW25112 | 1/4                   | 1/4                 | 100      | 500    |  |





Tie-Wire

#### Installation Sequence









# C-A-2018 @2018 SIMPSON STRONG-TIE COMPANY INC.

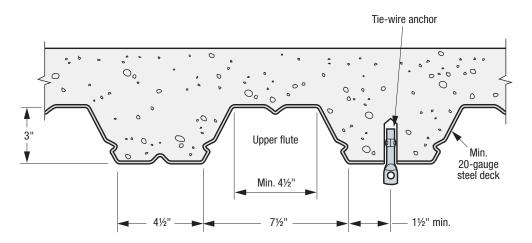
# **Tie-Wire** Design Information — Concrete

# SIMPSON Strong-Tie

Allowable Tension and Shear Loads for Tie-Wire Anchor in Normal-Weight Concrete

| IBC | 1       | •       |   |
|-----|---------|---------|---|
|     | 874 872 | 200 200 | Ш |

| Size Drill Bit<br>in. Diameter<br>(mm) in. | Embed        | Critical<br>End Dist.<br>in. | Critical<br>Spacing<br>in. | Tension Load $f'_c \ge 2,500 \text{ psi } (17.2 \text{ MPa})$ |                      | Shear Load                             |                      |                       |
|--------------------------------------------|--------------|------------------------------|----------------------------|---------------------------------------------------------------|----------------------|----------------------------------------|----------------------|-----------------------|
|                                            | Depth<br>in. |                              |                            |                                                               |                      | f' <sub>c</sub> ≥ 2,500 psi (17.2 MPa) |                      |                       |
|                                            | in.          | (mm)                         | (mm)                       | (mm)                                                          | Ultimate<br>lb. (kN) | Allowable<br>lb. (kN)                  | Ultimate<br>lb. (kN) | Allowable<br>lb. (kN) |
| 1/4<br>(6.4)                               | 1/4          | <b>1½</b> (38)               | <b>2½</b> (64)             | <b>5</b> (127)                                                | <b>1,155</b> (5.1)   | <b>290</b> (1.3)                       | <b>380</b> (1.7)     | <b>95</b> (0.4)       |


- 1. The allowable loads listed are based on a safety factor of 4.0.
- 2. The minimum concrete thickness is 11/2 times the embedment depth.

Allowable Tension and Shear Loads for Tie-Wire Anchor in the Soffit of Normal-Weight Concrete or Sand-Lightweight Concrete over Metal Deck



|              |                  |                       | Critical          | Critical       | Tension Load                           |                       | Shear Load                             |                       |
|--------------|------------------|-----------------------|-------------------|----------------|----------------------------------------|-----------------------|----------------------------------------|-----------------------|
| Size<br>in.  | Drill Bit<br>Dia | Embed<br>Depth<br>in. | End Dist.5        | Spacing in.    | f' <sub>c</sub> ≥ 3,000 psi (20.7 MPa) |                       | f' <sub>c</sub> ≥ 3,000 psi (20.7 MPa) |                       |
| (mm)         | in.              | (mm)                  | (mm)              | (mm)           | Ultimate<br>lb. (kN)                   | Allowable<br>lb. (kN) | Ultimate<br>lb. (kN)                   | Allowable<br>lb. (kN) |
| 1/4<br>(6.4) | 1/4              | <b>1½</b> (38)        | <b>2½</b><br>(64) | <b>5</b> (127) | <b>1,155</b> (5.1)                     | <b>290</b> (1.3)      | <b>460</b> (2.0)                       | <b>115</b> (0.5)      |

- 1. The allowable loads listed are based on a safety factor of 4.0.
- 2. The minimum concrete thickness is 11/2 times the embedment depth.
- 3. Metal deck must be minimum 20-gauge thick with minimum yield strength of 33 ksi.
- 4. Anchors installed in the bottom flute of the steel deck must have a minimum edge distance of 1%" away from inclined edge of the bottom flute. See the figure below.
- 5. Critical end distance is defined as the distance from the end of the slab in the direction of the flute.



Installation in the Soffit of Concrete over Metal Deck

# SIMPSON Strong-Tie

The Titen 2 concrete and masonry screw is ideal for attaching all types of components to concrete and masonry. The improved thread design undercuts the base material more efficiently, reducing installation torque and making it easier to drive without binding, snapping or stripping, even during installation into hard base material.

#### **Features**

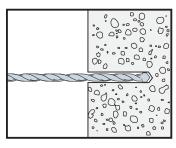
- Patented undercutting threads reduce installation torque
- Innovative design increases load capacity
- Code listed in accordance with ICC-ES AC193 for concrete application (IAPMO UES ER-449) and ICC-ES AC106 for masonry application (IAPMO UES ER-466)
- Suitable for near-edge concrete installations without expansion forces and cracking
- Installs with Standard ANSI drill bits (bit included in larger count boxes)
- Preservative treated wood applications: suited for use in non-ammonia formulations of CCA, ACQ-C, ACQ-D, CA-B, BX/DOT and zinc borate
- · Use in dry interior environments only

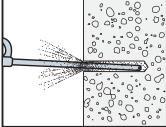
Codes: IAPMO UES ER-449 (concrete); IAPMO UES ER-466 (masonry)

Material: Carbon steel

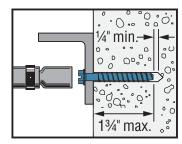
Coating: Zinc plated with baked-on ceramic coating







Phillips flat head for flush or countersunk applications




Serrated cutting teeth reduce torque for reliable installations U.S. Patent 9,523,393

#### Installation Sequence









# SIMPSON Strong-Tie

# Titen® 2 Concrete and Masonry Screw

#### Blue Titen 2 Product Data

| Size         | Head         | Model        | Drill Bit<br>Diameter | Qua | ntity  |
|--------------|--------------|--------------|-----------------------|-----|--------|
| (in.)        | Style        | No.          | (in.)                 | Вох | Carton |
| 3/16 X 1 1/4 |              | TTN2-18114H  |                       | 100 | 1,600  |
| 3/16 X 1 3/4 |              | TTN2-18134H  |                       | 100 | 500    |
| 3/16 X 21/4  |              | TTN2-18214H  |                       | 100 | 500    |
| 3/16 X 23/4  | ½"<br>Hex    | TTN2-18234H  | 5/32                  | 100 | 500    |
| 3/16 X 3 1/4 | Hex          | TTN2-18314H  |                       | 100 | 400    |
| 3/16 X 33/4  |              | TTN2-18334H  |                       | 100 | 400    |
| 3∕16 X 4     |              | TTN2-18400H  |                       | 100 | 1,600  |
| 1/4 X 1 1/4  |              | TTN2-25114H  |                       | 100 | 1,600  |
| 1/4 X 13/4   |              | TTN2-25134H  |                       | 100 | 500    |
| 1/4 x 21/4   |              | TTN2-25214H  |                       | 100 | 500    |
| 1/4 x 23/4   |              | TTN2-25234H  |                       | 100 | 500    |
| 1/4 x 31/4   | 5/16"<br>Hex | TTN2-25314H  | 3/16                  | 100 | 400    |
| 1/4 x 33/4   | TIOX         | TTN2-25334H  |                       | 100 | 400    |
| 1/4 x 4      |              | TTN2-25400H  |                       | 100 | 1,600  |
| 1/4 x 5      |              | TTN2-25500H  |                       | 100 | 500    |
| 1⁄4 x 6      |              | TTN2-25600H  |                       | 100 | 500    |
| 3/16 X 1 1/4 |              | TTN2-18114PF |                       | 100 | 500    |
| 3/16 X 1 3/4 |              | TTN2-18134PF |                       | 100 | 500    |
| 3/16 X 2 1/4 | #2           | TTN2-18214PF |                       | 100 | 500    |
| 3/16 X 23/4  | Phillips     | TTN2-18234PF | 5/32                  | 100 | 400    |
| 3/16 X 3 1/4 | Flat         | TTN2-18314PF |                       | 100 | 400    |
| 3/16 X 33/4  |              | TTN2-18334PF |                       | 100 | 400    |
| 3/16 X 4     |              | TTN2-18400PF |                       | 100 | 400    |
| 1/4 x 1 1/4  |              | TTN2-25114PF |                       | 100 | 500    |
| 1/4 x 13/4   |              | TTN2-25134PF |                       | 100 | 400    |
| 1/4 X 21/4   |              | TTN2-25214PF |                       | 100 | 400    |
| 1/4 X 23/4   | #3           | TTN2-25234PF |                       | 100 | 400    |
| 1/4 x 31/4   | Phillips     | TTN2-25314PF | 3/16                  | 100 | 400    |
| 1/4 x 33/4   | Flat         | TTN2-25334PF |                       | 100 | 400    |
| 1/4 x 4      |              | TTN2-25400PF |                       | 100 | 400    |
| 1/4 x 5      |              | TTN2-25500PF |                       | 100 | 400    |
| 1/4 x 6      |              | TTN2-25600PF |                       | 100 | 400    |



#### White Titen 2 Product Data (Phillips Flat-Head)

| ,            |                    |              |                   |          |        |  |
|--------------|--------------------|--------------|-------------------|----------|--------|--|
| Size         | Head               | Model        | Drill Bit         | Quantity |        |  |
| (in.)        | Style              | No.          | Diameter<br>(in.) | Box      | Carton |  |
| 3/16 X 1 1/4 |                    | TTN2W18114PF |                   | 100      | 1,600  |  |
| 3/16 X 1 3/4 |                    | TTN2W18134PF |                   | 100      | 500    |  |
| 3/16 X 2 1/4 | #2                 | TTN2W18214PF | 5/                | 100      | 500    |  |
| 3/16 X 23/4  | - Phillips<br>Flat | TTN2W18234PF | 5/32              | 100      | 500    |  |
| 3/16 X 3 1/4 |                    | TTN2W18314PF |                   | 100      | 400    |  |
| 3/16 X 33/4  | 1                  | TTN2W18334PF |                   | 100      | 400    |  |
| 1/4 x 1 1/4  |                    | TTN2W25114PF |                   | 100      | 1,600  |  |
| 1/4 x 13/4   |                    | TTN2W25134PF |                   | 100      | 500    |  |
| 1/4 x 21/4   | #3                 | TTN2W25214PF | 3/                | 100      | 500    |  |
| 1/4 x 23/4   | - Phillips<br>Flat | TTN2W25234PF | 3/16              | 100      | 500    |  |
| 1/4 x 3 1/4  |                    | TTN2W25314PF |                   | 100      | 400    |  |
| 1/4 x 33/4   |                    | TTN2W25334PF |                   | 100      | 400    |  |



IBC T

# Titen® 2 Concrete and Masonry Screw



#### Titen 2 Installation Information and Additional Data<sup>1</sup>

| restrict in total action in the trial of the trial of the | Control Ion Doctor    |                  |       |                               |  |  |
|-----------------------------------------------------------|-----------------------|------------------|-------|-------------------------------|--|--|
| Ohavastavistis                                            | Complete              | Symbol Units     |       | Nominal Anchor Diameter (in.) |  |  |
| Characteristic                                            | Symbol                | Units            | 3/16  | 1/4                           |  |  |
|                                                           | Installation Informat | ion              |       |                               |  |  |
| Drill Bit Diameter                                        | d                     | in.              | 5/32  | 3/16                          |  |  |
| Minimum Baseplate Clearance Hole Diameter                 | $d_{c}$               | in.              | 1/4   | 5/16                          |  |  |
| Minimum Hole Depth                                        | h <sub>hole</sub>     | in.              | 21/4  | 21/4                          |  |  |
| Embedment Depth                                           | h <sub>nom</sub>      | in.              | 13/4  | 13/4                          |  |  |
| Effective Embedment Depth                                 | h <sub>ef</sub>       | in.              | 1.30  | 1.30                          |  |  |
| Critical Edge Distance                                    | $c_{ac}$              | in.              | 3     | 3                             |  |  |
| Minimum Edge Distance                                     | C <sub>min</sub>      | in.              | 13/4  | 13/4                          |  |  |
| Minimum Spacing                                           | S <sub>min</sub>      | in.              | 1     | 2                             |  |  |
| Minimum Concrete Thickness                                | h <sub>min</sub>      | in.              | 31/4  | 31/4                          |  |  |
|                                                           | Additional Data       |                  |       |                               |  |  |
| Yield Strength                                            | f <sub>ya</sub>       | psi              | 100   | ,000                          |  |  |
| Tensile Strength                                          | f <sub>uta</sub>      | psi              | 125   | 125,000                       |  |  |
| Minimum Tensile and Shear Stress Area                     | A <sub>se</sub>       | in. <sup>2</sup> | 0.017 | 0.025                         |  |  |

The information presented in this table is to be used in conjunction with the design criteria of ACI 318-14 Chapter 17 or ACI 318-11 Appendix D.

#### Titen 2 Tension Strength Design Data<sup>1</sup>

| Liten 2 Tension Strength Design Data                                             |                               |                      |                               |                  |  |  |  |  |
|----------------------------------------------------------------------------------|-------------------------------|----------------------|-------------------------------|------------------|--|--|--|--|
| Characteristic                                                                   | Symbol                        | Units                | Nominal Anchor Diameter (in.) |                  |  |  |  |  |
| Gilal acteristic                                                                 | Symbol                        | Ullits               | 3/16                          | 1/4              |  |  |  |  |
| Anchor Category                                                                  | 1, 2 or 3                     | _                    |                               | 1                |  |  |  |  |
| Embedment Depth                                                                  | h <sub>nom</sub>              | in.                  | 13⁄4                          | 13⁄4             |  |  |  |  |
| Ste                                                                              | el Strength in Tensio         | n                    |                               |                  |  |  |  |  |
| Tension Resistance of Steel                                                      | $N_{sa}$                      | lb.                  | 2,175                         | 3,175            |  |  |  |  |
| Strength Reduction Factor — Steel Failure                                        | $\phi_{sa}$                   | _                    | 0.65 <sup>2</sup>             |                  |  |  |  |  |
| Concrete E                                                                       | Breakout Strength in          | Tension <sup>6</sup> |                               |                  |  |  |  |  |
| Effective Embedment Depth                                                        | h <sub>ef</sub>               | in.                  | 1.30                          | 1.30             |  |  |  |  |
| Critical Edge Distance                                                           | Cac                           | in.                  | 3                             | 3                |  |  |  |  |
| Effectiveness Factor — Uncracked Concrete                                        | k <sub>uncr</sub>             | _                    |                               | 24               |  |  |  |  |
| Modification Factor                                                              | $\Psi_{c,N}$                  |                      |                               | 1.0              |  |  |  |  |
| Strength Reduction Factor — Concrete Breakout Failure                            | $\phi_{cb}$                   | _                    | 0                             | .65 <sup>3</sup> |  |  |  |  |
| Pullout Strength in Tension <sup>6</sup>                                         |                               |                      |                               |                  |  |  |  |  |
| Pullout Resistance Uncracked Concrete (f' <sub>c</sub> = 2,500 psi) <sup>4</sup> | N <sub>p,uncr</sub>           | lb.                  | 1,900                         | 1,900            |  |  |  |  |
| Strength Reduction Factor — Pullout Failure                                      | $\phi_{\scriptscriptstyle D}$ | _                    | 0                             | .65 <sup>5</sup> |  |  |  |  |

- 1. The information presented in this table is to be used in conjunction with the design criteria of ACI 318-14 Chapter 17 or ACI 318-11 Appendix D.
- 2. The tabulated value of  $\phi_{sa}$  applies when the load combinations of Section 1605.2 of the IBC, ACI 318-14 Section 5.3 or ACI 318-11 Section 9.2 are used. If the load combinations of ACI 318-11 Appendix C are used, the appropriate value of  $\phi$  must be determined in accordance with ACI 318-11 Section D.4.4.
- 3. The tabulated value of  $\phi_{cb}$  applies when both the load combinations of Section 1605.2 of the IBC, ACI 318-14 Section 5.3 or ACI 318-11 Section 9.2 are used and the requirements of ACI 318-14 Section 17.3.3 (c) or ACI 318-11 Section D.4.3, as applicable, for Condition B are met. Condition B applies where supplementary reinforcement is not provided. For installations where complying supplementary reinforcement can be verified, the  $\phi_{cb}$  factor described in ACI 318-14 17.3.3(c) or ACI 318-11 D.4.3, as applicable, for Condition A are allowed. If the load combinations of ACI 318-11 Appendix C are used, the appropriate value of  $\phi$  must be determined in accordance with ACI 318-11 Section D.4.4.
- 4. The characteristic pullout resistance for greater compressive strengths may be increased by multiplying the tabular value by (f'<sub>c</sub>/2,500)<sup>0.5</sup>.
- 5. The tabulated value of  $\phi_p$  applies when both the load combinations of Section 1605.2 of the IBC, ACI 318-14 Section 5.3 or ACI 318-11 Section 9.2 are used and the requirements of ACI 318-14 Section 17.3.3 (c) or ACI 318-11 Section D.4.3(c) for Condition B are met. If the load combinations of ACI 318-11 Appendix C are used, the appropriate value of  $\phi$  must be determined in accordance with ACI 318-11 Section D.4.4 for Condition B.

C-A-2018 @2018 SIMPSON STRONG-TIE COMPANY INC.

<sup>\*</sup> See p. 13 for an explanation of the load table icons.

# C-A-2018 @ 2018 SIMPSON STRONG-TIE COMPANY INC.

# Titen® 2 Concrete and Masonry Screw



#### Titen 2 Shear Strength Design Data<sup>1</sup>









| Characteristic                                        | Symbol                  | Units          | Nominal Ancho | or Diameter (in.) |  |  |  |
|-------------------------------------------------------|-------------------------|----------------|---------------|-------------------|--|--|--|
| Gildideteristic                                       | Syllibul                | Units          | 3∕16          | 1/4               |  |  |  |
| Anchor Category                                       | 1, 2 or 3               | _              |               | 1                 |  |  |  |
| Embedment Depth                                       | h <sub>nom</sub>        | in.            | 1 3/4         | 13/4              |  |  |  |
|                                                       | Steel Strength in       | Shear          |               |                   |  |  |  |
| Shear Resistance of Steel                             | $V_{sa}$                | lb.            | 990           | 1,510             |  |  |  |
| Strength Reduction Factor — Steel Failure             | $\phi_{sa}$             | <u> </u>       | $0.60^{2}$    |                   |  |  |  |
|                                                       | Concrete Breakout Stren | ngth in Shear⁴ |               |                   |  |  |  |
| Outside Diameter                                      | d <sub>a</sub>          | in.            | 0.149         | 0.180             |  |  |  |
| Load Bearing Length of Anchor in Shear                | l <sub>e</sub>          | in.            | 1.30          | 1.30              |  |  |  |
| Strength Reduction Factor — Concrete Breakout Failure | $\phi_{cb}$             | _              | 0.            | 70³               |  |  |  |
| Concrete Pryout Strength in Shear                     |                         |                |               |                   |  |  |  |
| Coefficient for Pryout Strength                       | k <sub>cp</sub>         | _              | 1.0           |                   |  |  |  |
| Strength Reduction Factor — Concrete Pryout Failure   | $\phi_{cp}$             | _              | 0.            | 70 <sup>4</sup>   |  |  |  |

- 1. The information presented in this table is to be used in conjunction with the design criteria of ACI 318-14 Chapter 17 or ACI 318-11 Appendix D.
- 2. The tabulated value of  $\phi_{S3}$  applies when the load combinations of Section 1605.2 of the IBC, ACI 318-14 Section 5.3 or ACI 318-11 Section 9.2 are used. If the load combinations of ACI 318-11 Appendix C are used, the appropriate value of  $\phi$  must be determined in accordance with ACI 318-11 Section D.4.4.
- 3. The tabulated value of  $\phi_{cb}$  applies when both the load combinations of Section 1605.2.1 of the IBC, ACI 318-14 Section 5.3 or ACI 318-11 Section 9.2 are used and the requirements of ACI 318-14 17.3.3(c) or ACI 318-11 D.4.3(c) for Condition B are met. Condition B applies where supplementary reinforcement is not provided. For installations where complying supplementary reinforcement can be verified, the  $\phi_{cb}$  factors described in ACI 318-14 17.3.3(c) or ACI 318-11 D.4.3(c) for Condition A are allowed. If the load combinations of ACI 318-11 Appendix C are used, the appropriate value of  $\phi_{cb}$  must be determined in accordance with ACI 318-11 D.4.4(c).
- 4. The tabulated value of  $\phi_{cp}$  applies when both the load combinations of IBC Section 1605.2, ACI 318-14 5.3 or ACI 318-11 Section 9.2 are used and the requirements of ACI 318-14 17.3.3(c) or ACI 318-11 D.4.3(c) for Condition B are met. If the load combinations of ACI 318-11 Appendix C are used, appropriate value of  $\phi_{cp}$  must be determined in accordance with ACI 318-11 Section D.4.4(c).

# Allowable Tension Load for Titen 2 Screw Anchor Installed in Grouted CMU Wall Faces<sup>1,2,3</sup>







| Anchor            | Embedment      |                  | Allowable Load |              |       |
|-------------------|----------------|------------------|----------------|--------------|-------|
| Diameter<br>(in.) | Depth<br>(in.) | Spacing<br>(in.) | Edge<br>(in.)  | End<br>(in.) | (lb.) |
| 3/16              | 2              | 3                | 31/8           | 31/8         | 346   |
| 3/16              | 2              | 3                | 1½             | 31/8         | 315   |
| 1/4               | 2              | 4                | 31/8           | 31/8         | 277   |
| 1/4               | 2              | 4                | 1½             | 37/8         | 272   |

- 1. The tabulated values are for screw anchors installed in minimum 8"-wide grouted concrete masonry walls having reached a minimum of f'<sub>m</sub> of 1,500 psi at time of installation.
- 2. Embedment is measured from the masonry surface to the embedded end of the screw anchor.
- 3. Screw anchors must be installed in grouted cell. The minimum edge and end distances must be maintained.
- 4. Allowable loads are based on a safety factor of 5.0 for installations under the IBC and IRC.

# Allowable Shear Load for Titen 2 Screw Anchor Installed in Grouted CMU Wall Faces<sup>1,2,3</sup>







| Anchor            | Embedment      |               |               | Allowable Load |                                        |       |
|-------------------|----------------|---------------|---------------|----------------|----------------------------------------|-------|
| Diameter<br>(in.) | Depth<br>(in.) | Spacing (in.) | Edge<br>(in.) | End<br>(in.)   | Direction of Loading                   | (lb.) |
| 3/16              | 2              | 3             | 37/8          | 37/8           | Toward edge, parallel to wall end      | 224   |
| 3/16              | 2              | 3             | 1 1/2         | 37/8           | Toward wall end, parallel to wall edge | 238   |
| 1/4               | 2              | 4             | 37/8          | 37/8           | Toward edge, parallel to wall end      | 309   |
| 1/4               | 2              | 4             | 1 ½           | 37/8           | Toward wall end, parallel to wall edge | 277   |

- 1. The tabulated values are for screw anchors installed in minimum 8"-wide grouted concrete masonry walls having reached a minimum of  $f'_m$  of 1,500 psi at time of installation.
- 2. Embedment is measured from the masonry surface to the embedded end of the screw anchor.
- 3. Screw anchors must be installed in grouted cell. The minimum edge and end distances must be maintained.
- 4. Allowable loads are based on a safety factor of 5.0 for installations under the IBC and IRC.

<sup>\*</sup> See p. 13 for an explanation of the load table icons.

# Titen® 2 Concrete and Masonry Screw



# Allowable Tension Load for Titen 2 Screw Anchor Installed in Hollow CMU Wall Faces 1.2,3



| Anchor            | Embedment      | Mi               | Allowable     |              |               |  |
|-------------------|----------------|------------------|---------------|--------------|---------------|--|
| Diameter<br>(in.) | Depth<br>(in.) | Spacing<br>(in.) | Edge<br>(in.) | End<br>(in.) | Load<br>(lb.) |  |
| 3/16              | 11/4           | 3                | 37/8          | 37/8         | 151           |  |
| 1/4               | 11/4           | 4                | 37/8          | 37/8         | 153           |  |

- 1. The tabulated values are for screw anchors installed in minimum 8"-wide ungrouted concrete masonry walls having reached a minimum of f'<sub>m</sub> of 1,500 psi at time of installation.
- 2. Embedment is measured from the masonry surface to the embedded end of the screw anchor.
- 3. Screw anchors may be installed at any location in the wall face provided the minimum edge and end distances are maintained.
- 4. Allowable loads are based on a safety factor of 5.0 for installations under the IBC and IRC.

# Allowable Shear Load for Titen 2 Screw Anchor Installed in Hollow CMU Wall Faces<sup>1,2,3</sup>



| Anchor            | Embedment | Mi | nimum Dimensio               | ons  | Direction of                         | Allowable |                              |  |                              |  |                              |  |         |                            |
|-------------------|-----------|----|------------------------------|------|--------------------------------------|-----------|------------------------------|--|------------------------------|--|------------------------------|--|---------|----------------------------|
| Diameter<br>(in.) |           |    | (in )   Spacing   Edge   End |      | (in )   Spacing   Edge   End         |           | (in )   Spacing   Edge   End |  | (in )   Spacing   Edge   End |  | (in )   Spacing   Edge   End |  | Loading | Allowable<br>Load<br>(lb.) |
| 3/16              | 11/4      | 3  | 31/8                         | 31/8 | Toward edge,<br>parallel to wall end | 168       |                              |  |                              |  |                              |  |         |                            |
| 1/4               | 11/4      | 4  | 37/8                         | 37/8 | Toward edge,<br>parallel to wall end | 163       |                              |  |                              |  |                              |  |         |                            |

- 1. The tabulated values are for screw anchors installed in minimum 8"-wide ungrouted concrete masonry walls having reached a minimum of f'<sub>m</sub> of 1,500 psi at time of installation.
- 2. Embedment is measured from the masonry surface to the embedded end of the screw anchor.
- Screw anchors may be installed at any location in the wall face provided the minimum edge and end distances are maintained.
- 4. Allowable loads are based on a safety factor of 5.0 for installations under the IBC and IRC.

C-A-2018 @2018 SIMPSON STRONG-TIE COMPANY INC.

# Titen® Stainless Steel Concrete and Masonry Screw



Stainless steel Titen screws are ideal for attaching various types of components to concrete and masonry, such as fastening electrical boxes or light fixtures. They offer the versatility of our standard Titen screws with enhanced corrosion protection. Available in hex and Phillips flat head.

#### **Features**

- Suitable for concrete, brick, grout-filled CMU and hollow-block applications
- Suitable for some preservative-treated wood applications
- · Acceptable for exterior use
- Titen drill bits included in each box
- Available in lengths from 1 ¼"-4"

Material: Type 410 stainless steel

Coating: Zinc plated with a protective overcoat

#### Installation



Caution: Industry studies show that hardened fasteners can experience performance problems in wet or corrosive environments. Steps must be taken to prevent inadvertent sustained loads above the listed allowable loads. Overtightening and bending moments can initiate cracks detrimental to the hardened screw's performance. Use the Simpson Strong-Tie Titen installation tool kit as it has a bit that is designed to reduce the potential for overtightening the screw.



**Caution:** Oversized holes in the base material will reduce or eliminate the mechanical interlock of the threads with the base material and will reduce the anchor's load capacity.

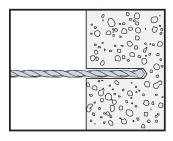
- 1. Drill a hole in the base material using the appropriate diameter carbide drill bit as specified in the table. Drill the hole to the specified embedment depth plus ½" to allow the thread tapping dust to settle and blow it clean using compressed air. Overhead installations need not be blown clean. Alternatively, drill the hole deep enough to accommodate embedment depth and dust from drilling and tapping.
- Position fixture, insert screw and tighten using drill and Titen screw installation tool fitted with a hex socket or phillips bit.

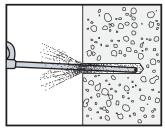
Preservative-treated wood applications: suitable for use in non-ammonia formulations of CCA, ACQ-C, ACQ-D, CA-B, SBX/DOT and zinc borate. Acceptable for use in exterior environments. Use caution not to damage coating during installation. The 410 stainless-steel Titen with top coat provides "medium" corrosion protection. Recommendations are based on testing and experience at time of publication and may change. Simpson Strong-Tie cannot provide estimates on service life of screws.



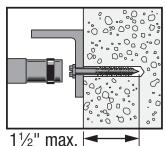





**Titen** Stainless-Steel Hex-Head Screw (HSS)


#### Stainless-Steel Titen Product Data

| Size        | Head                  | Model No.    | Drill Bit<br>Diameter | Qua | ntity  |
|-------------|-----------------------|--------------|-----------------------|-----|--------|
| (in.)       | Style                 | wouel no.    | (in.)                 | Вох | Carton |
| 1/4 X 1 1/4 |                       | TTN25114HSS  |                       | 100 | 1600   |
| 1/4 x 1 3/4 |                       | TTN25134HSS  |                       | 100 | 500    |
| 1/4 x 2 1/4 |                       | TTN25214HSS  |                       | 100 | 500    |
| 1/4 x 23/4  | Hex-Head              | TTN25234HSS  | 3/16                  | 100 | 500    |
| 1/4 x 3 1/4 |                       | TTN25314HSS  |                       | 100 | 400    |
| 1/4 x 33/4  |                       | TTN25334HSS  |                       | 100 | 400    |
| 1/4 x 4     |                       | TTN25400HSS  |                       | 100 | 400    |
| 1/4 x 1 1/4 |                       | TTN25114PFSS |                       | 100 | 1600   |
| 1/4 x 1 3/4 |                       | TTN25134PFSS |                       | 100 | 500    |
| 1/4 x 2 1/4 | DI III                | TTN25214PFSS |                       | 100 | 500    |
| 1/4 x 23/4  | Phillips<br>Flat-Head | TTN25234PFSS | 3/16                  | 100 | 500    |
| 1/4 x 3 1/4 | i iat-i icau          | TTN25314PFSS |                       | 100 | 400    |
| 1/4 x 33/4  |                       | TTN25334PFSS |                       | 100 | 400    |
| 1/4 x 4     |                       | TTN25400PFSS |                       | 100 | 400    |


One drill bit is included in each box.

#### Installation Sequence









# C-A-2018 @ 2018 SIMPSON STRONG-TIE COMPANY INC.

# Titen® Stainless Steel Concrete and Masonry Screw



# Stainless-Steel Titen Allowable Tension and Shear Loads in Normal-Weight Concrete

| IBC T |  | * |
|-------|--|---|
|-------|--|---|

|                     |                          |                    |                 |                    |                                  |                                                       |                      |                                                       |                      |                                          |  | Tension Load |  |  |  | Shear Load |  |
|---------------------|--------------------------|--------------------|-----------------|--------------------|----------------------------------|-------------------------------------------------------|----------------------|-------------------------------------------------------|----------------------|------------------------------------------|--|--------------|--|--|--|------------|--|
| Dia.<br>in.<br>(mm) | Drill Bit<br>Dia.<br>in. | a. Depth Sp<br>in. | Depth           | oth Spacing<br>in. | Critical<br>Edge<br>Dist.<br>in. | f' <sub>c</sub> ≥ 2,000 psi<br>(13.8 MPa)<br>Concrete |                      | f' <sub>c</sub> ≥ 4,000 psi<br>(27.6 MPa)<br>Concrete |                      | $f'_c \ge 2,000$ psi (13.8 MPa) Concrete |  |              |  |  |  |            |  |
|                     |                          |                    | (mm)            | (mm)               | Ultimate<br>lb. (kN)             | Allow.<br>lb. (kN)                                    | Ultimate<br>lb. (kN) | Allow.<br>lb. (kN)                                    | Ultimate<br>lb. (kN) | Allow.<br>lb. (kN)                       |  |              |  |  |  |            |  |
| 1/4<br>(6.4)        | 3/16                     | <b>1</b> (25.4)    | <b>3</b> (76.2) | <b>1 ½</b> (38.1)  | <b>600</b> (2.7)                 | <b>150</b> (0.7)                                      | <b>935</b> (4.2)     | <b>235</b> (1.0)                                      | <b>760</b> (3.4)     | <b>190</b> (0.8)                         |  |              |  |  |  |            |  |
| <b>1/4</b> (6.4)    | 3/16                     | <b>1 ½</b> (38.1)  | <b>3</b> (76.2) | <b>1 ½</b> (38.1)  | <b>1,040</b> (4.6)               | <b>260</b> (1.2)                                      | <b>1,760</b> (7.8)   | <b>440</b> (2.0)                                      | <b>810</b> (3.6)     | <b>200</b> (0.9)                         |  |              |  |  |  |            |  |

- 1. Maximum anchor embedment is 11/2" (38.1 mm).
- 2. Minimum concrete thickness is 1.5 x embedment.

# Stainless-Steel Titen Allowable Tensionand Shear Loads in Face Shell of Hollow and Grout-Filled CMU



| Dia.         | Drill Bit                    | Embed. Critical Critical |                  | M                 | Values for 6" or 8" Lightweight,<br>Medium-Weight or Normal-Weight CMU |                    |                      |                    |  |  |  |  |  |
|--------------|------------------------------|--------------------------|------------------|-------------------|------------------------------------------------------------------------|--------------------|----------------------|--------------------|--|--|--|--|--|
| in.          | in. Dia. Depth Spacing Dist. | Dist.                    | Tensio           | n Load            | Shear Load                                                             |                    |                      |                    |  |  |  |  |  |
| (111111)     |                              | (mm)                     | (mm)             | (mm)              | Ultimate<br>lb. (kN)                                                   | Allow.<br>lb. (kN) | Ultimate<br>lb. (kN) | Allow.<br>lb. (kN) |  |  |  |  |  |
| 1/4<br>(6.4) | 3/16                         | <b>1</b> (25.4)          | <b>4</b> (101.6) | <b>1 ½</b> (38.1) | <b>550</b> (2.4)                                                       | <b>110</b> (0.5)   | <b>495</b> (2.2)     | <b>100</b> (0.4)   |  |  |  |  |  |

- 1. The tabulated allowable loads are based on a safety factor of 5.0.
- 2. Maximum anchor embedment is 1 ½" (38.1 mm).

# Length Identification Head Marks on Stainless-Steel Titen Screw Anchors (corresponds to anchor length in inches)

| Length ID N        | Marking on Head            | _  | Α   | В  | С  | D  | Е  | F  | G  | Н  | I  | J    |
|--------------------|----------------------------|----|-----|----|----|----|----|----|----|----|----|------|
| Length             | From                       | 1  | 1 ½ | 2  | 2½ | 3  | 3½ | 4  | 4½ | 5  | 5½ | 6    |
| of Anchor<br>(in.) | Up To But Not<br>Including | 1½ | 2   | 2½ | 3  | 3½ | 4  | 4½ | 5  | 5½ | 6  | 61/2 |

For SI: 1 inch = 25.4 mm.

# Titen HD® Threaded Rod Hanger



The Titen HD threaded rod hanger is a high-strength screw anchor designed to suspend threaded rod from concrete slabs, beams or concrete over metal in order to hang pipes, cable trays and other HVAC equipment. The anchor offers low installation torque with no secondary setting, and has been tested to offer industry-leading performance in cracked and uncracked concrete — even in seismic loading conditions.



#### **Features**

- Thread design undercuts to efficiently transfer the load to the base material
- Serrated cutting teeth and patented thread design enable quick and easy installation
- Specialized heat-treating process creates tip hardness to facilitate cutting while the anchor body remains ductile
- Designed to install using a rotary hammer or hammer drill with standard ANSI drill bits — no special tools required
- Installs with standard-sized sockets
- Code listed for cracked and uncracked concrete applications under the 2015, 2012 and 2009 IBC/IRC, per ICC-ES ESR-2713
- UL/FM listed

**Codes:** ICC-ES ESR-2713; City of L.A. RR25741; Florida FL-15730.6; Factory Mutual 3031136 (THD50234RH)

and 3061897 (THDB37158RH)

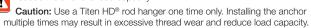
Material: Carbon steel
Coating: Zinc plated





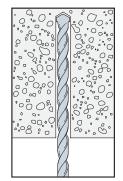


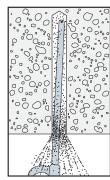
THDB25158RH (1/4"-dia. shank)

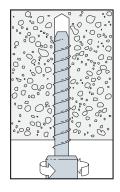


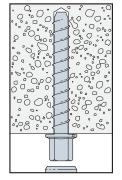

(1/4"-dia. shank)

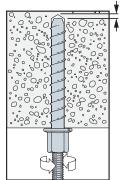
U.S. Patent 6,623,228


#### Installation


**Caution:** Oversized holes in the base material will reduce or eliminate the mechanical interlock of the threads with base material and will reduce the anchor's load capacity.





- Drill a hole using the specified diameter carbide bit into the base material to the specified embedment depth plus minimum hole depth overdrill (see the product data table on the next page).
- 2. Blow the hole clean of dust and debris using compressed air.
- 3. Install with a torque wrench, driver drill, hammer drill or cordless impact wrench.
- 4. Fully insert threaded rod.


#### Installation Sequence











Overdrill depth (see product data table on the next page)

# **Titen HD**® Rod Hanger Design Information — Concrete



#### Titen HD Threaded Rod Hanger Product Data

|                     | Size       | Model       | Accepts<br>Rod Dia. | Drill Bit<br>Dia. | Wrench<br>Size | Min.<br>Embed. | Hole Depth<br>Overdrill | Quantity |        |  |
|---------------------|------------|-------------|---------------------|-------------------|----------------|----------------|-------------------------|----------|--------|--|
|                     | (in.)      | No.         | (in.)               | (in.)             | (in.)          | (in.)          | (in.)                   | Вох      | Carton |  |
| Cracked<br>Concrete | ½ x 15⁄8   | THDB25158RH | 1/4                 | 1/4               | 3/8            | 15⁄8           | 1/8                     | 100      | 500    |  |
| FM Cracked Concrete | 3⁄8 x 15⁄8 | THDB37158RH | 3/8                 | 1/4               | 1/2            | 1%             | 1/8                     | 50       | 200    |  |
| FM Cracked Concrete | ½ x 2¾     | THD50234RH  | 1/2                 | 3/8               | 11/16          | 2½             | 1/4                     | 50       | 100    |  |

#### Titen HD Threaded Rod Hanger Installation Information and Additional Data<sup>1</sup>

| 3                                                             |                         |               | Model I                    | Number     |
|---------------------------------------------------------------|-------------------------|---------------|----------------------------|------------|
| Characteristic                                                | Symbol                  | Units         | THDB25158RH<br>THDB37158RH | THD50234RH |
|                                                               | Installation            | n Information |                            |            |
| Rod Hanger Diameter                                           | d <sub>o</sub>          | in.           | 1/4 or 3/8                 | 1/2        |
| Drill Bit Diameter                                            | d <sub>bit</sub>        | in.           | 1/4                        | 3/8        |
| Maximum Installation Torque <sup>2</sup>                      | T <sub>inst,max</sub>   | ftlb.         | 24                         | 50         |
| Maximum Impact Wrench Torque Rating <sup>3</sup>              | T <sub>impact,max</sub> | ftlb.         | 125                        | 150        |
| Minimum Hole Depth                                            | h <sub>hole</sub>       | in.           | 13/4                       | 3          |
| Embedment Depth                                               | h <sub>nom</sub>        | in.           | 15/8                       | 2¾         |
| Effective Embedment Depth                                     | h <sub>ef</sub>         | in.           | 1.19                       | 1.77       |
| Critical Edge Distance                                        | C <sub>ac</sub>         | in.           | 3                          | 211/16     |
| Minimum Edge Distance                                         | C <sub>min</sub>        | in.           | 11/2                       | 13⁄4       |
| Minimum Spacing                                               | S <sub>min</sub>        | in.           | 11/2                       | 3          |
| Minimum Concrete Thickness                                    | h <sub>min</sub>        | in.           | 31/4                       | 41/4       |
|                                                               | Anch                    | or Data       |                            |            |
| Yield Strength                                                | f <sub>ya</sub>         | psi           | 100,000                    | 97,000     |
| Tensile Strength                                              | f <sub>uta</sub>        | psi           | 125,000                    | 110,000    |
| Minimum Tensile and<br>Shear Stress Area                      | A <sub>se</sub>         | in.²          | 0.042                      | 0.099      |
| Axial Stiffness in Service Load Range —<br>Uncracked Concrete | $eta_{uncr}$            | lb./in.       | 202,000                    | 715,000    |
| Axial Stiffness in Service Load Range — Cracked Concrete      | $eta_{cr}$              | lb./in.       | 173,000                    | 345,000    |

<sup>1.</sup> The information presented in this table is to be used in conjunction with the design criteria of ACI 318-14 Chapter 17 or ACI 318-11.

<sup>2.</sup> T<sub>inst,max</sub> is the maximum permitted installation torque for installations using a torque wrench.

<sup>3.</sup>  $T_{impact,max}$  is the maximum permitted torque rating for impact wrenches.

# Titen HD® Rod Hanger Design Information — Concrete



Titen HD Threaded Rod Hanger Tension Strength Design Data for Installations in Concrete<sup>1</sup>







|                                                                        |                           |                         | Model N                    | lumber             |
|------------------------------------------------------------------------|---------------------------|-------------------------|----------------------------|--------------------|
| Characteristic                                                         | Symbol                    | Units                   | THDB25158RH<br>THDB37158RH | THD50234RH         |
| Anchor Category                                                        | 1, 2 or 3                 | _                       | 1                          |                    |
| Embedment Depth                                                        | h <sub>nom</sub>          | in.                     | 15%                        | 2½                 |
| Steel Strength in Te                                                   | ension (ACI 318-14 17.4.1 | or ACI 318-11 Section   | D.5.1)                     |                    |
| Tension Resistance of Steel                                            | N <sub>sa</sub>           | lb.                     | 5,195                      | 10,890             |
| Strength Reduction Factor — Steel Failure <sup>2</sup>                 | $\phi_{_{SA}}$            | _                       | 0.6                        | 65                 |
| Concrete Breakout Streng                                               | th in Tension (ACI 318-14 | 17.4.2 or ACI 318-11 Se | ection D.5.2)              |                    |
| Effective Embedment Depth                                              | h <sub>ef</sub>           | in.                     | 1.19                       | 1.77               |
| Critical Edge Distance                                                 | Cac                       | in.                     | 3                          | 211/16             |
| Effectiveness Factor — Uncracked Concrete                              | k <sub>uncr</sub>         | <u> </u>                | 30                         | 24                 |
| Effectiveness Factor — Cracked Concrete                                | k <sub>cr</sub>           | J -                     | 17                         | 7                  |
| Modification Factor                                                    | $\psi_{c,N}$              | _                       | 1.0                        | 0                  |
| Strength Reduction Factor — Concrete Breakout Failure <sup>3</sup>     | $\phi_{cb}$               | _                       | 0.6                        | 65                 |
| Pullout Strength in T                                                  | ension (ACI 318-14 17.4.  | 3 or ACI 318-11 Section | D.5.3)                     |                    |
| Pullout Resistance — Uncracked Concrete (f' $_c$ = 2,500 psi)          | N <sub>p,uncr</sub>       | lb.                     | N/A <sup>4</sup>           | 2,0255             |
| Pullout Resistance — Cracked Concrete (f' <sub>c</sub> = 2,500 psi)    | N <sub>p,cr</sub>         | lb.                     | N/A <sup>4</sup>           | 1,2355             |
| Strength Reduction Factor — Pullout Failure <sup>6</sup>               | $\phi_{ ho}$              | _                       | 0.6                        | 65                 |
| Tension Strength for Seismic                                           | Applications (ACI 318-14  | 17.2.3.3 or ACI 318-11  | Section D.3.3.3)           |                    |
| Nominal Pullout Strength for Seismic Loads (f' $_{\it C}$ = 2,500 psi) | N <sub>p,eq</sub>         | lb.                     | N/A <sup>4</sup>           | 1,235 <sup>5</sup> |
| Strength Reduction Factor — Pullout Failure <sup>6</sup>               | $\phi_{eq}$               | _                       | 0.6                        | 55                 |

- 1. The information presented in this table is to be used in conjunction with the design criteria of ACI 318-14 Chapter 17 or ACI 318-11 Appendix D, as applicable.
- 2. The tabulated value of  $\phi_{sa}$  applies when the load combinations of Section 1605.2 of the IBC, ACI 318-14 Section 5.3 or ACI 318-11 Section 9.2 are used, as applicable. If the load combinations of ACI 318-11 Appendix C are used, the appropriate value of  $\phi$  must be determined in accordance with ACI 318-11 D.4.4(b), as applicable.
- 3. The tabulated values of  $\phi_{cb}$  applies when both the load combinations of Section 1605.2 of the IBC, ACI 318-14 Section 5.3 or ACI 318-11 Section 9.2, as applicable, are used and the requirements of ACI 318-11 D.4.3(c) for Condition B are met. Condition B applies where supplementary reinforcement is not provided in concrete. For installations were complying reinforcement can be verified, the  $\phi_{cb}$  factors described in ACI 318-14 17.3.3(c) or ACI 318-11 D.4.3(c), as applicable, may be used for Condition A. If the load combinations of ACI 318-11 Appendix C are used, the appropriate value of  $\phi$  must be determined in accordance with ACI 318-11 D.4.4(c) for Condition B.
- 4. As described in this report, N/A denotes that pullout resistance does not govern and does not need to be considered.
- 5. The characteristic pullout resistance for greater compressive strengths may be increased by multiplying the tabular value by  $(f'_c/2,500)^{0.5}$ .
- 6. The tabulated values of  $\phi_P$  or  $\phi_{eq}$  applies when both the load combinations of ACI 318-14 Section 5.3 or ACI 318-11 Section 9.2, as applicable, are used and the requirements of ACI 318-14 17.3.3(c) or ACI 318-11 D.4.3(c) for Condition B are met. Condition B applies where supplementary reinforcement is not provided in concrete. For installations were complying reinforcement can be verified, the  $\phi_P$  or  $\phi_{eq}$  factors described in ACI 318-14 17.3.3(c) or ACI 318-11 D.4.3(c), as applicable, may be used for Condition A. If the load combinations of ACI 318-11 Appendix C are used, the appropriate value of  $\phi$  must be determined in accordance with ACI 318-11 D.4.4(c) for Condition B.

**Mechanical** Anchors

<sup>\*</sup> See p. 13 for an explanation of the load table icons

#### **Titen HD®** Rod Hanger Design Information Concrete



Titen HD Threaded Rod Hanger Tension Strength Design Data for Installations in the Lower and Upper Flute of Normal-Weight or Sand-Lightweight Concrete Through Metal Deck<sup>1,2,5,6</sup>

| DC  |   | 1   | 1    | ١ |
|-----|---|-----|------|---|
| IDU | П | 257 | 3.52 |   |



|       |           | 1 |
|-------|-----------|---|
|       | E-2014029 |   |
|       |           |   |
| 10.74 |           |   |

|                                                          |                          |       |                            | Model No.  |                            |
|----------------------------------------------------------|--------------------------|-------|----------------------------|------------|----------------------------|
|                                                          |                          |       | Lowe                       | r Flute    | Upper Flute                |
| Characteristic                                           | Symbol                   | Units | Figure 2                   | Figure 1   | Figure 2                   |
|                                                          |                          |       | THDB25158RH<br>THDB37158RH | THD50234RH | THDB25158RH<br>THDB37158RH |
| Minimum Hole Depth                                       | h <sub>hole</sub>        | in.   | 13/4                       | 3          | 13/4                       |
| Embedment Depth                                          | h <sub>nom</sub>         | in.   | 15/8                       | 21/2       | 15/8                       |
| Effective Embedment Depth                                | h <sub>ef</sub>          | in.   | 1.19                       | 1.77       | 1.19                       |
| Pullout Resistance – Cracked Concrete <sup>2,3,4</sup>   | N <sub>p,deck,cr</sub>   | lbf.  | 420                        | 870        | 655                        |
| Pullout Resistance – Uncracked Concrete <sup>2,3,4</sup> | N <sub>p,deck,uncr</sub> | lbf.  | 995                        | 1,430      | 1,555                      |

- 1. The information presented in this table is to be used in conjunction with the design criteria of ACI 318-14 Chapter 17 or ACI 318-11 Appendix D, as applicable.
- 2. Concrete compressive strength shall be 3,000 psi minimum. The characteristic pullout resistance for greater compressive strengths shall be increased by multiplying the tabular value by (f'c, specified/3,000 psi)0.5.
- 3. For anchors installed in the soffit of sand-lightweight or normal-weight concrete over metal deck floor and roof assemblies, as shown in Figure 1 or Figure 2, calculation of the concrete breakout strength may be omitted.
- 4. In accordance with ACI 318-14 Section 17.4.3.2 or ACI 318-11 Section D.5.3.2, the nominal pullout strength in cracked concrete for anchors installed in the soffit of sand-lightweight or normal-weight-concrete-over-metal-deck floor and roof assemblies N<sub>D,deck,cr</sub> shall be substituted for  $N_{0,CP}$ . Where analysis indicates no cracking at service loads, the normal pullout strength in uncracked concrete  $N_{p,deck,uncr}$  shall be substituted for  $N_{p,uncr}$ .
- 5. Minimum distance to edge of panel is 2hef.

C-A-2018 @2018 SIMPSON STRONG-TIE COMPANY INC.

6. The minimum anchor spacing along the flute must be the greater of 3h<sub>ef</sub> or 1.5 times the flute width.

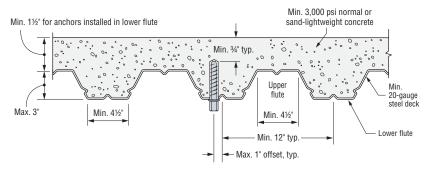



Figure 1. THD50234RH Installation in Concrete over Metal Deck

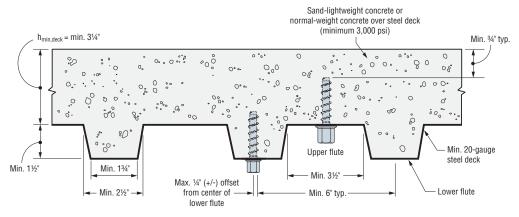



Figure 2. THDB25158RH and THDB37158RH Installation in Concrete over Metal Deck

<sup>\*</sup> See p. 13 for an explanation of the load table icons.

## Steel Rod Hanger Threaded Rod Anchor System



The Simpson Strong-Tie® steel rod hanger is a one-piece fastening system for suspending ¼" and %" threaded rod. Vertical rod hangers are designed to suspend threaded rod in overhead applications from steel joists and beams. Horizontal rod hangers are available for applications requiring installation into the side of joists, columns and overhead members. Both rod hangers provide attachment points for use in pipe hanging, fire protection, electrical conduit and cable-tray applications. Recommended for use in dry, interior, non-corrosive environments only.

#### **Features**

- Threaded anchors for rod-hanging applications in steel members
- Suitable to be installed horizontally or vertically in overhead applications
- Self-drilling, no predrilling required, easily installed with a drill or screw gun
- Custom-matched nut driver sets anchor to optimal depth
- UL / FM listed



| Rod               | 0:                        |             | Drill |             | Steel              | Quantity |        |  |
|-------------------|---------------------------|-------------|-------|-------------|--------------------|----------|--------|--|
| Diameter<br>(in.) | Size                      | Model No.   | Point | Application | Thickness<br>Range | Вох      | Carton |  |
| 1/4               | 1⁄4" x 1"<br>with nut     | RSH25100N   | #3    |             | 20 ga. – 12 ga.    |          |        |  |
| 1/4               | #12-20 x 1½"              | RSH25112-5  | #5    | Horizontal  | 20 ga. – 1/4"      | 25       | 250    |  |
| 3/8               | 1⁄4" x 1"<br>with nut     | RSH37100N   | #3    | HOHZOHIAI   | 20 ga. – 12 ga.    | 20       | 250    |  |
| 3/8               | #12-20 x 1½"              | RSH37112N-5 | #5    |             | 20 ga. – 1/4"      |          |        |  |
| 1/4               | 1⁄4" x 1"                 | RSV25100    | #3    |             | 20 ga. – 12 ga.    |          |        |  |
| 3/8               | 1/4" x 1"<br>with nut     | RSV37100N   | #3    |             | 20 ga. – 12 ga.    |          |        |  |
| 3/8               | 1⁄4" x 1 1⁄2"             | RSV37112    | #3    | Vertical    | 20 ga. – 14 ga.    | 25       | 250    |  |
| 3/8               | 1⁄4" x 1 1⁄2"<br>with nut | RSV37112N   | #3    | vertical    | 20 ga. – 14 ga.    | 20       | 200    |  |
| 3/8               | #12-20 x 1½"              | RSV37112N-5 | #5    |             | 20 ga. – 1/4"      |          |        |  |
| 3/8               | 1/4" x 2"                 | RSV37200    | #3    |             | 20 ga. – 14 ga.    |          |        |  |



Custom-matched nut driver sets the rod hangers to optimal depth every time.

| Model | Description | Quantity  |        |  |  |  |  |  |
|-------|-------------|-----------|--------|--|--|--|--|--|
| No.   | Description | Вох       | Carton |  |  |  |  |  |
| RND62 | Nut driver  | 1 blister | 10     |  |  |  |  |  |



RND62



RSH Horizontal Steel Rod Hangers



RSV Vertical Steel Rod Hangers

# Steel Rod Hanger Threaded Rod Anchor System



# Ultimate and Allowable Loads for Vertical Steel Rod Hangers

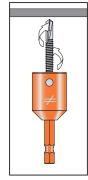


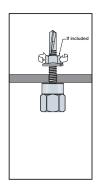
|                          |             |              |               |                 |                   |                 | Loa           | ds in V         | arious S      | Steel Th        | iicknes         | ses             |               |                 |               |                 | UL                 | FM                 |
|--------------------------|-------------|--------------|---------------|-----------------|-------------------|-----------------|---------------|-----------------|---------------|-----------------|-----------------|-----------------|---------------|-----------------|---------------|-----------------|--------------------|--------------------|
| Model                    | Rod<br>Dia. |              | 33 mil        | (20 ga.)        | 43 mil (18 ga.) 5 |                 | 54 mil        | 54 mil (16 ga.) |               | (14 ga.)        | 97 mil (12 ga.) |                 | a.) ³/16"     |                 | 1/4"          |                 | Listed<br>Steel    | Listed<br>Steel    |
| No.                      | (in.)       | (in.)        | Ult.<br>(lb.) | Allow.<br>(lb.) | Ult.<br>(lb.)     | Allow.<br>(lb.) | Ult.<br>(lb.) | Allow.<br>(lb.) | Ult.<br>(lb.) | Allow.<br>(lb.) | Ult.<br>(lb.)   | Allow.<br>(lb.) | Ult.<br>(lb.) | Allow.<br>(lb.) | Ult.<br>(lb.) | Allow.<br>(lb.) | Thickness<br>Range | Thickness<br>Range |
| RSV25100                 | 1/4         | 1/4 x 1      | 355           | 130             | 575               | 190             | 880           | 325             | 1,110         | 410             | 2,050           | 760             | _             | _               | _             | _               | _                  | _                  |
| RSV37100N <sup>3</sup>   | 3/8         | 1⁄4 x 1      | 1,370         | 505             | 1,980             | 730             | 3,405         | 1,260           | 3,890         | 1,440           | 3,900           | 1,440           | _             | _               | _             | _               | 20 ga. – 12 ga.    | 16 ga. – 12 ga.    |
| RSV37112                 | 3/8         | 1/4 X 1 1/2  | 355           | 130             | 575               | 190             | 880           | 325             | 1,110         | 410             | _               | _               | _             | _               | _             | _               | _                  | _                  |
| RSV37112N <sup>3</sup>   | 3/8         | 1/4 X 1 1/2  | 1,370         | 505             | 1,980             | 730             | 3,405         | 1,260           | 3,890         | 1,440           | _               | _               | _             | _               | _             | _               | 20 ga. – 14 ga.    | 16 ga. – 14 ga.    |
| RSV37200                 | 3/8         | 1/4 x 2      | 355           | 130             | 575               | 190             | 880           | 325             | 1,110         | 410             | _               | _               | _             | _               |               | _               | _                  | _                  |
| RSV37112N-5 <sup>3</sup> | 3/8         | #12-20 x 1 ½ | 1,370         | 505             | 1,980             | 730             | 2,185         | 730             | 2,185         | 730             | 2,560           | 940             | 3,290         | 1,095           | 3,290         | 1,095           | 20 ga. – 1/4"      | 16 ga. – 1/4"      |

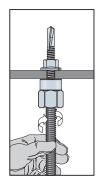
Footnotes below apply to both tables.

#### Ultimate and Allowable Loads for Horizontal Steel Rod Hangers

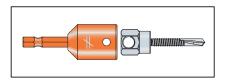


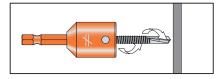

|                          |       |                |               | Loads in Various Steel Thicknesses |               |                 |               |                               |               |                             |               |                       |               |                   | UL            | FM              |                    |                    |                 |
|--------------------------|-------|----------------|---------------|------------------------------------|---------------|-----------------|---------------|-------------------------------|---------------|-----------------------------|---------------|-----------------------|---------------|-------------------|---------------|-----------------|--------------------|--------------------|-----------------|
| Model Rod<br>Dia.        |       | JIZE           |               |                                    | 43 mil        | (18 ga.)        | 54 mil        | (16 ga.) 68 mil (14 ga.) 97 n |               | 8 mil (14 ga.) 97 mil (12 g |               | 97 mil (12 ga.) 3/16" |               | nil (12 ga.) ¾16" |               | 1/4"            |                    | Listed<br>Steel    | Listed<br>Steel |
| No.                      | (in.) | ( in.)         | Ult.<br>(lb.) | Allow.<br>(lb.)                    | Ult.<br>(lb.) | Allow.<br>(lb.) | Ult.<br>(lb.) | Allow.<br>(lb.)               | Ult.<br>(lb.) | Allow.<br>(lb.)             | Ult.<br>(lb.) | Allow.<br>(lb.)       | Ult.<br>(lb.) | Allow.<br>(lb.)   | Ult.<br>(lb.) | Allow.<br>(lb.) | Thickness<br>Range | Thickness<br>Range |                 |
| RSH25112-5               | 1/4   | #12–20 x 1½    | 420           | 155                                | 685           | 255             | 835           | 310                           | 930           | 310                         | 1,240         | 425                   | 1,270         | 425               | 1,350         | 500             | _                  | _                  |                 |
| RSH25100N <sup>3</sup>   | 1/4   | 1/4 x 1        | 1,150         | 385                                | 1,235         | 455             | 1,235         | 455                           | 1,235         | 455                         | 1,480         | 545                   | _             | _                 | _             | _               | _                  | _                  |                 |
| RSH37100N <sup>3</sup>   | 3/8   | 1/4 x <b>1</b> | 1,575         | 525                                | 1,865         | 665             | 1,865         | 665                           | 1,865         | 665                         | 1,865         | 665                   | _             | _                 | _             | _               | 18 ga. – 12 ga.    | 16 ga. – 12 ga.    |                 |
| RSH37112N-5 <sup>3</sup> | 3/8   | #12-20 x 11/2  | 1,490         | 550                                | 1,490         | 550             | 1,490         | 550                           | 1,490         | 550                         | 1,490         | 550                   | 1,490         | 550               | 1,490         | 550             | 18 ga. – 1/4"      | 16 ga. – 1/4"      |                 |

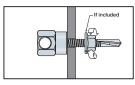

- 1. Allowable loads are based on a factor of safety calculated in accordance with AISI S100 Section F1.
- 2. Mechanical and plumbing design codes may prescribe lower allowable loads. Verify with local codes.
- 3. Model requires installation with supplied retaining nut.
- 4. Values are based on steel members with the following minimum yield and tensile strengths:
  - 43 mil (18 ga.) and 33 mil (20 ga.):  $F_y = 33$  ksi and  $F_u = 45$  ksi
  - 54 mil (16 ga.) to 97 mil (12 ga.):  $F_y = 50$  ksi and  $F_u = 65$  ksi
  - $\frac{3}{16}$ " and  $\frac{1}{4}$ ":  $F_y = 36$  ksi and  $F_u = 58$  ksi.
- 5. Minimum edge distance must be 1" and minimum spacing must be 2".
- Acceptability of base material deflection due to imposed loads must be investigated separately.

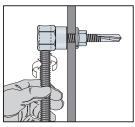

#### **Vertical Installation**




C-A-2018 @ 2018 SIMPSON STRONG-TIE COMPANY INC.




#### **Horizontal Installation**









<sup>\*</sup> See p. 13 for an explanation of the load table icons.

# Strong-Tie

## Wood Rod Hanger Threaded Rod Anchor System

The wood rod hanger from Simpson Strong-Tie is a one-piece fastening system for suspending ¼" or %" threaded rod. Vertical rod hangers are designed to suspend threaded rod in overhead applications from wood members. Horizontal rod hangers are available for applications requiring installation into the side of joists, columns and overhead members. Both rod hangers provide attachment points for use in pipe hanging, fire protection, electrical conduit and cable-tray applications. Recommended for use in dry, interior, non-corrosive environments only.

#### **Features**

- Threaded anchors for rod-hanging applications in wood
- Suitable for installation horizontally or vertically in overhead applications
- No predrilling required
- Easily installed with a drill or screw gun
- Type-17 point provides for fast starts
- UL/FM Listed

Material: Carbon steel

Coating: Zinc plated



RWV Vertical Wood Rod Hanger



RWH Horizontal Wood Rod Hanger

#### Wood Rod Hangers

| Rod<br>Diameter<br>(in.) | Size<br>(in.) | Model<br>No. | Application | Point<br>Style | Quantity |        |
|--------------------------|---------------|--------------|-------------|----------------|----------|--------|
|                          |               |              |             |                | Вох      | Carton |
| 1/4                      | 1⁄4 x 2       | RWV25200     | Vertical    | Type 17        | 25       | 250    |
| 3/8                      | 1⁄4 x 1       | RWV37100     |             |                |          |        |
| 3/8                      | 1⁄4 x 2       | RWV37200     |             |                |          |        |
| 3/8                      | 5/16 X 21/2   | RWV37212     |             |                |          |        |
| 1/4                      | 1⁄4 x 1       | RWH25100     | Horizontal  | Type 17        | 25       | 250    |
| 3/8                      | 1⁄4 x 2       | RWH37200     |             |                |          |        |
| 3/8                      | 5/16 X 2 1/2  | RWH37212     |             |                |          |        |



Type-17 point for use in wood

## **Wood Rod Hanger** Design Information — Wood



#### Tension Wood Rod Hanger Allowable Loads

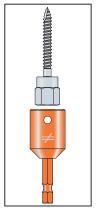


|              | Rod<br>Dia. |               |                       | t. End Dist. | Minimum<br>Spacing | Loads           |                  |                 |                  |                 |                  |                |                |
|--------------|-------------|---------------|-----------------------|--------------|--------------------|-----------------|------------------|-----------------|------------------|-----------------|------------------|----------------|----------------|
| Model<br>No. |             | Size<br>(in.) | Minimum<br>Edge Dist. |              |                    | Г               | DF SP            |                 | SP S             |                 | PF               | UL<br>Approval | FM<br>Approval |
| 140.         | (in.)       | ("".)         | (in.)                 | (in.)        | (in.)              | Ultimate<br>lb. | Allowable<br>lb. | Ultimate<br>lb. | Allowable<br>lb. | Ultimate<br>lb. | Allowable<br>lb. | Pipe Size in.  | Pipe Size in.  |
| RWV25200     | 1/4         | 1/4 x 2       |                       |              | 23/4               | 1,875           | 375              | 2,165           | 435              | 1,540           | 310              | _              | _              |
| RWV37100     | 3/8         | 1/4 x 1       | 3/4                   | 2¾           |                    | 765             | 155              | 950             | 190              | 525             | 105              | _              | _              |
| RWV37200     | 3/8         | 1/4 x 2       | 94                    |              |                    | 1,875           | 375              | 2,165           | 435              | 1,540           | 310              | 3              | _              |
| RWV37212     | 3/8         | 5/16 X 21/2   |                       | 31/4         | 31/4               | 3,015           | 605              | 2,960           | 590              | 2,470           | 495              | 4              | 4              |

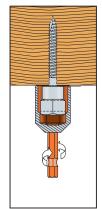
- 1. Load values are based on full shank penetration into the wood member.
- 2. Allowable loads may be increased by CD = 1.6 for wind or earthquake.
- 3. Allowable loads are based on a factor of safety of 5.0.
- 4. Mechanical and plumbing design codes may prescribe lower allowable loads. Verify with local codes.
- 5. Allowable loads are based on Douglas Fir-Larch (DF), Southern Pine (SP) and Spruce-Pine-Fir (SPF) wood members having a minimum specific gravity of 0.50, 0.55 and 0.42, respectively.

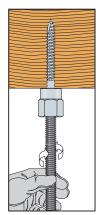
#### Shear Wood Rod Hanger Allowable Loads



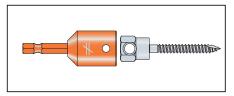

|          |             |             | Minimum           | Minimum           |                    |                 |                  | Lo              | ads              |                 |                  | UL Approval        |  |
|----------|-------------|-------------|-------------------|-------------------|--------------------|-----------------|------------------|-----------------|------------------|-----------------|------------------|--------------------|--|
| Model    | Rod<br>Dia. | Size        | Edge              | End               | Minimum<br>Spacing | D               | F                | SP              |                  | SPF             |                  | OL Appiovai        |  |
| No.      | (in.)       | (in.)       | Distance<br>(in.) | Distance<br>(in.) | (in.)              | Ultimate<br>lb. | Allowable<br>lb. | Ultimate<br>lb. | Allowable<br>lb. | Ultimate<br>lb. | Allowable<br>lb. | Pipe Size<br>(in.) |  |
| RWH25100 | 1/4         | 1/4 x 1     | 1                 | 23/4              | 2¾                 | 555             | 110              | 680             | 135              | 430             | 85               | _                  |  |
| RWH37200 | 3/8         | 1/4 x 2     | 21/2              | 294               |                    | 1,205           | 240              | 1,115           | 225              | 1,650           | 330              | 3                  |  |
| RWH37212 | 3/8         | 5/16 X 21/2 | ∠ 1/2             | 31/4              | 31/4               | 1,145           | 230              | 1,320           | 265              | 1,190           | 240              | 3                  |  |

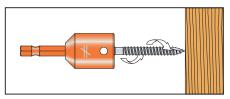
- 1. Load values are based on full shank penetration into the wood member.
- 2. Allowable loads may not be increased for short-term loading.
- 3. Allowable loads are based on a factor of safety of 5.0.
- Mechanical and plumbing design codes may prescribe lower allowable loads. Verify with local codes.
- Allowable loads are based on Douglas Fir-Larch (DF), Southern Pine (SP) and Spruce-Pine-Fir (SPF) wood members having a minimum specific gravity of 0.50, 0.55 and 0.42, respectively.

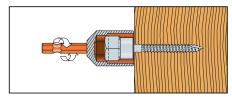

#### Installation Sequence

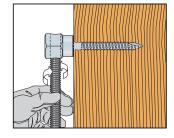

- 1. Attach RND62 nut driver to a drill.
- 2. Insert rod hanger into the RND62 nut driver.
- Using rotation-only mode, drive rod hanger until it contacts the surface.Do not over-tighten. RND62 nut driver will disengage the rod hanger at the appropriate depth to prevent over-driving.
- 4. Insert threaded rod. Minimum thread engagement should be equal to the nominal diameter of the threaded insert.

#### Vertical Wood Rod Hanger




#### Horizontal Wood Rod Hanger









<sup>\*</sup> See p. 13 for an explanation of the load table icons.

# Expansion shell anchors for use in solid base materials

Simpson Strong-Tie introduces a new, redesigned Drop-In Anchor (DIAB) that provides easier installation into base materials. Improved geometry in the preassembled expansion plug improves setting capability so the anchor installs with 40% fewer hammer strikes than previous versions. These displacement-controlled expansion anchors are easily set by driving the plug toward the bottom of the anchor using either the handor power-setting tools. DIAB anchors feature a positive-set marking indicator at the top of the anchor — helping you see more clearly when proper installation has taken place.

Use a Simpson Strong-Tie fixed-depth stop bit to take the guesswork out of drilling to the correct depth. The fluted design of the tip draws debris away from the hole during drilling, allowing for a cleaner installation.

#### Key features

- New design offers easier installation then previous drop-in anchor design - sets with 40% fewer hammer hits
- · Positive-set marking system indicates when anchor is properly set
- Lipped drop-in version available for flush installation
- · Hand- and power-setting tools available for fast, easy and economical installation
- Fixed-depth stop bit helps you drill to the correct depth every time
- Available in coil-thread version for 1/2" and 3/4" coil-thread rod

Material: Carbon steel

Coating: Zinc plated




Drop-In



Lipped Drop-In



Coil-Thread Drop-In



Anchor being set with hand setting tool.



Anchor being set with SDS setting tool.



Positive set indicator.

# Drop-In Internally Threaded Anchor (DIAB)



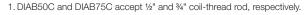
#### Drop-In Anchor

| Rod Size | Model  | Drill Bit<br>Dia. | Bolt                 | Body            | Thread          | Quantity |        |  |
|----------|--------|-------------------|----------------------|-----------------|-----------------|----------|--------|--|
| (in.)    | No.    | (in.)             | Threads<br>(per in.) | Length<br>(in.) | Length<br>(in.) | Вох      | Carton |  |
| 1/4      | DIAB25 | 3/8               | 20                   | 1               | 3/8             | 100      | 500    |  |
| 3/8      | DIAB37 | 1/2               | 16                   | 1 %16           | 5/8             | 50       | 250    |  |
| 1/2      | DIAB50 | 5%                | 13                   | 2               | 3/4             | 50       | 200    |  |
| 5/8      | DIAB62 | 7/8               | 11                   | 2½              | 1               | 25       | 100    |  |
| 3/4      | DIAB75 | 1                 | 10                   | 31/8            | 11/4            | 20       | 80     |  |



Drop-In

#### Lipped Drop-In Anchor


| Rod Size | Model   | Drill Bit<br>Dia. | Bolt<br>Threads | Body            | Thread          | Quantity |        |  |
|----------|---------|-------------------|-----------------|-----------------|-----------------|----------|--------|--|
| (in.)    | No.     | (in.)             | (per in.)       | Length<br>(in.) | Length<br>(in.) | Вох      | Carton |  |
| 1/4      | DIABL25 | 3/8               | 20              | 1               | 3/8             | 100      | 500    |  |
| 3/8      | DIABL37 | 1/2               | 16              | 1 %16           | 5/8             | 50       | 250    |  |
| 1/2      | DIABL50 | 5%8               | 13              | 2               | 3/4             | 50       | 200    |  |



Lipped Drop-In

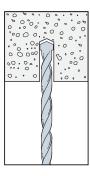
#### Coil-Thread Drop-In Anchor

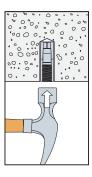
| Rod Size | Model    | Drill Bit<br>Dia. | Bolt<br>Threads | Body            | Thread          | Quantity |        |  |
|----------|----------|-------------------|-----------------|-----------------|-----------------|----------|--------|--|
| (in.)    | No.      | (in.)             | (per in.)       | Length<br>(in.) | Length<br>(in.) | Вох      | Carton |  |
| 1/2      | DIAB50C1 | 5/8               | 6               | 2               | 3/4             | 50       | 200    |  |
| 3/4      | DIAB75C1 | 1                 | 41/2            | 31/8            | 1 1/4           | 20       | 80     |  |

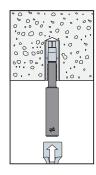


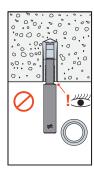


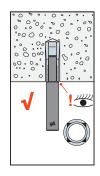
Coil-Thread Drop-In

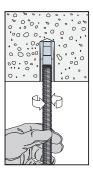

### **Drop-In** Internally Threaded Anchor (DIAB)


# Strong-T


#### **DIAB Manual Installation**


Caution: Oversized holes will reduce the anchors load capacity


- 1. Drill a hole in the base material using the appropriate diameter carbide drill bit or fixed depth bit as specified in the table. Drill the hole to the specified embedment. For fixed depth bits drill the hole until the shoulder of the bit contacts the surface of the base material. Then blow the hole clean of dust and debris using compressed air. Overhead installations need not be blown clean.
- 2. Insert the anchor into the hole. Tap with hammer until flush against the surface.
- 3. Using the designated Drop-In setting tool, drive expander plug towards the bottom of the anchor until the shoulder of the setting tool makes contact with the top of the anchor. When properly set 4 indentations will be visible on the top of the anchor indicating full expansion.
- 4. Insert bolt or threaded rod. Minimum thread engagement should be equal to the nominal diameter of the threaded insert.

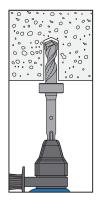


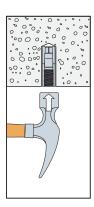


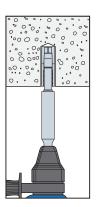


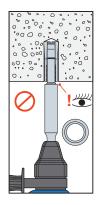




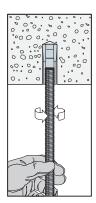





#### **DIAB SDS Installation**





Caution: Oversized holes will reduce the anchors load capacity


- 1. Drill a hole in the base material using the appropriate diameter carbide drill bit or fixed depth drill bit as specified in the table. Drill the hole to the specified embedment. For fixed depth bits drill the hole until the shoulder of the bit contacts the surface of the base material. Then blow the hole clean of dust and debris using compressed air. Overhead installations need not be blown clean.
- 2. Insert the anchor into the hole. Tap with hammer until flush against the surface.
- 3. Attach SDS Drop-In setting tool to a drill. Drive expander plug towards the bottom of the anchor using only hammer mode until the shoulder of the setting tool makes contact with the top of the anchor. When properly set 4 indentations will be visible on the top of the anchor indicating full expansion.
- 4. Insert bolt or threaded rod. Minimum thread engagement should be equal to the nominal diameter of the threaded insert.














# **Drop-In** (DIAB) Design Information — Concrete



#### DIAB Allowable Tension and Shear Loads in Normal-Weight Concrete



|                              | Rod               | Rod D.:U Dia      | Embed              |                 | Critical                   | 1                    | c ≥ 2,500 ps          | si (17.2 MPa         | a)                    | f' <sub>c</sub> ≥ 4,000 psi (27.6 MPa) |                       |                      |                       |
|------------------------------|-------------------|-------------------|--------------------|-----------------|----------------------------|----------------------|-----------------------|----------------------|-----------------------|----------------------------------------|-----------------------|----------------------|-----------------------|
| Model                        | Size              | Drill Bit<br>Dia. | Depth              | Edge Dist.      | Dist. Spacing Tension Load |                      | n Load                | Shear Load           |                       | Tensio                                 | n Load                | Shear Load           |                       |
| No.                          | in.<br>(mm)       | ln.               | In.<br>(mm)        | In.<br>(mm)     | In.<br>(mm)                | Ultimate<br>lb. (kN) | Allowable<br>lb. (kN) | Ultimate<br>lb. (kN) | Allowable<br>lb. (kN) | Ultimate<br>lb. (kN)                   | Allowable<br>lb. (kN) | Ultimate<br>lb. (kN) | Allowable<br>lb. (kN) |
| DIAB25<br>DIABL25            | <b>1/4</b> (6.4)  | 3/8               | <b>1</b> (25)      | <b>3</b> (76)   | <b>4</b> (102)             | <b>1,565</b> (7.0)   | <b>390</b> (1.7)      | <b>1,840</b> (8.2)   | <b>460</b> (2.0)      | <b>1,965</b> (8.7)                     | <b>490</b> (2.2)      | <b>1,840</b> (8.2)   | <b>460</b> (2.0)      |
| DIAB37<br>DIABL37            | <b>3/8</b> (9.5)  | 1/2               | <b>1 %</b> 16 (40) | <b>4½</b> (114) | <b>6</b> (152)             | <b>2,950</b> (13.1)  | <b>740</b> (3.3)      | <b>4,775</b> (21.2)  | <b>1,195</b> (5.3)    | <b>3,910</b> (17.4)                    | <b>980</b> (4.4)      | <b>4,775</b> (21.2)  | <b>1,195</b> (5.3)    |
| DIAB50<br>DIABL50<br>DIAB50C | <b>½</b> (12.7)   | 5/8               | <b>2</b> (51)      | <b>6</b> (152)  | <b>8</b> (203)             | <b>5,190</b> (23.1)  | <b>1,300</b> (5.8)    | <b>6,760</b> (30.1)  | <b>1,690</b> (7.5)    | <b>6,515</b> (29.0)                    | <b>1,630</b> (7.3)    | <b>6,760</b> (30.1)  | <b>1,690</b> (7.5)    |
| DIAB62                       | <b>5/8</b> (15.9) | 7/8               | <b>2½</b> (64)     | <b>7½</b> (191) | <b>10</b> (254)            | <b>7,010</b> (31.2)  | <b>1,755</b> (7.8)    | <b>12,190</b> (54.2) | <b>3,050</b> (13.6)   | <b>9,060</b> (40.3)                    | <b>2,265</b> (10.1)   | <b>12,190</b> (54.2) | <b>3,050</b> (13.6)   |
| DIAB75<br>DIAB75C            | <b>3/4</b> (19.1) | 1                 | <b>31/8</b> (79)   | <b>9</b> (229)  | <b>12½</b> (318)           | <b>9,485</b> (42.2)  | <b>2,370</b> (10.5)   | <b>15,960</b> (71.0) | <b>3,990</b> (17.7)   | <b>11,660</b> (51.9)                   | <b>2,915</b> (13.0)   | <b>15,960</b> (71.0) | <b>3,990</b> (17.7)   |

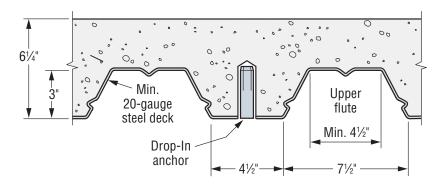
- 1. The allowable loads listed are based on a safety factor of 4.0.
- 2. Refer to allowable load-adjustment factors for edge distance and spacing on p. 186.
- 3. Allowable loads may be linearly interpolated between concrete strength listed.
- 4. The minimum concrete thickness is 11/2 times the embedment depth.
- 5. Allowable loads may not be increased for short-term loading due to wind or seismic forces.

#### DIAB Allowable Tension and Shear Loads

in Soffit of Sand-Lightweight Concrete over Metal Deck










**Mechanical** Anchors

|                              |                  |                          | Embed            | Critical Critical |                | f' <sub>c</sub> ≥ 3,000. p | si (20.7 MPa)         | (20.7 MPa)           |                       |  |
|------------------------------|------------------|--------------------------|------------------|-------------------|----------------|----------------------------|-----------------------|----------------------|-----------------------|--|
| Model                        | Rod Size in.     | Drill Bit<br>Dia.<br>In. | Depth            | End Dist.6        | Spacing        | Tensio                     | n Load                | Shear Load           |                       |  |
| No.                          | (mm)             |                          | In.<br>(mm)      | In.<br>(mm)       | In.<br>(mm)    | Ultimate<br>lb. (kN)       | Allowable<br>lb. (kN) | Ultimate<br>lb. (kN) | Allowable<br>lb. (kN) |  |
| DIAB37<br>DIABL37            | <b>3/8</b> (9.5) | 1/2                      | <b>1%</b> 6 (40) | <b>4½</b> (114)   | <b>6</b> (152) | <b>2,895</b> (12.9)        | <b>725</b> (3.2)      | <b>3,530</b> (15.7)  | <b>885</b> (3.9)      |  |
| DIAB50<br>DIABL50<br>DIAB50C | 1/2<br>(12.7)    | 5/8                      | <b>2</b> (51)    | <b>6</b> (152)    | <b>8</b> (203) | <b>4,100</b> (18.2)        | <b>1,025</b> (4.6)    | <b>4,685</b> (20.8)  | <b>1,170</b> (5.2)    |  |

- 1. The allowable loads listed are based on a safety factor of 4.0.
- 2. Allowable loads may not be increased for short-term loading due to wind or seismic forces.
- 3. Refer to allowable load-adjustment factors for edge distance and spacing on p. 186.
- 4. Anchors were installed in the center of the bottom flute of the steel deck.
- 5. Metal deck must be minimum 20-gauge thick with minimum yield strength of 33 ksi.
- 6. Critical end distance is defined as the distance from end of the slab in the direction of the flute.



**Lightweight Concrete over Metal Deck** 

<sup>\*</sup> See p. 13 for an explanation of the load table icons.

## **Drop-In** (DIAB) Design Information — Concrete



Allowable Load-Adjustment Factors for Drop-In Anchor (DIAB) in Normal-Weight Concrete and Sand-Lightweight Concrete over Metal Deck: Edge Distance and Spacing, Tension and Shear Loads

#### How to use these charts:

- 1. The following tables are for reduced edge distance and spacing.
- Locate the anchor size to be used for either a tension and/or a shear load application.
- 3. Locate the edge distance ( $c_{act}$ ) or spacing ( $s_{act}$ ) at which the anchor is to be installed.

#### Edge Distance Tension (f<sub>c</sub>)

| Lage Distance Tension (I <sub>C</sub> ) |                   |      |      |      |      |      |  |  |  |  |  |
|-----------------------------------------|-------------------|------|------|------|------|------|--|--|--|--|--|
| Edge                                    | Size              | 1/4  | 3/8  | 1/2  | 5/8  | 3/4  |  |  |  |  |  |
| Dist.                                   | Ccr               | 3    | 41/2 | 6    | 71/2 | 9    |  |  |  |  |  |
| c <sub>act</sub>                        | Cmin              | 13/4 | 25/8 | 31/2 | 4%   | 51/4 |  |  |  |  |  |
| (in.)                                   | f <sub>cmin</sub> | 0.77 | 0.77 | 0.77 | 0.77 | 0.77 |  |  |  |  |  |
| 13/4                                    |                   | 0.77 |      |      |      |      |  |  |  |  |  |
| 2                                       |                   | 0.82 |      |      |      |      |  |  |  |  |  |
| 21/2                                    |                   | 0.91 |      |      |      |      |  |  |  |  |  |
| 25/8                                    |                   | 0.93 | 0.77 |      |      |      |  |  |  |  |  |
| 3                                       |                   | 1.00 | 0.82 |      |      |      |  |  |  |  |  |
| 31/2                                    |                   |      | 0.88 | 0.77 |      |      |  |  |  |  |  |
| 4                                       |                   |      | 0.94 | 0.82 |      |      |  |  |  |  |  |
| 43/8                                    |                   |      | 0.98 | 0.85 | 0.77 |      |  |  |  |  |  |
| 41/2                                    |                   |      | 1.00 | 0.86 | 0.78 |      |  |  |  |  |  |
| 5                                       |                   |      |      | 0.91 | 0.82 |      |  |  |  |  |  |
| 51/4                                    |                   |      |      | 0.93 | 0.83 | 0.77 |  |  |  |  |  |
| 5½                                      |                   |      |      | 0.95 | 0.85 | 0.79 |  |  |  |  |  |
| 6                                       |                   |      |      | 1.00 | 0.89 | 0.82 |  |  |  |  |  |
| 61/2                                    |                   |      |      |      | 0.93 | 0.85 |  |  |  |  |  |
| 7                                       |                   |      |      |      | 0.96 | 0.88 |  |  |  |  |  |
| 71/2                                    |                   |      |      |      | 1.00 | 0.91 |  |  |  |  |  |
| 8                                       |                   |      |      |      |      | 0.94 |  |  |  |  |  |
| 81/2                                    |                   |      |      |      |      | 0.97 |  |  |  |  |  |
| 9                                       |                   |      |      |      |      | 1.00 |  |  |  |  |  |

- $1.c_{act}$  = actual edge distance at which anchor is installed (inches).
- $2.c_{cr}$  = critical edge distance for 100% load (inches).
- $3.c_{min}$  = minimum edge distance for reduced load (inches).
- 4.  $f_C$  = adjustment factor for allowable load at actual edge distance.
- 5.  $f_{CCF}$  = adjustment factor for allowable load at critical edge distance.  $f_{CCF}$  is always = 1.00.
- 6. f<sub>cmin</sub> = adjustment factor for allowable load at minimum edge distance.
- 7.  $f_c = f_{cmin} + [(1 f_{cmin}) (c_{act} c_{min}) / (c_{cr} c_{min})].$

#### Spacing Tension (f<sub>s</sub>)

| Spacing                   | Size              | 1/4  | 3/8  | 1/2  | 5/8  | 3/4   |
|---------------------------|-------------------|------|------|------|------|-------|
|                           | $S_{cr}$          | 4    | 6    | 8    | 10   | 121/2 |
| s <sub>act</sub><br>(in.) | Smin              | 11/2 | 21/4 | 3    | 3¾   | 43/4  |
| (111.)                    | f <sub>smin</sub> | 0.72 | 0.72 | 0.80 | 0.80 | 0.80  |
| 1 1/2                     |                   | 0.72 |      |      |      |       |
| 2                         |                   | 0.78 |      |      |      |       |
| 21/4                      |                   | 0.80 | 0.72 |      |      |       |
| 2½<br>3                   |                   | 0.83 | 0.74 |      |      |       |
|                           |                   | 0.89 | 0.78 | 0.80 |      |       |
| 31/2                      |                   | 0.94 | 0.81 | 0.82 |      |       |
| 3¾                        |                   | 0.97 | 0.83 | 0.83 | 0.80 |       |
| 4                         |                   | 1.00 | 0.85 | 0.84 | 0.81 |       |
| 41/2                      |                   |      | 0.89 | 0.86 | 0.82 |       |
| 43/4                      |                   |      | 0.91 | 0.87 | 0.83 | 0.80  |
| 5                         |                   |      | 0.93 | 0.88 | 0.84 | 0.81  |
| 51/2                      |                   |      | 0.96 | 0.90 | 0.86 | 0.82  |
| 6                         |                   |      | 1.00 | 0.92 | 0.87 | 0.83  |
| 61/2                      |                   |      |      | 0.94 | 0.89 | 0.85  |
| 7                         |                   |      |      | 0.96 | 0.90 | 0.86  |
| 71/2                      |                   |      |      | 0.98 | 0.92 | 0.87  |
| 8                         |                   |      |      | 1.00 | 0.94 | 0.88  |
| 81/2                      |                   |      |      |      | 0.95 | 0.90  |
| 9                         |                   |      |      |      | 0.97 | 0.91  |
| 91/2                      |                   |      |      |      | 0.98 | 0.92  |
| 10                        |                   |      |      |      | 1.00 | 0.94  |
| 101/2                     |                   |      |      |      |      | 0.95  |
| 11                        |                   |      |      |      |      | 0.96  |
| 111/2                     |                   |      |      |      |      | 0.97  |
| 12                        |                   |      |      |      |      | 0.99  |
| 121/2                     |                   |      |      |      |      | 1.00  |

- $1.s_{act}$  = actual spacing distance at which anchor is installed (inches).
- $2.s_{cr}$  = critical spacing distance for 100% load (inches).
- $3. s_{min}$  = minimum spacing distance for reduced load (inches).
- $4.f_{\rm S}=$  adjustment factor for allowable load at actual spacing distance.  $5.f_{\rm SCr}=$  adjustment factor for allowable load at critical spacing distance.  $f_{\rm SCr}$  is always = 1.00.
- $6. f_{smin}$  = adjustment factor for allowable load at minimum spacing distance.
- 7.  $f_s = f_{smin} + [(1 f_{smin}) (s_{act} s_{min}) / (s_{cr} s_{min})].$

- 4. The load adjustment factor ( $f_c$  or  $f_s$ ) is the intersection of the row and column.
- 5. Multiply the allowable load by the applicable load adjustment factor.
- 6. Reduction factors for multiple edges or spacing are multiplied together.

#### Edge Distance Shear (f<sub>c</sub>)

|   |       |                   |      | <u> </u> |      |      |      |                                                 |
|---|-------|-------------------|------|----------|------|------|------|-------------------------------------------------|
| r | Edge  | Size              | 1/4  | 3/8      | 1/2  | 5/8  | 3/4  | IDC                                             |
|   | Dist. | C <sub>C</sub> r  | 3    | 41/2     | 6    | 71/2 | 9    | IBC                                             |
|   | Cact  | Cmin              | 13/4 | 25/8     | 31/2 | 43/8 | 51/4 |                                                 |
|   | (in.) | f <sub>cmin</sub> | 0.54 | 0.54     | 0.64 | 0.64 | 0.64 | <b> </b>                                        |
|   | 13/4  |                   | 0.54 |          |      |      |      | 27 20                                           |
|   | 2     |                   | 0.63 |          |      |      |      |                                                 |
|   | 21/2  |                   | 0.82 |          |      |      |      |                                                 |
|   | 25/8  |                   | 0.86 | 0.54     |      |      |      |                                                 |
|   | 3     |                   | 1.00 | 0.63     |      |      |      |                                                 |
|   | 31/2  |                   |      | 0.75     | 0.64 |      |      |                                                 |
|   | 4     |                   |      | 0.88     | 0.71 |      |      |                                                 |
|   | 43/8  |                   |      | 0.97     | 0.77 | 0.64 |      |                                                 |
|   | 41/2  |                   |      | 1.00     | 0.78 | 0.65 |      | <del>  -                                 </del> |
|   | 5     |                   |      |          | 0.86 | 0.71 |      |                                                 |
|   | 51/4  |                   |      |          | 0.89 | 0.74 | 0.64 | ]                                               |
|   | 51/2  |                   |      |          | 0.93 | 0.77 | 0.66 | 1                                               |
|   | 6     |                   |      |          | 1.00 | 0.83 | 0.71 | 1                                               |
|   | 61/2  |                   |      |          |      | 0.88 | 0.76 | 1                                               |
|   | 7     |                   |      |          |      | 0.94 | 0.81 | 1                                               |
|   | 71/2  |                   |      |          |      | 1.00 | 0.86 | 1                                               |
|   | 8     |                   |      |          |      |      | 0.90 | 1                                               |
|   | 81/2  |                   |      |          |      |      | 0.95 | 1                                               |
|   | 9     |                   |      |          |      |      | 1.00 | 1                                               |
|   |       |                   |      |          |      |      |      | J                                               |

- 1.  $c_{act}$  = actual edge distance at which anchor is installed (inches).
- $2.c_{cr}$  = critical edge distance for 100% load (inches).
- $3. c_{min}$  = minimum edge distance for reduced load (inches)
- 4.  $f_{\rm c}$  = adjustment factor for allowable load at actual edge distance.
- 5.  $f_{\rm CCT}$  = adjustment factor for allowable load at critical edge distance.  $f_{\rm CCT}$  is always = 1.00.
- 6.  $f_{cmin}$  = adjustment factor for allowable load at minimum edge distance.
- 7.  $f_c = f_{cmin} + [(1 f_{cmin}) (c_{act} c_{min}) / (c_{cr} c_{min})].$

#### Spacing Shear (f<sub>s</sub>)

| · ĭ     | Size              | 1/4  | 3/8  | 1/2  | 5/8  | 3/4   |
|---------|-------------------|------|------|------|------|-------|
| Spacing | Scr               | 4    | 6    | 8    | 10   | 121/2 |
| Sact    | Smin              | 1½   | 21/4 | 3    | 33/4 | 43/4  |
| (in.)   | f <sub>smin</sub> | 1.00 | 1.00 | 1.00 | 1.00 | 1.00  |
| 1½      | -3111111          | 1.00 |      | 1.00 | 1.00 |       |
| 2       |                   | 1.00 |      |      |      |       |
| 21/4    |                   | 1.00 | 1.00 |      |      |       |
| 21/2    |                   | 1.00 | 1.00 |      |      |       |
| 3       |                   | 1.00 | 1.00 | 1.00 |      |       |
| 31/2    |                   | 1.00 | 1.00 | 1.00 |      |       |
| 3¾      |                   | 1.00 | 1.00 | 1.00 | 1.00 |       |
| 4       |                   | 1.00 | 1.00 | 1.00 | 1.00 |       |
| 41/2    |                   |      | 1.00 | 1.00 | 1.00 |       |
| 43/4    |                   |      | 1.00 | 1.00 | 1.00 | 1.00  |
| 5       |                   |      | 1.00 | 1.00 | 1.00 | 1.00  |
| 5½      |                   |      | 1.00 | 1.00 | 1.00 | 1.00  |
| 6       |                   |      | 1.00 | 1.00 | 1.00 | 1.00  |
| 61/2    |                   |      |      | 1.00 | 1.00 | 1.00  |
| 7       |                   |      |      | 1.00 | 1.00 | 1.00  |
| 71/2    |                   |      |      | 1.00 | 1.00 | 1.00  |
| 8       |                   |      |      | 1.00 | 1.00 | 1.00  |
| 81/2    |                   |      |      |      | 1.00 | 1.00  |
| 9       |                   |      |      |      | 1.00 | 1.00  |
| 91/2    |                   |      |      |      | 1.00 | 1.00  |
| 10      |                   |      |      |      | 1.00 | 1.00  |
| 101/2   |                   |      |      |      |      | 1.00  |
| 11      |                   |      |      |      |      | 1.00  |
| 11½     |                   |      |      |      |      | 1.00  |
| 12      |                   |      |      |      |      | 1.00  |
| 1216    |                   |      |      |      |      | 1 00  |

- $1. s_{act} = actual spacing distance at which anchor is installed (inches).$
- $2. s_{cr}$  = critical spacing distance for 100% load (inches).
- $3. s_{min} = minimum spacing distance for reduced load (inches).$
- 4.  $f_s$  = adjustment factor for allowable load at actual spacing distance.
- 5.  $f_{SCF}$  = adjustment factor for allowable load at critical spacing distance.  $f_{SCF}$  is always = 1.00.
- 6.  $f_{smin}$  = adjustment factor for allowable load at minimum spacing distance.
- 7.  $f_s = f_{smin} + [(1 f_{smin}) (s_{act} s_{min}) / (s_{cr} s_{min})].$

# **Drop-In** Short / Drop-In Stainless Steel Internally Threaded Anchor (DIA)



Drop-in anchors are internally threaded drop-in expansion anchors for use in flush-mount applications in solid base materials. Available in stainless steel (DIA) or short (DIAS) version. Minimum thread engagement should be equal to the nominal diameter of the threaded insert.

#### **Features**

- Lipped edge (DIAS) eliminates need for precisely drilled hole depth
- · Hand- and power-setting tools available for fast, easy and economical installation
- · Fixed-depth stop bit helps you drill to the correct depth every time
- · Short length (DIAS) enables shallow embedment to help avoid drilling into rebar or pre-stressed/post-tensioned cables
- Short drop-in anchors include a setting tool compatible with the anchor to ensure consistent installation

Material: Stainless steel and carbon steel

Coating: Carbon steel; zinc plated

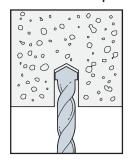
Codes: DOT; Factory Mutual 3017082; Underwriters Laboratories File Ex3605. Meets requirements of Federal Specifications A-A-55614, Type I.

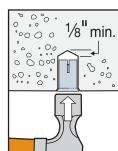
Caution: The load tables list values based upon results from the most recent testing and may not reflect those in current code reports. Where code jurisdictions apply, consult the current reports for applicable load values.

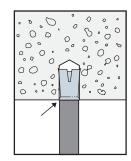


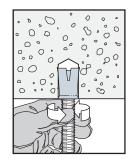





Short Drop-In


#### Installation


- 1. Drill a hole in the base material using the appropriate diameter carbide drill bit as specified in the table. Drill the hole to the specified embedment depth plus 1/8" for flush mounting. Blow the hole clean using compressed air. Overhead installations need not be blown clean.
- 2. Insert designated anchor into hole. Tap with hammer until flush against surface.
- 3. Using the designated drop-in setting tool, drive expander plug toward the bottom of the anchor until shoulder of setting tool makes contact with the top of the anchor.
- 4. Minimum thread engagement should be equal to the nominal diameter of the threaded insert.


Caution: Oversized holes will make it difficult to set the anchor and will reduce the anchor's load capacity.

#### Installation Sequence









#### Drop-In Anchor Product Data — Stainless Steel

| Rod Size | Type 303/304<br>Stainless | Type 316<br>Stainless | Drill Bit         | Bolt                 | Body            | Thread          | Quantity |        |  |
|----------|---------------------------|-----------------------|-------------------|----------------------|-----------------|-----------------|----------|--------|--|
| (in.)    | Model No.                 | Model No.             | Diameter<br>(in.) | Threads<br>(per in.) | Length<br>(in.) | Length<br>(in.) | Box      | Carton |  |
| 1/4      | DIA25SS                   | DIA256SS              | 3/8               | 20                   | 1               | 3/8             | 100      | 500    |  |
| 3/8      | DIA37SS                   | DIA376SS              | 1/2               | 16                   | 1 %16           | 5/8             | 50       | 250    |  |
| 1/2      | DIA50SS                   | DIA506SS              | 5/8               | 13                   | 2               | 3/4             | 50       | 200    |  |
| 5/8      | DIA62SS                   | _                     | 7/8               | 11                   | 21/2            | 1               | 25       | 100    |  |
| 3/4      | DIA75SS                   | _                     | 1                 | 10                   | 31/8            | 11⁄4            | 20       | 80     |  |

# Drop-In Short / Drop-In Stainless Steel Internally Threaded Anchor (DIA)



#### Short Drop-In Anchor Product Data

| Rod<br>Size | Model   | Drill Bit<br>Diameter | Bolt<br>Threads | Body            | Thread          | Qua | ntity  |
|-------------|---------|-----------------------|-----------------|-----------------|-----------------|-----|--------|
| (in.)       | No.     | (in.)                 | (per in.)       | Length<br>(in.) | Length<br>(in.) | Box | Carton |
| 3/8         | DIA37S1 | 1/2                   | 16              | 3/4             | 1/4             | 100 | 500    |
| 1/2         | DIA50S1 | 5%                    | 13              | 1               | 5/16            | 50  | 200    |

<sup>1.</sup> A dedicated setting tool is included with each box of DIA37S and DIA50S.

#### Material Specifications

| Anchor        | Component Material                  |                                                    |                          |  |  |  |  |  |
|---------------|-------------------------------------|----------------------------------------------------|--------------------------|--|--|--|--|--|
| Component     | Zinc Plated Carbon Steel            | Type 303/304 Stainless Steel                       | Type 316 Stainless Steel |  |  |  |  |  |
| Anchor Body   | Meets minimum<br>70,000 psi tensile | AISI 303. Meets chemical requirements of ASTM A582 | Type 316                 |  |  |  |  |  |
| Expander Plug | Meets minimum<br>50,000 psi tensile | AISI 303                                           | Type 316                 |  |  |  |  |  |
| Thread        | UNC/Coil-thread                     | UNC                                                | UNC                      |  |  |  |  |  |

# Allowable Tension Loads for Drop-In (Stainless Steel) Anchor







| III INOITI               | nai-vve              | eigni. Cor             | icrete          |                            |                      |                            |                       |                                                  |                      |                             |                       |
|--------------------------|----------------------|------------------------|-----------------|----------------------------|----------------------|----------------------------|-----------------------|--------------------------------------------------|----------------------|-----------------------------|-----------------------|
| D. d                     | D.:III               | Forbard                | Critical        | ادماند                     |                      |                            |                       | Tension Load                                     |                      |                             |                       |
| Rod<br>Size<br>in.       | Drill<br>Bit<br>Dia. | Embed.<br>Depth<br>in. | Edge<br>Dist.   | Critical<br>Spacing<br>in. |                      | c ≥ 2,000 p<br>8 MPa) Cond |                       | $f'_c \ge 3,000 \text{ psi}$ (20.7 MPa) Concrete |                      | c ≥ 4,000 ps<br>6 MPa) Cond |                       |
| (mm)                     | (in.)                | (mm)                   | in.<br>(mm)     | (mm)                       | Ultimate<br>lb. (kN) | Std. Dev.<br>lb. (kN)      | Allowable<br>lb. (kN) | Allowable<br>lb. (kN)                            | Ultimate<br>lb. (kN) | Std. Dev.<br>lb. (kN)       | Allowable<br>lb. (kN) |
| 1/ <sub>4</sub><br>(6.4) | 3/8                  | <b>1</b> (25)          | <b>3</b> (76)   | <b>4</b> (102)             | <b>1,400</b> (6.2)   | <b>201</b> (0.9)           | <b>350</b> (1.6)      | <b>405</b> (1.8)                                 | <b>1,840</b> (8.2)   | <b>451</b> (2.0)            | <b>460</b> (2.0)      |
| 3/8<br>(9.5)             | 1/2                  | 19/16<br>(40)          | <b>4½</b> (114) | <b>6</b> (152)             | <b>2,400</b> (10.7)  | <b>251</b> (1.1)           | <b>600</b> (2.7)      | <b>795</b> (3.5)                                 | <b>3,960</b> (17.6)  | <b>367</b> (1.6)            | <b>990</b> (4.4)      |
| 1/2<br>(12.7)            | 5/8                  | <b>2</b> (51)          | <b>6</b> (152)  | <b>8</b> (203)             | <b>3,320</b> (14.8)  | <b>372</b> (1.7)           | <b>830</b> (3.7)      | <b>1,178</b> (5.2)                               | <b>6,100</b> (27.1)  | <b>422</b> (1.9)            | <b>1,525</b> (6.8)    |
| <b>5/8</b> (15.9)        | 7/8                  | <b>2½</b> (64)         | <b>7½</b> (191) | <b>10</b> (254)            | <b>5,040</b> (22.4)  | <b>689</b> (3.1)           | <b>1,260</b> (5.6)    | <b>1,715</b> (7.6)                               | <b>8,680</b> (38.6)  | <b>971</b> (4.3)            | <b>2,170</b> (9.7)    |
| <b>3/4</b> (19.1)        | 1                    | <b>31/8</b> (79)       | <b>9</b> (229)  | <b>12½</b> (318)           | <b>8,160</b> (36.3)  | <b>961</b> (4.3)           | <b>2,040</b> (9.1)    | <b>2,365</b> (10.5)                              | <b>10,760</b> (47.9) | <b>1,696</b> (7.5)          | <b>2,690</b> (12.0)   |

See foonotes below.

#### Allowable Shear Loads for Drop-In (Stainless Steel) Anchor in Normal-Weight Concrete







|                    | D                    |                        | Critical         | 0.111                      |                      |                                               | S                     | hear Load                                        |                                                  |
|--------------------|----------------------|------------------------|------------------|----------------------------|----------------------|-----------------------------------------------|-----------------------|--------------------------------------------------|--------------------------------------------------|
| Rod<br>Size<br>in. | Drill<br>Bit<br>Dia. | Embed.<br>Depth<br>in. | Edge<br>Dist.    | Critical<br>Spacing<br>in. |                      | f' <sub>c</sub> ≥ 2,000 psi<br>3.8 MPa) Concr |                       | $f'_c \ge 3,000 \text{ psi}$ (20.7 MPa) Concrete | $f'_c \ge 4,000 \text{ psi}$ (27.6 MPa) Concrete |
| (mm)               | in.                  | (mm)                   | in.<br>(mm)      | (mm)                       | Ultimate<br>lb. (kN) | Std. Dev.<br>lb. (kN)                         | Allowable<br>lb. (kN) | Allowable<br>lb. (kN)                            | Allowable<br>lb. (kN)                            |
| <b>1/4</b> (6.4)   | 3/8                  | <b>1</b> (25)          | <b>3½</b> (89)   | <b>4</b> (102)             | <b>1,960</b> (8.7)   | <b>178</b> (0.8)                              | <b>490</b> (2.2)      | <b>490</b> (2.2)                                 | <b>490</b> (2.2)                                 |
| <b>3/8</b> (9.5)   | 1/2                  | <b>1%</b> 6 (40)       | <b>5½</b> (133)  | <b>6</b> (152)             | <b>3,240</b> (14.4)  | <b>351</b> (1.6)                              | <b>810</b> (3.6)      | <b>925</b> (4.1)                                 | <b>1,040</b> (4.6)                               |
| <b>½</b> (12.7)    | 5/8                  | <b>2</b> (51)          | <b>7</b> (178)   | <b>8</b> (203)             | <b>7,000</b> (31.1)  | <b>562</b> (2.5)                              | <b>1,750</b> (7.8)    | <b>1,750</b> (7.8)                               | <b>1,750</b> (7.8)                               |
| <b>5/8</b> (15.9)  | 7/8                  | <b>2½</b> (64)         | <b>8¾</b> (222)  | <b>10</b> (254)            | <b>11,080</b> (49.3) | <b>923</b> (4.1)                              | <b>2,770</b> (12.3)   | <b>2,770</b> (12.3)                              | <b>2,770</b> (12.3)                              |
| <b>3/4</b> (19.1)  | 1                    | <b>31/8</b><br>(79)    | <b>10½</b> (267) | <b>12½</b> (318)           | <b>13,800</b> (61.4) | <b>1,781</b> (7.9)                            | <b>3,450</b> (15.3)   | <b>3,725</b> (16.6)                              | <b>4,000</b> (17.8)                              |

<sup>1.</sup> The allowable loads listed are based on a safety factor of 4.0.

<sup>2.</sup> Refer to allowable load-adjustment factors for edge distance and spacing on p. 190.

<sup>3.</sup> Allowable loads may be linearly interpolated between concrete strengths listed.

<sup>4.</sup> The minimum concrete thickness is 11/2 times the embedment depth.

<sup>\*</sup> See p. 13 for an explanation of the load table icons.

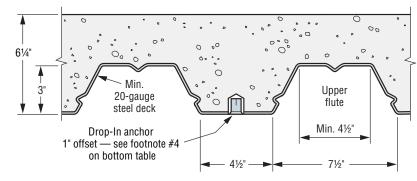
# **Drop-In** (DIA) Design Information — Concrete



Allowable Tension and Shear Loads for %" and ½" Short Drop-In Anchor in Sand-Lightweight Concrete Fill over Metal Deck










**Mechanical** Anchors

|              | Rod   | Drill       | Emb.  | Tension<br>Critical | Shear<br>Critical Critical |         | Install thro      | ugh the Lower Flute $f'_c \ge 3,000$ psi Co | or Upper Flute of I<br>ncrete (20.7 MPa) | Metal Deck,        |
|--------------|-------|-------------|-------|---------------------|----------------------------|---------|-------------------|---------------------------------------------|------------------------------------------|--------------------|
| Model<br>No. | Size  | Bit<br>Dia. | Depth | End                 | End                        | Spacing | Tensio            | n Load                                      | Shear                                    | Load               |
| 110.         | (in.) | (in.)       | (in.) | Distance<br>(in.)   | Distance<br>(in.)          | (in.)   | Ultimate<br>(lb.) | Allowable<br>(lb.)                          | Ultimate<br>(lb.)                        | Allowable<br>(lb.) |
| DIA37S       | 3/8   | 1/2         | 3/4   | 6                   | 7                          | 8       | 1,344             | 335                                         | 1,649                                    | 410                |
| DIA50S       | 1/2   | 5/8         | 1     | 8                   | 9%                         | 10%     | 1,711             | 430                                         | 2,070                                    | 515                |

- 1. The allowable loads listed are based on a safety factor of 4.0.
- Allowable loads may not be increased for short-term loading due to wind or seismic forces.
- 3. Refer to allowable load-adjustment factors for edge distances and spacing on p. 190.
- 4. Anchors were installed with a 1" offset from the centerline of the flute.



**Lightweight Concrete over Metal Deck** 

# Allowable Tension and Shear Loads for %" and ½" Short Drop-In Anchor in Normal-Weight Concrete



| ·      |             | Drill         |               | Tension           | Shear             |                     | Normal            | -Weight Con     | crete, f' <sub>c</sub> ≥ | 2500 psi        | Normal-           | -Weight Con     | crete, f' <sub>c</sub> ≥ | 4,000 psi       |
|--------|-------------|---------------|---------------|-------------------|-------------------|---------------------|-------------------|-----------------|--------------------------|-----------------|-------------------|-----------------|--------------------------|-----------------|
| Model  | Rod<br>Size | Bit           | Emb.<br>Depth | Critical<br>Edge  | Critical<br>Edge  | Critical<br>Spacing | Tensio            | on Load         | Shea                     | r Load          | Tensio            | on Load         | Shea                     | r Load          |
| No.    | (in.)       | Dia.<br>(in.) | (in.)         | Distance<br>(in.) | Distance<br>(in.) |                     | Ultimate<br>(lb.) | Allowable (lb.) | Ultimate<br>(lb.)        | Allowable (lb.) | Ultimate<br>(lb.) | Allowable (lb.) | Ultimate<br>(lb.)        | Allowable (lb.) |
| DIA37S | 3/8         | 1/2           | 3/4           | 41/2              | 51/4              | 3                   | 1,500             | 375             | 2,274                    | 570             | 2,170             | 540             | 3,482                    | 870             |
| DIA50S | 1/2         | 5/8           | 1             | 6                 | 7                 | 4                   | 2,039             | 510             | 3,224                    | 805             | 3,420             | 855             | 5,173                    | 1,295           |

- 1. The allowable loads listed are based on a safety factor of 4.0.
- 2. Allowable loads may not be increased for short-term loading due to wind or seismic forces.
- 3. Refer to allowable load-adjustment factors for edge distances and spacing on p. 190.
- 4. Allowable loads may be linearly interpolated between concrete strengths.
- 5. The minimum concrete thickness is 11/2 times the embedment depth.


# Allowable Tension and Shear Loads for %" and %" Short Drop-In Anchor in Hollow-Core Concrete Panel





|        |             | Drill         |               | Tension           | Shear             | a                   | Ho                | ollow Core Concrete | Panel, f' <sub>c</sub> ≥ 4,000 <sub>l</sub> | psi                |
|--------|-------------|---------------|---------------|-------------------|-------------------|---------------------|-------------------|---------------------|---------------------------------------------|--------------------|
| Model  | Rod<br>Size | Bit           | Emb.<br>Depth | Critical<br>Edge  | Critical<br>Edge  | Critical<br>Spacing | Tensio            | n Load              | Shear                                       | Load               |
| No.    | (in.)       | Dia.<br>(in.) | (in.)         | Distance<br>(in.) | Distance<br>(in.) | (in.)               | Ultimate<br>(lb.) | Allowable<br>(lb.)  | Ultimate<br>(lb.)                           | Allowable<br>(lb.) |
| DIA37S | 3/8         | 1/2           | 3/4           | 41/2              | 51⁄4              | 3                   | 1,860             | 465                 | 3,308                                       | 825                |
| DIA50S | 1/2         | 5/8           | 1             | 6                 | 7                 | 4                   | 2,650             | 660                 | 4,950                                       | 1,235              |

- 1. The allowable loads listed are based on a safety factor of 4.0.
- 2. Allowable loads may not be increased for short-term loading due to wind or seismic forces.
- 3. Refer to allowable load-adjustment factors for edge distances and spacing on p. 190.
- 4. Allowable loads may be linearly interpolated between concrete strengths.



Hollow-Core Concrete Panel

(anchor can be installed below web or hollow core)

## **Drop-In** (DIA) Design Information — Concrete



Allowable Load-Adjustment Factors for Drop-In (Stainless Steel) and Short Drop-In Anchors in Normal-Weight Concrete: Edge Distance and Spacing, Tension and Shear Loads

#### How to use these charts:

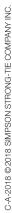
- 1. The following tables are for reduced edge distance and spacing.
- Locate the anchor size to be used for either a tension and/or shear load application.
- 3. Locate the edge distance  $(c_{act})$  or spacing  $(s_{act})$  at which the anchor is to be installed.
- 4. The load adjustment factor (f  $_{\rm C}$  or f  $_{\rm S}$ ) is the intersection of the row and column.
- 5. Multiply the allowable load by the applicable load adjustment factor.
- Reduction factors for multiple edges or spacing are multiplied together.

#### Edge Distance Tension (f<sub>c</sub>)

| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Luge  | Distail |      |      | '    |      |      |          |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|---------|------|------|------|------|------|----------|
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Edge  | Size    | 1/4  | 3/8  | 1/2  | 5/8  | 3/4  | IBC      |
| (III.)         f <sub>cmin</sub> 0.65         0.65         0.65         0.65           134         0.65         0.65         0.65           2         0.72         0.86         0.20         0.20         0.20         0.20         0.20         0.20         0.20         0.20         0.20         0.20         0.20         0.20         0.20         0.20         0.20         0.20         0.20         0.20         0.20         0.20         0.20         0.20         0.20         0.20         0.20         0.20         0.20         0.20         0.20         0.20         0.20         0.20         0.20         0.20         0.20         0.20         0.20         0.20         0.20         0.20         0.20         0.20         0.20         0.20         0.20         0.20         0.20         0.20         0.20         0.20         0.20         0.20         0.20         0.20         0.20         0.20         0.20         0.20         0.20         0.20         0.20         0.20         0.20         0.20         0.20         0.20         0.20         0.20         0.20         0.20         0.20         0.20         0.20         0.20         0.20         0.20         0.20         0.20 |       | Ccr     | 3    | 41/2 | 6    | 71/2 | 9    |          |
| (III.)         f <sub>cmin</sub> 0.65         0.65         0.65         0.65           13/4         0.65         0.65         0.65         0.65           2         0.72         0.86         0.20         0.20         0.20         0.20         0.20         0.20         0.20         0.20         0.20         0.20         0.20         0.20         0.20         0.20         0.20         0.20         0.20         0.20         0.20         0.20         0.20         0.20         0.20         0.20         0.20         0.20         0.20         0.20         0.20         0.20         0.20         0.20         0.20         0.20         0.20         0.20         0.20         0.20         0.20         0.20         0.20         0.20         0.20         0.20         0.20         0.20         0.20         0.20         0.20         0.20         0.20         0.20         0.20         0.20         0.20         0.20         0.20         0.20         0.20         0.20         0.20         0.20         0.20         0.20         0.20         0.20         0.20         0.20         0.20         0.20         0.20         0.20         0.20         0.20         0.20         0.20         0.2 | Cact  | Cmin    | 13/4 | 2%   | 31/2 | 4%   | 51/4 |          |
| 2         0.72           2½         0.86           2%         0.90         0.65           3         1.00         0.72           3½         0.81         0.65           4         0.91         0.72           4%         0.98         0.77         0.65           4½         1.00         0.79         0.66           5         0.86         0.72           5½         0.93         0.78         0.67           6         1.00         0.83         0.72           6½         0.89         0.77           7         0.94         0.81           7½         1.00         0.86           8         0.91           8½         0.95                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (in.) | -       | 0.65 | 0.65 | 0.65 | 0.65 | 0.65 |          |
| 2½         0.86           2%         0.90         0.65           3         1.00         0.72           3½         0.81         0.65           4         0.91         0.72           4%         0.98         0.77         0.65           4½         1.00         0.79         0.66           5         0.86         0.72           5¼         0.90         0.75         0.65           5½         0.93         0.78         0.67           6         1.00         0.83         0.72           6½         0.89         0.77           7         0.94         0.81           7½         1.00         0.86           8         0.91           8½         0.95                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 13/4  |         | 0.65 |      |      |      |      |          |
| 25/6         0.90         0.65           3         1.00         0.72           3½         0.81         0.65           4         0.91         0.72           4½         0.98         0.77         0.65           4½         1.00         0.79         0.66           5         0.86         0.72           5¼         0.90         0.75         0.65           5½         0.93         0.78         0.67           6         1.00         0.83         0.72           6½         0.89         0.77           7         0.94         0.81           7½         1.00         0.86           8         0.91           8½         0.95                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2     |         | 0.72 |      |      |      |      |          |
| 3         1.00         0.72           3½         0.81         0.65           4         0.91         0.72           4¾6         0.98         0.77         0.65           4½         1.00         0.79         0.66           5         0.86         0.72           5¼         0.90         0.75         0.65           5½         0.93         0.78         0.67           6         1.00         0.83         0.72           6½         0.89         0.77           7         0.94         0.81           7½         1.00         0.86           8         0.91           8½         0.95                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 21/2  |         | 0.86 |      |      |      |      |          |
| 3½         0.81         0.65           4         0.91         0.72           4¾         0.98         0.77         0.65           4½         1.00         0.79         0.66           5         0.86         0.72           5¼         0.90         0.75         0.65           5½         0.93         0.78         0.67           6         1.00         0.83         0.72           6½         0.89         0.77           7         0.94         0.81           7½         1.00         0.86           8         0.91           8½         0.95                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 25/8  |         | 0.90 | 0.65 |      |      |      |          |
| 4     0.91     0.72       4%     0.98     0.77     0.65       4½     1.00     0.79     0.66       5     0.86     0.72       5¼     0.90     0.75     0.65       5½     0.93     0.78     0.67       6     1.00     0.83     0.72       6½     0.89     0.77       7     0.94     0.81       7½     1.00     0.86       8     0.91       8½     0.95                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 3     |         | 1.00 | 0.72 |      |      |      | Pinning. |
| 4%         0.98         0.77         0.65           4½         1.00         0.79         0.66           5         0.86         0.72           5¼         0.90         0.75         0.65           5½         0.93         0.78         0.67           6         1.00         0.83         0.72           6½         0.89         0.77           7         0.94         0.81           7½         1.00         0.86           8         0.91           8½         0.95                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 31/2  |         |      | 0.81 | 0.65 |      |      | 1        |
| 4½         1.00         0.79         0.66           5         0.86         0.72           5¼         0.90         0.75         0.65           5½         0.93         0.78         0.67           6         1.00         0.83         0.72           6½         0.89         0.77           7         0.94         0.81           7½         1.00         0.86           8         0.91           8½         0.95                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 4     |         |      | 0.91 | 0.72 |      |      | 1        |
| 5         0.86         0.72           5½         0.90         0.75         0.65           5½         0.93         0.78         0.67           6         1.00         0.83         0.72           6½         0.89         0.77           7         0.94         0.81           7½         1.00         0.86           8         0.91           8½         0.95                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 43/8  |         |      | 0.98 | 0.77 | 0.65 |      | 1        |
| 5¼         0.90         0.75         0.65           5½         0.93         0.78         0.67           6         1.00         0.83         0.72           6½         0.89         0.77           7         0.94         0.81           7½         1.00         0.86           8         0.91           8½         0.95                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 41/2  |         |      | 1.00 | 0.79 | 0.66 |      | 1        |
| 5½         0.93         0.78         0.67           6         1.00         0.83         0.72           6½         0.89         0.77           7         0.94         0.81           7½         1.00         0.86           8         0.91           8½         0.95                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 5     |         |      |      | 0.86 | 0.72 |      | 1        |
| 6     1.00     0.83     0.72       6½     0.89     0.77       7     0.94     0.81       7½     1.00     0.86       8     0.91       8½     0.95                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 51/4  |         |      |      | 0.90 | 0.75 | 0.65 | 1        |
| 6½         0.89         0.77           7         0.94         0.81           7½         1.00         0.86           8         0.91           8½         0.95                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 51/2  |         |      |      | 0.93 | 0.78 | 0.67 | 1        |
| 7 0.94 0.81<br>7½ 1.00 0.86<br>8 0.91<br>8½ 0.95                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 6     |         |      |      | 1.00 | 0.83 | 0.72 | ]        |
| 7½ 1.00 0.86<br>8 0.91<br>8½ 0.95                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 61/2  |         |      |      |      | 0.89 | 0.77 | ]        |
| 8 0.91<br>8½ 0.95                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 7     |         |      |      |      | 0.94 | 0.81 |          |
| 81/2 0.95                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 71/2  |         |      |      |      | 1.00 | 0.86 | ]        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 8     |         |      |      |      |      | 0.91 | ]        |
| 9 1.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 81/2  |         |      |      |      |      | 0.95 | 1        |
| 0 1100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 9     |         |      |      |      |      | 1.00 | ]        |

See notes below.

#### Edge Distance Shear (f<sub>o</sub>)


| Edge  | Size              | 1/4  | 3/8  | 1/2  | 5/8  | 3/4   |
|-------|-------------------|------|------|------|------|-------|
| Dist. | Ccr               | 31/2 | 51/4 | 7    | 83/4 | 101/2 |
| Cact  | Cmin              | 13/4 | 25/8 | 31/2 | 4%   | 51/4  |
| (in.) | f <sub>cmin</sub> | 0.45 | 0.45 | 0.45 | 0.45 | 0.45  |
| 13/4  |                   | 0.45 |      |      |      |       |
| 2     |                   | 0.53 |      |      |      |       |
| 21/2  |                   | 0.69 |      |      |      |       |
| 25/8  |                   | 0.73 | 0.45 |      |      |       |
| 3     |                   | 0.84 | 0.53 |      |      |       |
| 31/2  |                   | 1.00 | 0.63 | 0.45 |      |       |
| 4     |                   |      | 0.74 | 0.53 |      |       |
| 4%    |                   |      | 0.82 | 0.59 | 0.45 |       |
| 41/2  |                   |      | 0.84 | 0.61 | 0.47 |       |
| 5     |                   |      | 0.95 | 0.69 | 0.53 |       |
| 51/4  |                   |      | 1.00 | 0.73 | 0.56 | 0.45  |
| 5½    |                   |      |      | 0.76 | 0.59 | 0.48  |
| 6     |                   |      |      | 0.84 | 0.65 | 0.53  |
| 61/2  |                   |      |      | 0.92 | 0.72 | 0.58  |
| 7     |                   |      |      | 1.00 | 0.78 | 0.63  |
| 71/2  |                   |      |      |      | 0.84 | 0.69  |
| 8     |                   |      |      |      | 0.91 | 0.74  |
| 81/2  |                   |      |      |      | 0.97 | 0.79  |
| 8¾    |                   |      |      |      | 1.00 | 0.82  |
| 9     |                   |      |      |      |      | 0.84  |
| 91/2  |                   |      |      |      |      | 0.90  |
| 10    |                   |      |      |      |      | 0.95  |
| 10½   |                   |      |      |      |      | 1.00  |

- 1.  $c_{act}$  = actual edge distance at which anchor is installed (inches).
- 2.  $c_{cr}$  = critical edge distance for 100% load (inches).
- 3.  $c_{min}$  = minimum edge distance for reduced load (inches).
- 4.  $f_{\rm C}=$  adjustment factor for allowable load at actual edge distance.
- 5.  $f_{CCP}$  adjustment factor for allowable load at critical edge distance.  $f_{CCP}$  is always = 1.00.
- 6.  $f_{cmin}$  = adjustment factor for allowable load at minimum edge distance.
- 7.  $f_c = f_{cmin} + [(1 f_{cmin}) (c_{act} c_{min}) / (c_{cr} c_{min})].$

#### Spacing Tension and Shear (f<sub>s</sub>)

|                           | Size              | 1/4  | 3/8 9 | 3/8  | 1/210 | 1/2  | 5/8  | 3/4   |
|---------------------------|-------------------|------|-------|------|-------|------|------|-------|
| _                         | Ε                 | 1    | 3/4   | 11/2 | 1     | 2    | 21/2 | 31/8  |
| s <sub>act</sub><br>(in.) | Scr               | 4    | 3     | 6    | 4     | 8    | 10   | 121/2 |
| (111.)                    | S <sub>min</sub>  | 2    | 11/2  | 3    | 2     | 4    | 5    | 61/4  |
|                           | f <sub>smin</sub> | 0.50 | 0.50  | 0.50 | 0.50  | 0.50 | 0.50 | 0.50  |
| 11/2                      |                   |      | 0.50  |      |       |      |      |       |
| 2                         |                   | 0.50 | 0.67  |      | 0.50  |      |      |       |
| 21/2                      |                   | 0.63 | 0.83  |      | 0.63  |      |      |       |
| 3                         |                   | 0.75 | 1.00  | 0.50 | 0.75  |      |      |       |
| 31/2                      |                   | 0.88 |       | 0.58 | 0.88  |      |      |       |
| 4                         |                   | 1.00 |       | 0.67 | 1.00  | 0.50 |      |       |
| 41/2                      |                   |      |       | 0.75 |       | 0.56 |      |       |
| 5                         |                   |      |       | 0.83 |       | 0.63 | 0.50 |       |
| 51/2                      |                   |      |       | 0.92 |       | 0.69 | 0.55 |       |
| 6                         |                   |      |       | 1.00 |       | 0.75 | 0.60 |       |
| 61/4                      |                   |      |       |      |       | 0.78 | 0.63 | 0.50  |
| 7                         |                   |      |       |      |       | 0.88 | 0.70 | 0.56  |
| 8                         |                   |      |       |      |       | 1.00 | 0.80 | 0.64  |
| 9                         |                   |      |       |      |       |      | 0.90 | 0.72  |
| 10                        |                   |      |       |      |       |      | 1.00 | 0.80  |
| 11                        |                   |      |       |      |       |      |      | 0.88  |
| 12                        |                   |      |       |      |       |      |      | 0.96  |
| 121/2                     |                   |      |       |      |       |      |      | 1.00  |

- 1. E = Embedment depth (inches).
- 2.  $s_{act}$  = actual spacing distance at which anchors are installed (inches).
- 3.  $s_{cr}$  = critical spacing distance for 100% load (inches).
- 4.  $s_{min}$  = minimum spacing distance for reduced load (inches).
- 5.  $f_s$  = adjustment factor for allowable load at actual spacing distance.
- 6.  $f_{SCT}$  = adjustment factor for allowable load at critical spacing distance.  $f_{SCT}$  is always = 1.00.
- f<sub>smin</sub> = adjustment factor for allowable load at minimum spacing distance.
- 8.  $f_s = f_{smin} + [(1 f_{smin}) (s_{act} s_{min}) / (s_{cr} s_{min})].$
- 9. %" short drop-in (DIA37S).
- 10. ½" short Drop-in (DIA50S)



# **Drop-In** (DIA) Design Information — Concrete



Allowable Load-Adjustment Factors for Short Drop-in Anchors in Sand-Lightweight Concrete over Metal Deck: Edge Distance and Spacing, Tension and Shear Loads

#### How to use these charts:

- 1. The following tables are for reduced edge distance and spacing.
- 2. Locate the anchor size to be used for either a tension and/or shear load application.
- 3. Locate the edge distance  $(c_{act})$  or spacing  $(s_{act})$  at which the anchor is to be installed.

| 4. The load adjustment factor ( | $f_c$ or $f_s$ ) is the intersection of the |
|---------------------------------|---------------------------------------------|
| row and column.                 |                                             |

- 5. Multiply the allowable load by the applicable load adjustment factor.
- Reduction factors for multiple edges or spacing are multiplied together.

#### Edge Distance Tension (f<sub>c</sub>)

| Edge  | Size              | 3/8  | 1/2  |  |
|-------|-------------------|------|------|--|
| Dist. | C <sub>cr</sub>   | 6    | 8    |  |
| Cact  | C <sub>min</sub>  | 31/2 | 43/4 |  |
| (in.) | f <sub>cmin</sub> | 0.65 | 0.65 |  |
| 31/2  |                   | 0.65 |      |  |
| 4     |                   | 0.72 |      |  |
| 41/2  |                   | 0.79 |      |  |
| 43/4  |                   | 0.83 | 0.65 |  |
| 5     |                   | 0.86 | 0.68 |  |
| 5½    |                   | 0.93 | 0.73 |  |
| 6     |                   | 1.00 | 0.78 |  |
| 6½    |                   |      | 0.84 |  |
| 7     |                   |      | 0.89 |  |
| 71/2  |                   |      | 0.95 |  |
| 8     |                   |      | 1.00 |  |

See notes below.

#### Edge Distance Shear (f<sub>c</sub>)

| Edge  | Size              | 3/8  | 1/2  |
|-------|-------------------|------|------|
| Dist. | c <sub>cr</sub>   | 7    | 9%   |
| Cact  | C <sub>min</sub>  | 31/2 | 43/4 |
| (in.) | f <sub>cmin</sub> | 0.45 | 0.45 |
| 31/2  |                   | 0.45 |      |
| 4     |                   | 0.53 |      |
| 41/2  |                   | 0.61 |      |
| 43/4  |                   | 0.65 | 0.45 |
| 5     |                   | 0.69 | 0.48 |
| 5½    |                   | 0.76 | 0.54 |
| 6     |                   | 0.84 | 0.60 |
| 61/2  |                   | 0.92 | 0.66 |
| 7     |                   | 1.00 | 0.72 |
| 71/2  |                   |      | 0.78 |
| 8     |                   |      | 0.84 |
| 81/2  |                   |      | 0.90 |
| 9     |                   |      | 0.96 |
| 9%    |                   |      | 1.00 |









- 1.  $c_{\it act}\!=\!$  actual edge distance at which anchor is installed (inches).
- $2.c_{cr}$  = critical edge distance for 100% load (inches).
- $3.c_{min}$  = minimum edge distance for reduced load (inches).
- 4.  $f_{\rm C}=$  adjustment factor for allowable load at actual edge distance.
- 5.  $f_{CCT}$  = adjustment factor for allowable load at critical edge distance.  $f_{CCT}$  is always = 1.00.
- 6.  $f_{\it cmin} = {\it adjustment}$  factor for allowable load at minimum edge distance.
- 7.  $f_c = f_{cmin} + [(1 f_{cmin}) (c_{act} c_{min}) / (c_{cr} c_{min})].$

#### Spacing Tension and Shear (f<sub>s</sub>)

|       | Size              | 3/8  | 1/2  |
|-------|-------------------|------|------|
| Sact  | S <sub>Cr</sub>   | 8    | 10%  |
| (in.) | Smin              | 4    | 51/4 |
|       | f <sub>smin</sub> | 0.50 | 0.50 |
| 4     |                   | 0.50 |      |
| 41/2  |                   | 0.56 |      |
| 5     |                   | 0.63 |      |
| 51/4  |                   | 0.66 | 0.50 |
| 6     |                   | 0.75 | 0.57 |
| 61/2  |                   | 0.81 | 0.62 |
| 7     |                   | 0.88 | 0.66 |
| 71/2  |                   | 0.94 | 0.71 |
| 8     |                   | 1.00 | 0.76 |
| 81/2  |                   |      | 0.80 |
| 9     |                   |      | 0.85 |
| 91/2  |                   |      | 0.90 |
| 10    |                   |      | 0.94 |
| 10%   |                   |      | 1.00 |





**Mechanical** Anchors

- 1.  $s_{act}$  = actual spacing distance at which anchors are installed (inches).
- $2. s_{cr}$  = critical spacing distance for 100% load (inches).
- 3. s<sub>min</sub> = minimum spacing distance for reduced load (inches).
- 4. f<sub>s</sub> = adjustment factor for allowable load at actual spacing distance
- 5.  $f_{SCF}$  = adjustment factor for allowable load at critical spacing distance.  $f_{SCF}$  is always = 1.00.
- 6.  $f_{smin}$  = adjustment factor for allowable load at minimum spacing distance.
- 7.  $f_s = f_{smin} + [(1 f_{smin}) (s_{act} s_{min}) / (s_{cr} s_{min})].$

<sup>\*</sup> See p. 13 for an explanation of the load table icons.

# C-A-2018 @ 2018 SIMPSON STRONG-TIE COMPANY INC.

### Hollow Drop-In Internally Threaded Anchor



The Simpson Strong-Tie® Hollow Drop-In Anchor (HDIA) is an internally threaded, flush-mount expansion anchor for use in hollow materials such as CMU and hollow-core plank, as well as in solid base materials such as brick, normal-weight and lightweight concrete.

#### Features:

- Suitable for suspending conduit, cable trays, pipe supports, fire sprinklers and suspended lighting into concrete
- Expansion design allows HDIA to anchor into CMU, hollow-core plank, brick, normal-weight concrete and lightweight concrete
- Internally threaded anchor allows for easy bolt removal

**Material:** Die-cast Zamac 3 alloy shell with carbon-steel cone or 304 stainless-steel cone

Codes: Factory Mutual 3053987 (%"-1/2" diameter) Underwriters Laboratories EX3605 (%"-1/2" diameter)



#### Hollow Drop-In Anchor

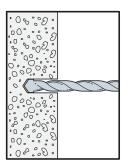
| Size  | Model    | Drill Bit<br>Diameter | Threads                | Overall      | Quantity    |       |  |
|-------|----------|-----------------------|------------------------|--------------|-------------|-------|--|
| (in.) | No.      | No. (in.) (per in.)   | Anchor Length<br>(in.) | Package Qty. | Carton Qty. |       |  |
| 1/4   | HDIA25   | 3/8                   | 20                     | 3/4          | 100         | 1,600 |  |
| 1/4   | HDIA25SS | 3/8                   | 20                     | 3/4          | 100         | 1,600 |  |
| 5/16  | HDIA31   | 5/8                   | 18                     | 11/4         | 50          | 200   |  |
| 3/8   | HDIA37   | 5/8                   | 16                     | 11/4         | 50          | 200   |  |
| 3/8   | HDIA37SS | 5/8                   | 16                     | 11/4         | 50          | 200   |  |
| 1/2   | HDIA50   | 3/4                   | 13                     | 1¾           | 50          | 200   |  |
| 5/8   | HDIA62   | 1                     | 11                     | 2            | 25          | 125   |  |

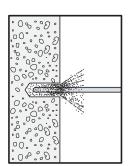


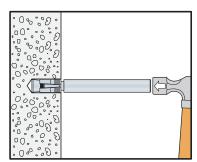


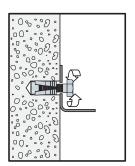






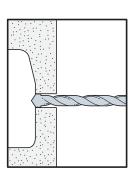


### Hollow Drop-In Internally Threaded Anchor

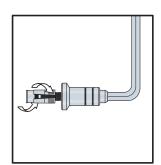


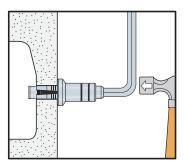


#### Installation Instructions - Solid Base (using solid setting tool)

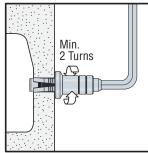
- Drill a hole in the base material using the appropriate diameter carbide drill bit as specified in the table.
   Drill the hole to the specified embedment depth.
- Blow the hole clean using compressed air. Overhead installations need not be blown clean.
- Insert the HDIA into hole. Tap with hammer until flush against surface.
- Using the designated setting tool, drive the anchor to the bottom of the drilled hole. After the anchor reaches the bottom of the drilled hole, perform an additional 3 hammer blows against the setting tool to drive the anchor body over the cone.
- Position fixture; insert fastener and tighten.

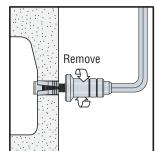


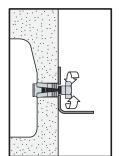




#### Installation Instructions — Hollow Base (using hollow setting tool)


- Drill a hole in the base material using the appropriate diameter carbide drill bit as specified in the table.
- Thread the HDIA onto the designated setting tool for hollow base materials.
- Insert the HDIA into the hole. Tap the setting tool until the face of the tool contacts the surface.
- Rotate the setting tool a minimum of 2 turns to set the anchor.
- Remove the setting tool.
- Position fixture; insert fastener and tighten.














# Hollow Drop-In Design Information — Concrete and Masonry

Allowable Tension Loads for Hollow Drop-In Anchor in Normal-Weight Concrete





|                     |                   | Drill Bit         | Embed           | Critical         | Critical Critical – Spacing |                      | Tensio                | n Load               |                       |
|---------------------|-------------------|-------------------|-----------------|------------------|-----------------------------|----------------------|-----------------------|----------------------|-----------------------|
| Model<br>No.        | Size<br>in.       | Dia.              | Depth<br>in.    |                  |                             |                      | Edge Dist. Spacing f  |                      | si (17.2 MPa)         |
| NU.                 | (mm)              | (mm)              | (mm)            | (mm)             | in.<br>(mm)                 | Ultimate<br>lb. (kN) | Allowable<br>lb. (kN) | Ultimate<br>lb. (kN) | Allowable<br>lb. (kN) |
| HDIA25,<br>HDIA25SS | <b>1/4</b> (6.4)  | <b>3/8</b> (9.5)  | <b>7/8</b> (22) | <b>25/8</b> (67) | <b>3½</b> (89)              | <b>1,180</b> (5.2)   | <b>295</b> (1.3)      | <b>1,220</b> (5.4)   | <b>305</b> (1.4)      |
| HDIA31              | <b>5/16</b> (7.9) | <b>5%</b> (15.9)  | <b>1½</b> (38)  | <b>4½</b> (114)  | <b>6</b> (152)              | <b>3,000</b> (13.3)  | <b>750</b> (3.3)      | <b>3,420</b> (15.2)  | <b>855</b> (3.8)      |
| HDIA37,<br>HDIA37SS | <b>3/8</b> (9.5)  | <b>5%</b> (15.9)  | <b>1½</b> (38)  | <b>4½</b> (114)  | <b>6</b> (152)              | <b>3,000</b> (13.3)  | <b>750</b> (3.3)      | <b>3,420</b> (15.2)  | <b>855</b> (3.8)      |
| HDIA50              | <b>½</b> (12.7)   | <b>3/4</b> (19.1) | <b>2</b> (51)   | <b>6</b> (152)   | <b>8</b> (203)              | <b>4,260</b> (18.9)  | <b>1,065</b> (4.7)    | <b>5,500</b> (24.5)  | <b>1,375</b> (6.1)    |
| HDIA62              | <b>5%</b> (15.9)  | <b>1</b> (25.4)   | <b>2½</b> (57)  | <b>6¾</b> (171)  | <b>9</b> (229)              | <b>6,100</b> (27.1)  | <b>1,525</b> (6.8)    | <b>6,300</b> (28.0)  | <b>1,575</b> (7.0)    |

- 1. The allowable loads listed are based on a safety factor of 4.0.
- 2. The minimum concrete thickness is 11/2 times the embedment depth.
- 3. Allowable loads may be linearly interpolated between concrete strengths listed.

#### Allowable Shear Loads for Hollow Drop-In Anchor in Normal-Weight Concrete





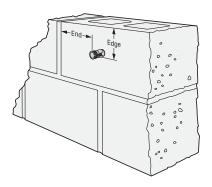


| in Normai-          | Normal-Weight Concrete |                   |                 |                   |                |                           |                        |                                       |                       |  |  |
|---------------------|------------------------|-------------------|-----------------|-------------------|----------------|---------------------------|------------------------|---------------------------------------|-----------------------|--|--|
|                     |                        | Drill Bit Embe    | Embed           | Embed Critical    | Critical -     |                           | d Based on<br>Strength | Shear Load Based on<br>Steel Strength |                       |  |  |
| Model<br>No.        | Size<br>in.<br>(mm)    | Dia.<br>in.       | Depth<br>in.    | Edge Dist.<br>in. | Spacing in.    | f' <sub>c</sub> ≥ 2,500 p | si (17.2 MPa)          | F1554<br>Grade 36                     | A193<br>Grade B7      |  |  |
|                     |                        | (mm)              | (mm)            | (mm)              | (mm)           | Ultimate<br>lb. (kN)      | Allowable<br>lb. (kN)  | Allowable<br>lb. (kN)                 | Allowable<br>lb. (kN) |  |  |
| HDIA25,<br>HDIA25SS | <b>1/4</b> (6.4)       | <b>3/8</b> (9.5)  | <b>7/8</b> (22) | <b>2</b> % (67)   | <b>3½</b> (89) | <b>1,840</b> (8.2)        | <b>460</b> (2.0)       | <b>485</b> (2.2)                      | <b>1,045</b> (4.6)    |  |  |
| HDIA31              | <b>5/16</b> (7.9)      | <b>5%</b> (15.9)  | <b>1½</b> (38)  | <b>4½</b> (114)   | <b>6</b> (152) | <b>2,660</b> (11.8)       | <b>665</b> (3.0)       | <b>755</b> (3.4)                      | <b>1,630</b> (7.3)    |  |  |
| HDIA37,<br>HDIA37SS | <b>3/8</b> (9.5)       | <b>5%</b> (15.9)  | <b>1½</b> (38)  | <b>4½</b> (114)   | <b>6</b> (152) | <b>3,580</b> (15.9)       | <b>895</b> (4.0)       | <b>1,085</b> (4.8)                    | <b>2,340</b> (10.4)   |  |  |
| HDIA50              | <b>½</b> (12.7)        | <b>3/4</b> (19.1) | <b>2</b> (51)   | <b>6</b> (152)    | <b>8</b> (203) | <b>8,220</b> (36.6)       | <b>2,055</b> (9.1)     | <b>1,930</b> (8.6)                    | <b>4,160</b> (18.5)   |  |  |
| HDIA62              | <b>5%</b><br>(15.9)    | <b>1</b> (25.4)   | <b>2½</b> (57)  | <b>6¾</b> (171)   | <b>9</b> (229) | <b>10,180</b> (45.3)      | <b>2,545</b> (11.3)    | <b>3,025</b> (13.5)                   | <b>6,520</b> (29.0)   |  |  |

- 1. The allowable loads listed are based on a safety factor of 4.0.
- 2. The minimum concrete thickness is 11/2 times the embedment depth.
- 3. Allowable load must be the lesser of the load based on anchor strength or steel strength.

# Hollow Drop-In Design Information — Concrete and Masonry




**Mechanical** Anchors

Allowable Tension and Shear Loads for Hollow Drop-In Anchor in 8" Lightweight, Medium-Weight and Normal-Weight Hollow CMU



| Model               | Size               | Drill Bit<br>Dia. | Embed<br>Depth⁴    | Minimum<br>Edge Dist. |                       |                | Tensio               | n Load                | Shear                | r Load                |
|---------------------|--------------------|-------------------|--------------------|-----------------------|-----------------------|----------------|----------------------|-----------------------|----------------------|-----------------------|
| No.                 | in.<br>(mm)        | in.<br>(mm)       | in.<br>(mm)        | in.<br>(mm)           | in.<br>(mm)           | in. in. (mm)   | Ultimate<br>lb. (kN) | Allowable<br>lb. (kN) | Ultimate<br>lb. (kN) | Allowable<br>lb. (kN) |
| HDIA25,<br>HDIA25SS | <b>1/4</b> (6.4)   | <b>3/8</b> (9.5)  | <b>3/4</b><br>(19) | <b>4</b> (102)        | <b>4</b> 5/8<br>(117) | <b>8</b> (203) | <b>500</b> (2.2)     | <b>100</b> (0.4)      | <b>975</b> (4.3)     | <b>195</b> (0.9)      |
| HDIA31              | <b>5/16</b> (7.9)  | <b>5%</b> (15.9)  | <b>11/4</b> (32)   | <b>4</b> (102)        | <b>4</b> 5⁄8<br>(117) | <b>8</b> (203) | <b>500</b> (2.2)     | <b>100</b> (0.4)      | <b>1,450</b> (6.4)   | <b>290</b> (1.3)      |
| HDIA37,<br>HDIA37SS | <b>3/8</b> (9.5)   | <b>5%</b> (15.9)  | <b>11/4</b> (32)   | <b>4</b> (102)        | <b>4</b> 5/8<br>(117) | <b>8</b> (203) | <b>500</b> (2.2)     | <b>100</b> (0.4)      | <b>1,450</b> (6.4)   | <b>290</b> (1.3)      |
| HDIA50              | <b>½</b><br>(12.7) | <b>3/4</b> (19.1) | <b>13/4</b> (44)   | <b>4</b> (102)        | <b>4</b> 5⁄8<br>(117) | <b>8</b> (203) | <b>1,525</b> (6.8)   | <b>305</b> (1.4)      | <b>2,300</b> (10.2)  | <b>460</b> (2.0)      |
| HDIA62              | <b>5/8</b> (15.9)  | <b>1</b> (25.4)   | <b>2</b> (51)      | <b>4</b> (102)        | <b>4</b> 5/8<br>(117) | <b>8</b> (203) | <b>1,525</b> (6.8)   | <b>305</b> (1.4)      | <b>2,325</b> (10.3)  | <b>465</b> (2.1)      |

- 1. The allowable loads listed are based on a safety factor of 5.0.
- 2. Values for 8-inch wide lightweight, medium-weight, and normal-weight CMU.
- 3. The minimum specified compressive strength of masonry,  $f'_m$ , at 28 days with a minimum face shell thickness of 11/4" is 1,500 psi.
- 4. The installed end of the anchor may extend into the CMU cavity depending upon face shell thickness.



# Tension and Shear Loads for Hollow Drop-In Anchor in Hollow-Core Concrete Panel



|          | Model Size Drill Bit Embed Dia. Depth4 in. in. in. in. |                                       | Critical Critica                   |            | Tensio       | Tension Load                                          |                       | Shear Load Based on<br>Anchor Strength    |                       | Shear Load Based on<br>Steel Strength of Threaded Rod |                       |
|----------|--------------------------------------------------------|---------------------------------------|------------------------------------|------------|--------------|-------------------------------------------------------|-----------------------|-------------------------------------------|-----------------------|-------------------------------------------------------|-----------------------|
|          |                                                        |                                       | Depth⁴<br>in.                      |            |              | spacing f' <sub>c</sub> ≥ 5,000 psi<br>in. (34.5 Mpa) |                       | f' <sub>c</sub> ≥ 5,000 psi<br>(34.5 MPa) |                       | F1554<br>Grade 36                                     | A193<br>Grade B7      |
|          |                                                        | (mm)                                  | (mm)                               | (mm)       | (mm)         | Ultimate<br>lb. (kN)                                  | Allowable<br>lb. (kN) | Ultimate<br>lb. (kN)                      | Allowable<br>lb. (kN) | Allowable<br>lb. (kN)                                 | Allowable<br>lb. (kN) |
| HDIA25,  | 1/ <sub>4</sub>                                        | 3/8                                   | <sup>3</sup> / <sub>4</sub>        | 3          | 4½           | 1,340                                                 | 335                   | 2,040                                     | 510                   | 485                                                   | 1,045                 |
| HDIA25SS | (6.4)                                                  | (9.5)                                 | (19)                               | (76)       | (114)        | (6.0)                                                 | (1.5)                 | (9.1)                                     | (2.3)                 | (2.2)                                                 | (4.6)                 |
| HDIA31   | 5/16                                                   | 5/8                                   | 1 1/4                              | 5          | 7½           | 1,820                                                 | 455                   | 3,240                                     | 810                   | 755                                                   | 1,630                 |
|          | (7.9)                                                  | (15.9)                                | (32)                               | (127)      | (191)        | (8.1)                                                 | (2.0)                 | (14.4)                                    | (3.6)                 | (3.4)                                                 | (7.3)                 |
| HDIA37,  | 3/8                                                    | 5/8                                   | 1 1/4                              | 5          | 7½           | 1,820                                                 | 455                   | 4,560                                     | 1,140                 | 1,085                                                 | 2,340                 |
| HDIA37SS | (9.5)                                                  | (15.9)                                | (32)                               | (127)      | (191)        | (8.1)                                                 | (2.0)                 | (20.3)                                    | (5.1)                 | (4.8)                                                 | (10.4)                |
| HDIA50   | ½<br>(12.7)                                            | <sup>3</sup> / <sub>4</sub><br>(19.1) | 1 <sup>3</sup> ⁄ <sub>4</sub> (44) | 7<br>(178) | 10½<br>(267) | 2,840<br>(12.6)                                       | 710<br>(3.2)          | 5,820<br>(25.9)                           | 1,455<br>(6.5)        | 1,930<br>(8.6)                                        | 4,160<br>(18.5)       |
| HDIA62   | 5/8                                                    | 1                                     | 2                                  | 8          | 12           | 2,980                                                 | 745                   | 8,700                                     | 2,175                 | 3,025                                                 | 6,520                 |
|          | (15.9)                                                 | (25.4)                                | (51)                               | (203)      | (305)        | (13.3)                                                | (3.3)                 | (38.7)                                    | (9.7)                 | (13.5)                                                | (29.0)                |

- 1. The allowable loads listed are based on a safety factor of 4.0.
- 2. The minimum concrete cover over the open cores is 11/4".
- 3. The minimum specified compressive strength of the concrete used in the hollow-core panel, f'<sub>C</sub>, is 5,000 psi (34.5 MPa).
- 4. The installed end of the anchor may extend into the panel cavity depending upon face shell thickness.

<sup>\*</sup> See p. 13 for an explanation of the load table icons.

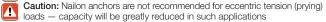
# C-A-2018 @ 2018 SIMPSON STRONG-TIE COMPANY INC.

### Zinc Nailon™ Pin Drive Anchors

Zinc Nailon anchors are low-cost, easy-to-install anchors for applications under static loads.

#### **Features**

- Available with carbon and stainless-steel pins
- Pin and head configuration designed to make anchor tamper-resistant


#### Materials

- Body Die-cast Zamac 3 alloy
- Pin Carbon steel; Type 304 stainless steel

Code: Meets Federal Specification A-A-1925A, Type 1

#### Installation

Caution: Not for use in overhead applications.



- 1. Drill a hole in base material using a carbide drill bit the same diameter as the nominal diameter of the anchor to be installed. Drill the hole to specified embedment depth, plus 1/4" for pin extension, and blow hole clean using compressed air. Alternatively, drill the hole deep enough to accommodate embedment depth and dust from drilling.
- 2. Position fixture and insert Nailon anchor.
- 3. Tap with hammer until flush with fixture, then drive pin until flush with top of head.

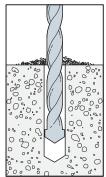


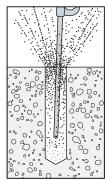
**Zinc Nailon Anchor** (Mushroom)

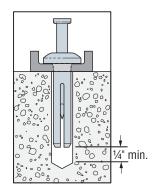
#### Zinc Nailon Product Data

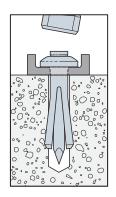
| Size        | Carbon<br>Steel Pin | Stainless<br>Steel Pin | Quantity |        |       |  |  |
|-------------|---------------------|------------------------|----------|--------|-------|--|--|
| (in.)       | Model No.           | Model No.              | Box      | Carton | Bulk  |  |  |
| 3/16 X 7/8  | ZN18078             | _                      | 100      | 1,600  | 3,000 |  |  |
| 1/4 X 3/4   | ZN25034             | ZN25034SS              | 100      | 500    | 2,000 |  |  |
| 1/4 x 1     | ZN25100             | ZN25100SS              | 100      | 500    | 1,500 |  |  |
| 1/4 x 1 1/4 | ZN25114             | ZN25114SS              | 100      | 500    | 1,500 |  |  |
| 1/4 X 1 1/2 | ZN25112             | ZN25112SS              | 100      | 500    | 1,000 |  |  |
| 1/4 x 2     | ZN25200             | ZN25200SS              | 100      | 400    | 1,000 |  |  |
| 1/4 x 21/2  | ZN25212             | ZN25212SS              | 100      | 400    | 1,000 |  |  |
| 1/4 x 3     | ZN25300             | ZN25300SS              | 100      | 400    | 1,000 |  |  |

Allowable Tension and Shear Loads for Zinc Nailon in Normal-Weight Concrete


| IBC  |       | <b>→</b> |                   |  |
|------|-------|----------|-------------------|--|
| Allo | wable | Loads (  | lb.) <sup>1</sup> |  |


Strong-T


|               | Drill Bit | Embed. | Ultimate I       | _oads (lb.) | Allowable Loads (lb.)1  |       |  |
|---------------|-----------|--------|------------------|-------------|-------------------------|-------|--|
| Size<br>(in.) | Size Dia. | Depth  | f' <i>c</i> ≥ 3, | 000 psi     | f' <i>c</i> ≥ 3,000 psi |       |  |
|               | (in.)     | (in.)  | Tension          | Shear       | Tension                 | Shear |  |
| 3/16          | 3/16      | 5/8    | 460              | 465         | 115                     | 115   |  |
|               |           | 5/8    | 590              | 635         | 150                     | 160   |  |
| 1/4           | 1/4       | 3/4    | 780              | 765         | 195                     | 190   |  |
|               |           | 1 ½    | 1,050            | 1,050       | 265                     | 265   |  |


<sup>1.</sup> The allowable loads are based on a safety factor of 4.0.

#### Installation Sequence









<sup>\*</sup> See p. 13 for an explanation of the load table icons

# Crimp Drive® Anchor



The crimp anchor is an easy-to-install expansion anchor for use in concrete and grout-filled block. The pre-formed curvature along the shaft creates an expansion mechanism that secures the anchor in place and eliminates the need for a secondary tightening procedure. This speeds up anchor installation and reduces the overall cost.

Five crimp anchor head styles are available to handle different applications that include fastening wood or light-gauge steel, attaching concrete formwork, hanging overhead support for sprinkler pipes or suspended ceiling panels.

Material: Carbon steel, stainless steel

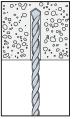
Coating: Zinc plated and mechanically galvanized

Codes: Factory Mutual 3031136 for the %" Rod Coupler.

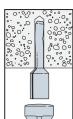
Head Styles: Mushroom, rod coupler, countersunk, tie-wire and duplex

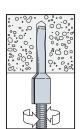
#### Installation



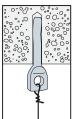

Warning: Industry studies show that hardened fasteners can experience performance problems in wet or corrosive environments. Accordingly, with the exception of the duplex anchor, use these products in dry, interior and non-corrosive environments only.

- 1. Drill a hole using the specified diameter carbide bit into the base material to a depth of at least 1/2" deeper than the required embedment.
- 2. Blow the hole clean of dust and debris using compressed air. Overhead application need not be blown clean. Where a fixture is used, drive the anchor through the fixture into the hole until the head sits flush against the fixture.
- 3. Be sure the anchor is driven to the required embedment depth. The rod coupler and tie-wire models should be driven in until the head is seated against the surface of the base material.


# Mushroom Rod Coupler Head


### Installation Sequence

#### Rod Coupler




C-A-2018 @2018 SIMPSON STRONG-TIE COMPANY INC.



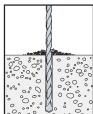


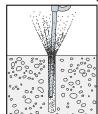
Tie-Wire

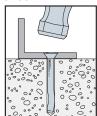


#### **Duplex**







Duplex-head anchor may be removed with a claw hammer


# Countersunk Tie-Wire **Duplex**

Head

#### Countersunk Head Installation Sequence







# C-A-2018 @2018 SIMPSON STRONG-TIE COMPANY INC.

# Crimp Drive® Anchor

Crimp Drive Anchor Product Data

| Size             | Model No.  | Head Style/                                | Drill Bit Dia. | Min. Fixture | Min. Embed. | Qua       | intity      |
|------------------|------------|--------------------------------------------|----------------|--------------|-------------|-----------|-------------|
| (in.)            | Middel No. | Finish                                     | (in.)          | Hole Size    | (in.)       | Pkg. Qty. | Carton Qty. |
| 3/16 X 1 1/4     | CD18114M   |                                            |                |              | 7/8         | 100       | 1,600       |
| 3∕16 X 2         | CD18200M   |                                            |                |              | 11/4        | 100       | 500         |
| 3/16 X 21/2      | CD18212M   |                                            | 2/             | 1/           | 11/4        | 100       | 500         |
| 3∕16 X 3         | CD18300M   |                                            | 3/16           | 1/4          | 11/4        | 100       | 500         |
| 3/16 X 31/2      | CD18312M   |                                            |                |              | 11⁄4        | 100       | 500         |
| 3/16 X 4         | CD18400M   |                                            |                |              | 11/4        | 100       | 500         |
| 1⁄4 x 1          | CD25100M   |                                            |                |              | 7/8         | 100       | 1,600       |
| 1/4 x 1 1/4      | CD25114M   | Mushroom Head /                            |                |              | 7/8         | 100       | 1,600       |
| 1/4 x 1 1/2      | CD25112M   | Zinc Plated                                |                |              | 11/4        | 100       | 1,600       |
| 1/4 x 2          | CD25200M   |                                            | 1/             | E/           | 11/4        | 100       | 500         |
| 1/4 x 21/2       | CD25212M   |                                            | 1/4            | 5/16         | 11/4        | 100       | 500         |
| 1⁄4 x 3          | CD25300M   |                                            |                |              | 11/4        | 100       | 500         |
| 1/4 x 31/2       | CD25312M   |                                            |                |              | 11/4        | 100       | 500         |
| 1/4 x 4          | CD25400M   |                                            |                |              | 11/4        | 100       | 500         |
| 3⁄8 x 2          | CD37200M   |                                            | 3/8            | 7/           | 13/4        | 25        | 125         |
| 3% x 3           | CD37300M   |                                            |                | 7/16         | 13/4        | 25        | 125         |
| 1⁄4 x 3          | CD25300MG  | Mushroom Head /<br>Mechanically Galvanized | 1/4            | 5/16         | 11⁄4        | 100       | 500         |
| 1/4" rod coupler | CD25114RC  | Rod Coupler /                              | 3/16           | N/A          | 11⁄4        | 100       | 500         |
| 3/8" rod coupler | CD37112RC  | Zinc Plated                                | 1/4            | N/A          | 1½          | 50        | 250         |
| 3∕16 X 21⁄2      | CD18212C   |                                            |                |              | 11⁄4        | 100       | 500         |
| 3∕16 X 3         | CD18300C   |                                            | 3/16           | 1/4          | 11⁄4        | 100       | 500         |
| 3/16 X 4         | CD18400C   |                                            |                |              | 11/4        | 100       | 500         |
| 1/4 X 1 1/2      | CD25112C   | Countersunk                                |                |              | 11/4        | 100       | 500         |
| 1/4 x 2          | CD25200C   | Head /                                     |                |              | 11⁄4        | 100       | 500         |
| 1/4 X 21/2       | CD25212C   | Zinc Plated                                | 1/4            | 5/16         | 11/4        | 100       | 500         |
| 1⁄4 x 3          | CD25300C   |                                            | 74             | 916          | 11/4        | 100       | 500         |
| 1/4 x 3 1/2      | CD25312C   |                                            |                |              | 11/4        | 100       | 400         |
| 1⁄4 x 4          | CD25400C   |                                            |                |              | 11/4        | 100       | 400         |
| 1⁄4 x 3          | CD25300CMG | Countersunk Head /                         | 1/             | 5/           | 11⁄4        | 100       | 500         |
| 1/4 x 4          | CD25400CMG | Mechanically Galvanized <sup>1</sup>       | 1/4            | 5/16         | 11/4        | 100       | 400         |
| 1/4" Tie Wire    | CD25118T   | Tie Wire/Zinc Plated                       | 1/4            | N/A          | 11/8        | 100       | 500         |
| 1/4" duplex      | CD25234D   | Duplex Head/Zinc Plated                    | 1/4            | 5/16         | 11/4        | 100       | 500         |

<sup>1.</sup> Mechanical galvanizing meets ASTM B695, Class 55, Type 1. Intended for some pressure-treated wood sill plate applications. Not for use in other corrosive or outdoor environments. See p. 248 for details.

Length Identification Head Marks on Mushroom, Countersunk and Duplex-Head Crimp Drive Anchors (corresponds to length of anchor — inches)

| · ·                     |    | ` . |      |      |      | ,    |      |
|-------------------------|----|-----|------|------|------|------|------|
| Mark                    |    | A   | В    | С    | D    | Е    | F    |
| From                    | 1  | 1½  | 2    | 21/2 | 3    | 31/2 | 4    |
| Up To But Not Including | 1½ | 2   | 21/2 | 3    | 31/2 | 4    | 41/2 |

# **Crimp Drive**® Design Information — Concrete



Carbon-Steel Crimp Drive Allowable Tension and Shear Loads in Normal-Weight Concrete

|    |   | _ |  |
|----|---|---|--|
| 1. | _ | Z |  |
| ш  | R | r |  |
| ш  | ø | v |  |





|               |                                |                          |                             |                             | Tensio                                  | on Load                                 | Shear                                   | <sup>r</sup> Load                       |
|---------------|--------------------------------|--------------------------|-----------------------------|-----------------------------|-----------------------------------------|-----------------------------------------|-----------------------------------------|-----------------------------------------|
| Size<br>(in.) | Drill Bit<br>Diameter<br>(in.) | Embed.<br>Depth<br>(in.) | Minimum<br>Spacing<br>(in.) | Minimum<br>Edge<br>Distance | f' <sub>c</sub> ≥ 2,000 psi<br>Concrete | f' <sub>c</sub> ≥ 4,000 psi<br>Concrete | f' <sub>c</sub> ≥ 2,000 psi<br>Concrete | f' <sub>c</sub> ≥ 4,000 psi<br>Concrete |
|               | ()                             | (***.)                   | (in.)                       | Allowable<br>Load (lb.)     | Allowable<br>Load (lb.)                 | Allowable<br>Load (lb.)                 | Allowable<br>Load (lb.)                 |                                         |
|               |                                |                          | N                           | /lushroom/Count             | ersunk Head                             |                                         |                                         |                                         |
| 3/16          | 3/16                           | 11⁄4                     | 3                           | 3                           | 145                                     | 250                                     | 340                                     | 450                                     |
| 1/4           | 1/4                            | 11⁄4                     | 3                           | 3                           | 175                                     | 275                                     | 395                                     | 610                                     |
| 3/8           | 3/8                            | 1¾                       | 4                           | 4                           | 365                                     | 780                                     | 755                                     | 1,305                                   |
|               |                                |                          |                             | Duplex H                    | lead                                    |                                         |                                         |                                         |
| 1/4           | 1/4                            | 11⁄4                     | 3                           | 3                           | 175                                     | 275                                     | 395                                     | 610                                     |
|               |                                |                          |                             | Tie Wi                      | re                                      |                                         |                                         |                                         |
| 1/4           | 1/4                            | 11/8                     | 3                           | 3                           | 155                                     | 215                                     | 265                                     | 325                                     |
|               |                                |                          |                             | Rod Cou                     | pler <sup>4</sup>                       |                                         |                                         |                                         |
| 1/4           | 3/16                           | 1 1/4                    | 3                           | 3                           | 145                                     | 250                                     | _                                       | _                                       |
| 3/8           | 1/4                            | 1½                       | 4                           | 4                           | 265                                     | 600                                     | _                                       | _                                       |

<sup>1.</sup> The allowable loads listed are based on a safety factor of 4.0.

C-A-2018 @ 2018 SIMPSON STRONG-TIE COMPANY INC.

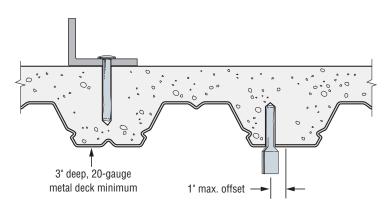
<sup>3.</sup> Allowable loads may be linearly interpolated between concrete strengths listed.

<sup>4.</sup> For rod coupler, mechanical and plumbing design codes may prescribe lower allowable loads; verify with local codes.








#### Carbon-Steel Crimp Drive Allowable Tension and Shear Loads in Sand-Lightweight Concrete over Metal Deck

**Crimp Drive**Design Information

| Size<br>(in.) | Drill Bit<br>Diameter<br>(in.) | Embed.<br>Depth<br>(in.) | Minimum<br>Spacing<br>(in.) | Minimum<br>Edge<br>Distance<br>(in.) | Tension Load<br>(Install in<br>Concrete)<br>f' <sub>c</sub> ≥ 3,000 psi<br>Concrete<br>Allowable<br>Load (lb.) | Tension Load<br>(Install through<br>Metal Deck)  f' <sub>c</sub> ≥ 3,000 psi<br>Concrete  Allowable<br>Load (lb.) | Shear Load<br>(Install in<br>Concrete)<br>f' <sub>c</sub> ≥ 3,000 psi<br>Concrete<br>Allowable<br>Load (lb.) | Shear Load<br>(Install through<br>Metal Deck)<br>f' <sub>c</sub> ≥ 3,000 psi<br>Concrete<br>Allowable<br>Load (lb.) |
|---------------|--------------------------------|--------------------------|-----------------------------|--------------------------------------|----------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|
|               |                                |                          | N                           | /lushroom/Count                      | tersunk Head                                                                                                   |                                                                                                                   |                                                                                                              |                                                                                                                     |
| 3/16          | 3/16                           | 11/4                     | 4                           | 4                                    | 115                                                                                                            | 85                                                                                                                | 345                                                                                                          | 600                                                                                                                 |
| 1/4           | 1/4                            | 11/4                     | 4                           | 4                                    | 145                                                                                                            | 130                                                                                                               | 375                                                                                                          | 890                                                                                                                 |
| 3/8           | 3/8                            | 13/4                     | 5½                          | 5½                                   | 315                                                                                                            | 330                                                                                                               | 1,030                                                                                                        | 1,085                                                                                                               |
|               |                                |                          |                             | Duplex H                             | lead                                                                                                           |                                                                                                                   |                                                                                                              |                                                                                                                     |
| 1/4           | 1/4                            | 11/4                     | 4                           | 4                                    | 145                                                                                                            | 130                                                                                                               | 375                                                                                                          | 890                                                                                                                 |
|               |                                |                          |                             | Tie Wi                               | re                                                                                                             |                                                                                                                   |                                                                                                              |                                                                                                                     |
| 1/4           | 1/4                            | 11/8                     | 3                           | 3                                    | 130                                                                                                            | 90                                                                                                                | 275                                                                                                          | 210                                                                                                                 |
|               |                                |                          |                             | Rod Cou                              | pler <sup>4</sup>                                                                                              |                                                                                                                   |                                                                                                              |                                                                                                                     |
| 1/4           | 3/16                           | 11/4                     | 4                           | 4                                    | 115                                                                                                            | 85                                                                                                                | -                                                                                                            | _                                                                                                                   |
| 3/8           | 1/4                            | 1½                       | 5                           | 5                                    | 300                                                                                                            | 280                                                                                                               | _                                                                                                            | _                                                                                                                   |

Concrete

- 1. The allowable loads listed are based on a safety factor of 4.0.
- 2. The minimum concrete thickness is 11/2 times the embedment depth.
- 3. Anchors may be installed off-center in the flute, up to 1" from the center of flute.
- 4. Anchor may be installed in either upper or lower flute.
- 5. Deck profile shall be 3" deep, 20-gauge minimum.
- 6. For rod coupler, mechanical and plumbing design codes may prescribe lower allowable loads; verify with local codes.



Sand-Lightweight Concrete on Metal Deck

Strong-T

The Split-Drive anchor is a one-piece expansion anchor that can be installed in concrete, grout-filled block and stone. As the anchor is driven in, the split-type expansion mechanism on the working end compresses and exerts force against the walls of the hole.

#### **Features**

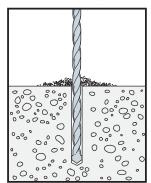
- Available in countersunk (CSD) and duplex-head (DSD) styles
- · DSD anchor can be removed with a claw hammer for temporary applications

Material: Carbon steel

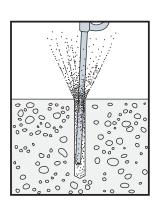
Coating: Zinc plated; mechanically galvanized

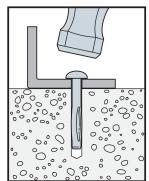
#### Installation

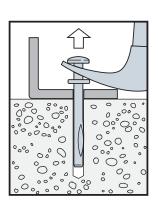
Warning (CSD only): Industry studies show that hardened fasteners can experience performance problems in wet or corrosive environments. Accordingly, use these products in dry, interior and non-corrosive environments only.




Caution: Oversized holes in the base material will greatly reduce the anchor's load capacity. For CSD, embedment depths greater than 11/2" may cause bending during installation.


- 1. Drill a hole in base material using a 1/4"-diameter carbide-tipped drill. Drill hole to specified embedment depth and blow clean using compressed air. (Overhead installation need not be blown clean.) Alternatively, drill hole deep enough to accommodate embedment depth and dust from drilling. Position fixture and insert split-drive anchor through fixture hole.
- 2. For CSD, %"-diameter fixture hole is recommended for hard fixtures such as steel. For DSD, 5/16"-diameter fixture hole is recommended.
- 3. Drive anchor until head is flush against fixture.





#### Installation Sequence



C-A-2018 @2018 SIMPSON STRONG-TIE COMPANY INC.







DSD anchor may be removed with a claw hammer

# **CSD/DSD** Split-Drive Anchors



#### CSD/DSD Product Data

| Size        | Model No.  | Head Style/Finish                                       | Drill Bit Diameter | Qua | ntity  |
|-------------|------------|---------------------------------------------------------|--------------------|-----|--------|
| (in.)       | Model No.  | neau Style/Fillisii                                     | (in.)              | Box | Carton |
| 1/4 X 1 1/2 | CSD25112   |                                                         |                    | 100 | 500    |
| 1/4 x 2     | CSD25200   |                                                         |                    | 100 | 500    |
| 1/4 x 21/2  | CSD25212   | Countersunk Head – Zinc Plated                          | 1/4                | 100 | 500    |
| 1⁄4 x 3     | CSD25300   | Countersunk neau – Zinc Flateu                          | 74                 | 100 | 400    |
| 1/4 x 31/2  | CSD25312   |                                                         |                    | 100 | 400    |
| 1/4 x 4     | CSD25400   |                                                         |                    | 100 | 400    |
| 1/4 x 3     | CSD25300MG | Countersunk Head Machanically Colympized                | 1/                 | 100 | 400    |
| 1/4 X 4     | CSD25400MG | Countersunk Head – Mechanically Galvanized <sup>1</sup> | 1/4                | 100 | 400    |
| 1⁄4 x 3     | DSD25300   | Duplex Head – Zinc Plated                               | 1/4                | 100 | 400    |

<sup>1.</sup> Mechanical galvanizing meets ASTM B695, Class 55, Type 1. Intended for some preservative-treated wood sill plate applications. Not for use in other corrosive or outdoor environments. See p. 248 for details.

# CSD Allowable Tension and Shear Loads in Normal-Weight Concrete

| Z   | •     |    | <b>*</b> |
|-----|-------|----|----------|
| IBC | 30 59 | 87 | 375      |

|               | D.:II Dia                      | Fushad                   | Minimum Minimu   |                           |                             | n Load<br>b.)  | Shear<br>(II                |                |
|---------------|--------------------------------|--------------------------|------------------|---------------------------|-----------------------------|----------------|-----------------------------|----------------|
| Size<br>(in.) | Drill Bit<br>Diameter<br>(in.) | Embed.<br>Depth<br>(in.) | Spacing<br>(in.) | Edge<br>Distance<br>(in.) | f' <sub>c</sub> ≥ 2,000 psi |                | f¹ <sub>c</sub> ≥ 2,000 psi |                |
|               |                                |                          |                  | (,                        | Ultimate Load               | Allowable Load | Ultimate Load               | Allowable Load |
| 1/4           | 1/4                            | 11/4                     | 2½               | 3                         | 655                         | 165            | 970                         | 240            |

# DSD Allowable Tension and Shear Loads in Normal-Weight Concrete



| Size  | Drill Bit<br>Diameter | Embed. | Nenth Spacing Edge Compressive |                               |                  |                   | Shear Load<br>(lb.) |                   |     |
|-------|-----------------------|--------|--------------------------------|-------------------------------|------------------|-------------------|---------------------|-------------------|-----|
| (in.) | (in.)                 | (in.)  | (in.)                          | Distance Strength (in.) (psi) | Ultimate<br>Load | Allowable<br>Load | Ultimate<br>Load    | Allowable<br>Load |     |
| 1/4   | 1/4                   | 11/4   | 2½                             | 3                             | 2,500            | 800               | 200                 | 2,480             | 620 |
| 1/4   | 1/4                   | 11/4   | 21/2                           | 3                             | 4,000            | 1,060             | 265                 | 2,740             | 685 |

<sup>\*</sup> See p. 13 for an explanation of the load table icons.

# FlipToggle® Anchor



The FlipToggle is a single-strap hollow-wall anchor. Its unique design securely holds the toggle for easy insertion into the predrilled hole. Once inserted, the spring tab flips the toggle into the right position so that when the collar is tightened the anchor is ready for the bolt. No jammed toggles, broken straps or misaligned bolts.

#### **Features**

- Installs into drywall and hollow CMU up to 21/8" thick with a 21/2" bolt
- Bolt sizes: 3/16"-24 thread and 1/4"-20 thread
- Simple one-strap design holds toggle perfectly aligned for easy bolt insertion
- This collar ensures centered bolt placement in the hole and does not embed the bolt into the drywall, eliminating the potential for sagging fixtures

#### FlipToggle Product Data with Bolts

| Bolt Thread | Bolt Length<br>(in.) | Model No.   | Parts Per<br>Each/Unit | Pack*        | Carton                   |  |  |  |
|-------------|----------------------|-------------|------------------------|--------------|--------------------------|--|--|--|
|             | Clamshell            |             |                        |              |                          |  |  |  |
| 3/16"-24    | 21/2                 | FT18250C2   | 2                      | 5 clamshells | 10 packs / 50 clamshells |  |  |  |
| 1/4"-20     | 21/2                 | FT25250C2   | 2                      | 5 clamshells | 10 packs / 50 clamshells |  |  |  |
| 3/16"-24    | 21/2                 | FT18250C10  | 10                     | 5 clamshells | 10 packs / 50 clamshells |  |  |  |
| 1/4"-20     | 21/2                 | FT25250C10  | 10                     | 5 clamshells | 10 packs / 50 clamshells |  |  |  |
| 3/16"-24    | 21/2                 | FT18250C25  | 25                     | _            | 5 clamshells             |  |  |  |
| 1/4"-20     | 21/2                 | FT25250C25  | 25                     | _            | 5 clamshells             |  |  |  |
|             |                      |             | Retail Box             |              |                          |  |  |  |
| 3/16"-24    | 21/2                 | FT18250R100 | 100                    | _            | 5 retail boxes           |  |  |  |
| 1/4"-20     | 21/2                 | FT25250R100 | 100                    | _            | 5 retail boxes           |  |  |  |

<sup>\*</sup> Distributer to order in full pack quanitities

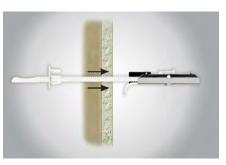
#### FlipToggle Product Data — No Bolts

| Size     | Model No.  | Parts Per<br>Each/Unit | Carton          |
|----------|------------|------------------------|-----------------|
|          | R          | etail Box              |                 |
| 3/16"-24 | FT18NBR50  | 50                     | 10 retail boxes |
| 1/4"-20  | FT25NBR50  | 50                     | 10 retail boxes |
| 3/16"-24 | FT18NBR100 | 100                    | 5 retail boxes  |
| 1/4"-20  | FT25NBR100 | 100                    | 5 retail boxes  |

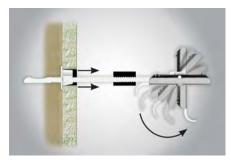




# C-A-2018 @ 2018 SIMPSON STRONG-TIE COMPANY INC.


# FlipToggle® Anchor

# SIMPSON Strong-Tie

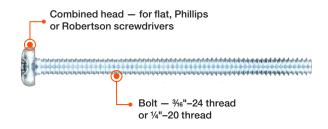

#### FlipToggle installs in four easy steps: fold, insert, flip and tighten — it's that quick!

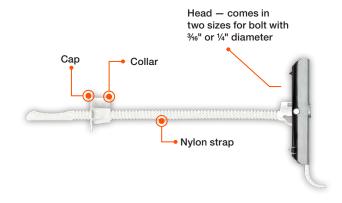


1.Drill a ½" hole. Flip the head of the FlipToggle to align with strap.



 Insert the FlipToggle into the drilled hole. When the head is fully inserted, pull the strap to flip the toggle flat against the back of the wall.





3.Push the collar into the drilled hole until the cap is flush with the wall. Hold the cap against the wall while pulling the strap toward you until it feels reasonably tight.



 Snap off strap flush with collar. Insert the bolt through the fixture into the anchor and tighten securely.

\* See p. 13 for an explanation of the load table icons.





#### FlipToggle Loads



| Material | Size     | Drill Size | Tension L | oads (lb.) |
|----------|----------|------------|-----------|------------|
| Material | 3126     | Dilli Size | Ultimate  | Safe       |
| Drywall  | 3/16"-24 | 1/2"       | 178       | 89         |
| 1/2"     | 1/4"-20  | 1/2"       | 181       | 90         |
| Drywall  | 3/16"-24 | 1/2"       | 294       | 147        |
| 5/8"     | 1/4"-20  | 1/2"       | 299       | 149        |
| Hollow   | 3/16"-24 | 1/2"       | 807       | 403        |
| Block    | 1/4"-20  | 1/2"       | 1,030     | 515        |

Safe tension loads listed are based on a safety factor of 2.0. Due to variation in base material, a higher safety factor may be applied.


SIMPSON
Strong-Tie

Sure Wall anchors are self-drilling drywall anchors and provide excellent holding value and greater capacity than screws alone. This anchor cuts threads into drywall, greatly increasing the bearing surface and strength of the fastening.

#### **Features**

- Self-drilling may be installed in gypsum board drywall with only a screwdriver
- Easy to remove and reinstall

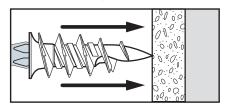
Material: Die-cast zinc or reinforced nylon

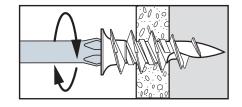


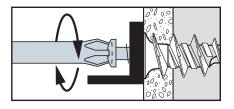
#### Sure Wall Product Data

| Screw     | Mode                    | el No.                     | Chulo | Qua | ntity  | Ameliandiana                                    |
|-----------|-------------------------|----------------------------|-------|-----|--------|-------------------------------------------------|
| Size      | Packaged<br>with Screws | Packaged<br>without Screws | Style | Box | Carton | Applications                                    |
| #6 x 7/8  | SWN06S-R100             | SWN06-R100                 | Nylon | 100 | 500    | %", ½" drywall, ceiling tile                    |
| #8 x 11⁄4 | SWN08LS-R100            | SWN08L-R100                | Nylon | 100 | 500    | %", ½" drywall, ceiling tile                    |
| #6 x 1/8  | SWZ06S-R100             | SWZ06-R100                 | Zinc  | 100 | 500    | %", ½" drywall, ceiling tile, plaster, pegboard |
| #8 x 11⁄4 | SWZ08LS-R100            | SWZ08L-R100                | Zinc  | 100 | 500    | %", ½", %" drywall, plaster                     |

#### Sure Wall Tension and Shear Loads in ½" Drywall


C-A-2018 @2018 SIMPSON STRONG-TIE COMPANY INC.





|           | Screw | Allowab          | le Loads       |  |
|-----------|-------|------------------|----------------|--|
| Model No. | Size  | Tension<br>(lb.) | Shear<br>(lb.) |  |
| SWN06S    | #6    | 10               | 30             |  |
| SWN08LS   | #8    | 10               | 50             |  |
| SWZ06S    | #6    | 10               | 30             |  |
| SWZ08LS   | #8    | 10               | 50             |  |

- 1. The allowable loads are baswed on a safety factor of 4.0.
- 2. The allowable loads listed are based on single anchor tests.
- 3. The performance of multiple anchors spaced closely together has not been investigated.

#### Installation Sequence







<sup>\*</sup> See p. 13 for an explanation of the load table icons.



# **Powder-Actuated Tool / Fastener Suitability**



This matrix matches Simpson Strong-Tie powder-actuated tools with the fasteners typically used with each tool.

|             | 1,11,11,11 |                                  | General-Purpose Tools |            |
|-------------|------------|----------------------------------|-----------------------|------------|
|             |            | PT-27                            | PT-22A-RB             | PT-22HA-RB |
| Fast        | teners     |                                  |                       |            |
|             | 0.3        | 00"-Headed Fasteners with 0.157" | Shank Diameter        |            |
| PDPA-XXX    |            | Max. 2½"                         | Max. 2½"              | Max. 21⁄2" |
| PDPAWL-XXX  |            | ✓                                | Max. 2½"              | Max. 21⁄2" |
| PDPWL-XXXSS |            | ✓                                | Max. 2½"              | Max. 21⁄2" |
| PDPAS-XXX   |            |                                  |                       |            |
| PDPAT-XXX   |            | ✓                                | ✓                     | ✓          |
| PCLDPA-XXX  |            | ✓                                | ✓                     | ✓          |
| PECLDPA-XXX |            | ✓                                | ✓                     | ✓          |
| PTRHA3-XXX  | 21         | ✓                                | ✓                     | ✓          |
|             | 0.3        | 00"-Headed Fasteners with 0.145" | Shank Diameter        |            |
| PINW-XXX    | -          | ✓                                | ✓                     | <b>✓</b>   |
| PINWP-XXX   | -          | Max. 2½"                         | Max. 2½"              | Max. 21/2" |
| PHBC-XXX    | VĪ.        | ✓                                | ✓                     | <b>√</b>   |
| PCC-XXX     | <b>□</b>   | ✓                                | ✓                     | ✓          |
| PBXDP-100   |            | ✓                                | ✓                     | ✓          |
|             | 5 700      | 8 mm-Headed Fastene              | rs                    |            |
| PKP-250     |            | ✓                                | ✓                     | <b>√</b>   |
|             |            | %"-Headed Fasteners / Thread     | led Studs             |            |
| PSLV3-XXX   |            |                                  |                       |            |

C-A-2018 @ 2018 SIMPSON STRONG-TIE COMPANY INC.

# C-A-2018 @2018 SIMPSON STRONG-TIE COMPANY INC.

# **Gas Tool / Fastener Suitability**





# Gas- and Powder-Actuated Fasteners Design Information - Concrete



Powder-Actuated and Gas-Actuated Fasteners — Allowable Tension Loads in Normal-Weight Concrete





| Direct            |               | Shank                | Minimum                 | Minimum                      | Minimum          |                                                       | Al                                                    | llowable Tension                                      | n Load — Ib. (kl                                      | N)                                                    |                                                                                      |
|-------------------|---------------|----------------------|-------------------------|------------------------------|------------------|-------------------------------------------------------|-------------------------------------------------------|-------------------------------------------------------|-------------------------------------------------------|-------------------------------------------------------|--------------------------------------------------------------------------------------|
| Fastening<br>Type | Model<br>No.  | Diameter<br>in. (mm) | Penetration<br>in. (mm) | Edge<br>Distance<br>in. (mm) | Spacing in. (mm) | f' <sub>c</sub> ≥ 2,000 psi<br>(13.8 MPa)<br>Concrete | f' <sub>c</sub> ≥ 2,500 psi<br>(17.2 MPa)<br>Concrete | f' <sub>c</sub> ≥ 3,000 psi<br>(20.7 MPa)<br>Concrete | f' <sub>c</sub> ≥ 4,000 psi<br>(27.6 MPa)<br>Concrete | f' <sub>c</sub> ≥ 5,000 psi<br>(34.5 MPa)<br>Concrete | $\begin{array}{c} f'_c \geq 6,\!000 \; psi \\ (41.3 \; MPa) \\ Concrete \end{array}$ |
|                   |               |                      | <b>3/4</b> (19)         | <b>3.5</b> (89)              | <b>5</b> (127)   | _                                                     | <b>110</b> (0.49)                                     | <b>110</b> (0.49)                                     | <b>110</b> (0.49)                                     | _                                                     | <b>110</b> (0.49)                                                                    |
|                   | PDPA<br>PDPAT | 0.157                | <b>1</b> (25)           | <b>3.5</b> (89)              | <b>5</b> (127)   | _                                                     | <b>210</b> (0.93)                                     | <b>240</b> (1.07)                                     | <b>310</b> (1.38)                                     | _                                                     | <b>160</b> (0.71)                                                                    |
|                   | PDPAWL        | (4.0)                | <b>11/4</b> (32)        | <b>3.5</b> (89)              | <b>5</b> (127)   | _                                                     | <b>320</b> (1.42)                                     | <b>340</b> (1.51)                                     | <b>380</b> (1.69)                                     | _                                                     | <b>365</b> (1.62)                                                                    |
| Powder            |               |                      | 1 ½<br>(38)             | <b>3.5</b> (89)              | <b>5</b> (127)   | _                                                     | <b>375</b> (1.67)                                     | <b>400</b> (1.78)                                     | <b>450</b> (2.00)                                     | _                                                     | <b>465</b> (2.07)                                                                    |
| Actuated          | PINW<br>PINWP |                      | <b>1</b> (25)           | <b>3</b> (76)                | <b>4</b> (102)   | <b>45</b> (0.20)                                      | <b>70</b> (0.31)                                      | <b>100</b> (0.44)                                     | <b>150</b> (0.67)                                     | _                                                     | <b>150</b> (0.67)                                                                    |
|                   |               |                      | <b>1 1/4</b> (32)       | <b>3</b> (76)                | <b>4</b> (102)   | <b>140</b> (0.62)                                     | <b>195</b> (0.87)                                     | <b>255</b> (1.13)                                     | <b>370</b> (1.65)                                     | _                                                     | <b>370</b> (1.65)                                                                    |
|                   | PDPWL-SS      |                      | <b>1</b> (25)           | <b>3</b> (76)                | <b>4</b> (102)   | <b>60</b> (0.27)                                      | _                                                     | _                                                     | _                                                     | _                                                     | _                                                                                    |
|                   | PSLV3         | <b>0.205</b> (5.2)   | <b>11/4</b> (32)        | <b>4</b> (102)               | <b>6</b> (152)   | _                                                     | <b>260</b> (1.16)                                     | _                                                     | _                                                     | _                                                     | _                                                                                    |
|                   | GDP           | 0.106                | <b>5%</b> (16)          | <b>3</b> (76)                | <b>4</b> (102)   | <b>25</b> (0.11)                                      | <b>25</b> (0.11)                                      | <b>30</b> (0.13)                                      | <b>45</b> (0.20)                                      | <b>45</b> (0.20)                                      | _                                                                                    |
| Gas               | GDF           | (2.7)                | <b>3/4</b> (19)         | <b>3</b> (76)                | <b>4</b> (102)   | <b>30</b> (0.13)                                      | _                                                                                    |
| Actuated          | GW-75         | 0.125                | <b>5%</b> (16)          | <b>3</b> (76)                | <b>4</b> (102)   | <b>60</b> (0.27)                                      | <b>65</b> (0.29)                                      | <b>70</b> (0.31)                                      | <b>95</b> (0.42)                                      | _                                                     | _                                                                                    |
|                   | GW 100   0.12 | (3.2)                | <b>3/4</b> (19)         | <b>3</b> (76)                | <b>4</b> (102)   | <b>85</b> (0.38)                                      | <b>95</b> (0.42)                                      | <b>105</b> (0.47)                                     | <b>190</b> (0.85)                                     | _                                                     | _                                                                                    |

- 1. The fasteners must not be driven until the concrete has reached the designated minimum compressive strength.
- 2. Minimum concrete thickness must be three times the fastener embedment into the concrete.
- The allowable tension values are only for the fastener in the concrete. Members connected to the concrete must be investigated in accordance with accepted design criteria.
- 4. The allowable load values listed are for static load conditions. Refer to ICC-ES ESR-2138 and ESR-2811 code reports for seismic load conditions.

Powder-Actuated and Gas-Actuated Fasteners — Allowable Shear Loads in Normal-Weight Concrete







**Direct** Fastening

| Direct Shank Minimum Minimum Minimum Minimum Allowable Shear Load — Ib. (kN) |               |                      |                         |                              |                     |                                                       | l)                                                    |                                                                                                                    |                                                                                                                    |                                                                                                                    |                                                                                                                    |
|------------------------------------------------------------------------------|---------------|----------------------|-------------------------|------------------------------|---------------------|-------------------------------------------------------|-------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------|
| Fastening<br>Type                                                            | Model<br>No.  | Diameter<br>in. (mm) | Penetration<br>in. (mm) | Edge<br>Distance<br>in. (mm) | Spacing<br>in. (mm) | f' <sub>c</sub> ≥ 2,000 psi<br>(13.8 MPa)<br>Concrete | f' <sub>c</sub> ≥ 2,500 psi<br>(17.2 MPa)<br>Concrete | $\begin{array}{l} \text{f'}_\text{c} \geq 3,\!000 \text{ psi} \\ \text{(20.7 MPa)} \\ \text{Concrete} \end{array}$ | $\begin{array}{l} \text{f'}_\text{c} \geq 4,\!000 \text{ psi} \\ \text{(27.6 MPa)} \\ \text{Concrete} \end{array}$ | $\begin{array}{c} \text{f'}_\text{c} \geq 5,\!000 \text{ psi} \\ \text{(34.5 MPa)} \\ \text{Concrete} \end{array}$ | $\begin{array}{c} \text{f'}_\text{c} \geq 6,\!000 \text{ psi} \\ \text{(41.3 MPa)} \\ \text{Concrete} \end{array}$ |
|                                                                              |               |                      | <b>3/4</b><br>(19)      | <b>3.5</b> (89)              | <b>5</b> (127)      | _                                                     | <b>120</b> (0.53)                                     | <b>125</b> (0.56)                                                                                                  | <b>135</b> (0.60)                                                                                                  | _                                                                                                                  | <b>130</b> (0.58)                                                                                                  |
|                                                                              | PDPA<br>PDPAT | 0.157                | <b>1</b> (25)           | <b>3.5</b> (89)              | <b>5</b> (127)      | _                                                     | <b>285</b> (1.27)                                     | <b>290</b> (1.29)                                                                                                  | <b>310</b> (1.38)                                                                                                  | _                                                                                                                  | <b>350</b> (1.56)                                                                                                  |
|                                                                              | PDPAWL        | (4.0)                | <b>11/4</b> (32)        | <b>3.5</b> (89)              | <b>5</b> (127)      | _                                                     | <b>360</b> (1.60)                                     | <b>380</b> (1.69)                                                                                                  | <b>420</b> (1.87)                                                                                                  | _                                                                                                                  | <b>390</b> (1.73)                                                                                                  |
| Powder<br>Actuated                                                           |               |                      | <b>1½</b> (38)          | <b>3.5</b> (89)              | <b>5</b> (127)      | _                                                     | <b>405</b> (1.80)                                     | <b>430</b> (1.91)                                                                                                  | <b>485</b> (2.16)                                                                                                  | _                                                                                                                  | <b>495</b> (2.20)                                                                                                  |
|                                                                              | PINW<br>PINWP |                      | <b>1</b> (25)           | <b>3</b><br>(76)             | <b>4</b> (102)      | <b>120</b> (0.53)                                     | <b>140</b> (0.62)                                     | <b>165</b> (0.73)                                                                                                  | <b>205</b> (0.91)                                                                                                  | -                                                                                                                  | <b>205</b> (0.91)                                                                                                  |
|                                                                              |               |                      | <b>1 1/4</b> (32)       | <b>3</b><br>(76)             | <b>4</b> (102)      | <b>265</b> (1.18)                                     | <b>265</b><br>(1.18)                                  | <b>265</b><br>(1.18)                                                                                               | <b>265</b><br>(1.18)                                                                                               | _                                                                                                                  | <b>265</b> (1.18)                                                                                                  |
|                                                                              | PDPWL-SS      |                      | <b>1</b> (25)           | <b>3</b><br>(76)             | <b>4</b> (102)      | <b>195</b> (0.87)                                     | _                                                     | _                                                                                                                  | _                                                                                                                  | _                                                                                                                  |                                                                                                                    |
|                                                                              | GDP           | 0.106                | <b>5%</b> (16)          | <b>3</b> (76)                | <b>4</b> (102)      | <b>25</b> (0.11)                                      | <b>25</b> (0.11)                                      | <b>25</b><br>(0.11)                                                                                                | <b>25</b><br>(0.11)                                                                                                | <b>25</b><br>(0.11)                                                                                                | _                                                                                                                  |
| Gas                                                                          | GDF           | (2.7)                | <b>3/4</b> (19)         | <b>3</b> (76)                | <b>4</b> (102)      | <b>45</b> (0.20)                                      | <b>50</b> (0.22)                                      | <b>55</b><br>(0.24)                                                                                                | <b>75</b> (0.33)                                                                                                   | <b>75</b> (0.33)                                                                                                   | _                                                                                                                  |
| Actuated                                                                     | GW-75         | 0.125                | <b>5/8</b> (16)         | <b>3</b> (76)                | <b>4</b> (102)      | <b>55</b> (0.24)                                      | <b>60</b> (0.27)                                      | <b>65</b> (0.29)                                                                                                   | <b>95</b> (0.42)                                                                                                   | _                                                                                                                  | _                                                                                                                  |
|                                                                              | GW-100<br>GTH | (3.2)                | <b>3/4</b> (19)         | <b>3</b> (76)                | <b>4</b> (102)      | <b>120</b> (0.53)                                     | <b>135</b> (0.60)                                     | <b>145</b> (0.64)                                                                                                  | <b>215</b> (0.96)                                                                                                  | _                                                                                                                  | _                                                                                                                  |

- 1. The fasteners must not be driven until the concrete has reached the designated minimum compressive strength.
- 2. Minimum concrete thickness must be three times the fastener embedment into the concrete.
- 3. The allowable shear values are only for the fastener in the concrete. Members connected to the concrete must be investigated in accordance with accepted design criteria.
- 4. The allowable load values listed are for static load conditions. Refer to ICC-ES ESR-2138 and ESR-2811 code reports for seismic load conditions.

<sup>\*</sup> See p. 13 for an explanation of the load table icons.

# Gas- and Powder-Actuated Fasteners Design Information - Concrete



Powder-Actuated and Gas-Actuated Assemblies — Allowable Tension Loads in Normal-Weight Concrete







| Divost                      |                | Shank                   | Minimum                    | Minimum<br>Edge   | Minimum                |                                                       | Al                                                    | llowable Tensio                                       | n Load — lb. (kl                                      | N)                                                    |                                                       |
|-----------------------------|----------------|-------------------------|----------------------------|-------------------|------------------------|-------------------------------------------------------|-------------------------------------------------------|-------------------------------------------------------|-------------------------------------------------------|-------------------------------------------------------|-------------------------------------------------------|
| Direct<br>Fastening<br>Type | Model<br>No.   | Diameter<br>in.<br>(mm) | Penetration<br>in.<br>(mm) | Distance in. (mm) | Spacing<br>in.<br>(mm) | f' <sub>c</sub> ≥ 2,000 psi<br>(13.8 MPa)<br>Concrete | f' <sub>c</sub> ≥ 2,500 psi<br>(17.2 MPa)<br>Concrete | f' <sub>c</sub> ≥ 3,000 psi<br>(20.7 MPa)<br>Concrete | f' <sub>c</sub> ≥ 4,000 psi<br>(27.6 MPa)<br>Concrete | f' <sub>c</sub> ≥ 5,000 psi<br>(34.5 MPa)<br>Concrete | f' <sub>c</sub> ≥ 6,000 psi<br>(41.3 MPa)<br>Concrete |
|                             |                |                         | <b>3/4</b> (19)            | <b>3.5</b> (89)   | <b>5</b> (102)         | <b>70</b> (0.31)                                      |                                                       | _                                                     | <b>120</b> (0.53)                                     |                                                       | <b>130</b> (0.58)                                     |
|                             | PCLDPA         | <b>0.157</b> (4.0)      | <b>1</b> (25)              | <b>3.5</b> (89)   | <b>5</b> (102)         | <b>175</b> (0.78)                                     | _                                                     | _                                                     | <b>180</b> (0.80)                                     | _                                                     | <b>190</b> (0.85)                                     |
|                             |                |                         | <b>1 1/4</b> (32)          | <b>3.5</b> (89)   | <b>5</b> (102)         | <b>210</b> (0.93)                                     |                                                       | _                                                     | <b>210</b> (0.93)                                     | _                                                     | <b>190</b> (0.85)                                     |
| Powder<br>Actuated          | PECLDPA        | DDA 0.157               | <b>7/8</b> (22)            | <b>3.5</b> (89)   | <b>5</b> (102)         | <b>90</b> (0.40)                                      | _                                                     | _                                                     | <b>110</b> (0.49)                                     | _                                                     | <b>85</b> (0.38)                                      |
|                             |                | (4.0)                   | <b>1</b> (25)              | <b>3.5</b> (89)   | <b>5</b> (102)         | <b>180</b> (0.80)                                     |                                                       | _                                                     | <b>155</b> (0.69)                                     |                                                       | <b>180</b> (0.80)                                     |
|                             | PTRHA3         | 0.157                   | <b>1</b> (25)              | <b>3.5</b> (89)   | <b>5</b> (102)         | <b>180</b> (0.80)                                     |                                                       | _                                                     | <b>190</b> (0.85)                                     |                                                       | <b>180</b> (0.80)                                     |
|                             | PTRHA4         | (4.0)                   | <b>1 1/4</b> (32)          | <b>3.5</b> (89)   | <b>5</b> (102)         | <b>185</b> (0.82)                                     | _                                                     | _                                                     | <b>220</b> (0.98)                                     | _                                                     | <b>190</b> (0.85)                                     |
| Gas                         | GRH25<br>GRH37 | <b>0.125</b> (3.2)      | <b>3/4</b> (19)            | <b>3</b> (76)     | <b>4</b> (102)         | _                                                     | <b>85</b> (0.38)                                      | <b>115</b> (0.51)                                     | <b>160</b> (0.71)                                     | <b>165</b> (0.73)                                     | <b>165</b> (0.73)                                     |
| Actuated                    | GAC            | <b>0.125</b> (3.2)      | <b>3/4</b> (19)            | <b>3</b> (76)     | <b>4</b> (102)         | _                                                     | <b>105</b> (0.47)                                     | <b>120</b> (0.53)                                     | <b>150</b> (0.67)                                     | <b>170</b> (0.76)                                     | <b>195</b> (0.87)                                     |

- 1. The fasteners must not be driven until the concrete has reached the designated minimum compressive strength.
- 2. Minimum concrete thickness must be three times the fastener embedment into the concrete.
- 3. The allowable tension values are only for the fastener in the concrete. Members connected to the concrete must be investigated in accordance with accepted design criteria.
- 4. The allowable load values listed are for static load conditions. Refer to ICC-ES ESR-2138 and ESR-2811 code reports for seismic load conditions.

# Powder-Actuated and Gas-Actuated Assemblies — Allowable Oblique Loads in Normal-Weight Concrete







| Diversit                    |              | Shank                   | Minimum                    | Minimum<br>Edge         | 1 Minimum              | Allowable Oblique Load — lb. (kN)                     |                                                       |                                                       |                                                       |                                                       |                                                       |  |
|-----------------------------|--------------|-------------------------|----------------------------|-------------------------|------------------------|-------------------------------------------------------|-------------------------------------------------------|-------------------------------------------------------|-------------------------------------------------------|-------------------------------------------------------|-------------------------------------------------------|--|
| Direct<br>Fastening<br>Type | Model<br>No. | Diameter<br>in.<br>(mm) | Penetration<br>in.<br>(mm) | Distance<br>in.<br>(mm) | Spacing<br>in.<br>(mm) | f' <sub>c</sub> ≥ 2,000 psi<br>(13.8 MPa)<br>Concrete | f' <sub>c</sub> ≥ 2,500 psi<br>(17.2 MPa)<br>Concrete | f' <sub>c</sub> ≥ 3,000 psi<br>(20.7 MPa)<br>Concrete | f' <sub>c</sub> ≥ 4,000 psi<br>(27.6 MPa)<br>Concrete | f' <sub>c</sub> ≥ 5,000 psi<br>(34.5 MPa)<br>Concrete | f' <sub>c</sub> ≥ 6,000 psi<br>(41.3 MPa)<br>Concrete |  |
|                             |              |                         | <b>3/4</b> (19)            | <b>3.5</b> (89)         | <b>5</b> (102)         | <b>115</b> (0.51)                                     | _                                                     | _                                                     | <b>105</b> (0.47)                                     | _                                                     | <b>140</b> (0.62)                                     |  |
|                             | PCLDPA       | <b>0.157</b> (4.0)      | <b>1</b> (25)              | <b>3.5</b> (89)         | <b>5</b> (102)         | <b>255</b> (1.13)                                     | _                                                     | _                                                     | <b>240</b> (1.07)                                     | _                                                     | <b>245</b> (1.09)                                     |  |
| Powder<br>Actuated          |              |                         | <b>1</b> ½ (32)            | <b>3.5</b> (89)         | <b>5</b> (102)         | <b>250</b> (1.11)                                     | _                                                     | _                                                     | <b>265</b> (1.18)                                     | _                                                     | <b>265</b> (1.18)                                     |  |
|                             | PECLDPA      | 0.157                   | <b>7/8</b> (22)            | <b>3.5</b> (89)         | <b>5</b> (102)         | <b>135</b> (0.60)                                     | _                                                     | _                                                     | <b>130</b> (0.58)                                     | _                                                     | <b>115</b> (0.51)                                     |  |
|                             | PEGLUPA      | (4.0)                   | <b>1</b> (25)              | <b>3.5</b> (89)         | <b>5</b> (102)         | <b>225</b> (1.00)                                     | _                                                     | _                                                     | <b>230</b> (1.02)                                     | _                                                     | <b>255</b> (1.13)                                     |  |
| Gas<br>Actuated             | GAC          | <b>0.125</b> (3.2)      | <b>3/4</b> (19)            | <b>3</b> (76)           | <b>4</b> (102)         | _                                                     | <b>130</b> (0.58)                                     | <b>135</b> (0.60)                                     | <b>145</b> (0.64)                                     | <b>155</b> (0.69)                                     | <b>175</b> (0.78)                                     |  |

- 1. The fasteners must not be driven until the concrete has reached the designated minimum compressive strength.
- 2. Minimum concrete thickness must be three times the fastener embedment into the concrete.
- 3. The allowable oblique values are only for the fastener in the concrete. Members connected to the concrete must be investigated in accordance with accepted design criteria.
- 4. Oblique load direction is 45° from the concrete member surface.
- 5. The allowable load values listed are for static load conditions. Refer to ICC-ES ESR-2138 and ESR-2811 code reports for seismic load conditions.

**Direct** Fastening

# Gas- and Powder-Actuated Fasteners Design Information – Concrete



#### Powder-Actuated Fasteners — Allowable Tension and Shear Loads for Attachment of Wood Sill Plates to Normal-Weight Concrete









| Direct             |                            | Overall               | Nominal<br>Head         | Shank                   | Washer                   | Washer                                                 | f' <sub>c</sub> ≥ 2,500 p:               | si (17.2 MPa)                          |
|--------------------|----------------------------|-----------------------|-------------------------|-------------------------|--------------------------|--------------------------------------------------------|------------------------------------------|----------------------------------------|
| Fastening<br>Type  | Model<br>No.               | Length<br>in.<br>(mm) | Diameter<br>in.<br>(mm) | Diameter<br>in.<br>(mm) | Thickness<br>in.<br>(mm) | Bearing<br>Area in. <sup>2</sup><br>(mm <sup>2</sup> ) | Allowable<br>Tension Load<br>lb.<br>(kN) | Allowable<br>Shear Load<br>lb.<br>(kN) |
| Powder<br>Actuated | PDPAWL-287<br>PDPAWL-287MG | <b>2</b> % (73)       | <b>0.300</b> (7.6)      | <b>0.157</b> (4.0)      | <b>0.070</b> (1.8)       | <b>0.767</b> (495)                                     | <b>200</b> (0.89)                        | <b>205</b> (0.91)                      |

- 1. The fasteners must not be driven until the concrete has reached the designated minimum compressive strength.
- 2. Minimum concrete thickness must be three times the fastener embedment into the concrete.
- 3. The allowable tension and shear values are only for the fastener in the concrete. Members connected to the concrete must be investigated in accordance with accepted design criteria.
- 4. Minimum concrete edge distance is 1¾ inches.
- 5. Only mechanically galvanized fasteners may be used to attach preservative-treated wood to concrete.
- 6. Minimum spacing shall be 4" on center.
- 7. The allowable load values listed are for static load conditions. Refer to ICC-ES ESR-2138 code report for seismic load conditions.

#### Spacing of Powder-Actuated Fasteners for Attachment of Wood Sill Plates to Normal-Weight Concrete





| Direct<br>Fastening<br>Type | Fastening Model                                      |                    | Nominal Head<br>Diameter<br>in.<br>(mm) | Shank<br>Diameter<br>in.<br>(mm) | Maximum Spacing in. (mm)  Interior Nonstructural Walls² |
|-----------------------------|------------------------------------------------------|--------------------|-----------------------------------------|----------------------------------|---------------------------------------------------------|
| Powder Actuated             | PDPAWL-287 <sup>3</sup><br>PDPAWL-287MG <sup>3</sup> | <b>2</b> %<br>(73) | <b>0.300</b> (7.6)                      | <b>0.157</b> (4.0)               | <b>48</b> (1,219)                                       |

- 1. Spacings are based upon the attachment of 2-inch (nominal thickness) wood sill plates, with specific gravity of 0.50 or greater, to concrete floor slabs or footings.
- 2. All walls shall have fasteners placed at 6 inches from ends of sill plates, with maximum spacing as shown in the table.
- 3. Fasteners shall not be driven until the concrete has reached a compressive strength of 2,500 psi. Minimum edge distance is 1% inches
- 4. The maximum horizontal transverse load on the wall shall be 5 psf.
- 5. The maximum wall height shall be 14 feet.
- 6. For exterior walls and interior structural walls, this table is not applicable and allowable loads must be used .
- 7. Walls shall be laterally supported at the top and the bottom.
- 8. Minimum spacing shall be 4" on center.
- 9. Only mechanically galvanized fasteners may be used to attach preservative-treated wood to concrete.

# Gas- and Powder-Actuated Fasteners Design Information – Concrete



Powder-Actuated and Gas-Actuated Fasteners — Allowable Tension Loads in Sand-Lightweight Concrete over Metal Deck







| $\overline{}$ | * |
|---------------|---|
| £             |   |
|               |   |
| I I W         |   |

|                             |               | Chank                            |                                       |                                       | Allowat                                                                  | le Tension Load —                                                        | · lb. (kN)                                                                 |                                                                           |
|-----------------------------|---------------|----------------------------------|---------------------------------------|---------------------------------------|--------------------------------------------------------------------------|--------------------------------------------------------------------------|----------------------------------------------------------------------------|---------------------------------------------------------------------------|
| Direct<br>Fastening<br>Type | Model No.     | Shank<br>Diameter<br>in.<br>(mm) | Minimum<br>Penetration<br>in.<br>(mm) | Installed in<br>Concrete <sup>4</sup> | Installed Thru.<br>3" "W" Deck<br>with 3½"<br>Concrete Fill <sup>5</sup> | Installed Thru.<br>3" "W" Deck<br>with 2½"<br>Concrete Fill <sup>6</sup> | Installed Thru.<br>1.5" "B" Deck<br>with 2½"<br>Concrete Fill <sup>7</sup> | Installed Thru.<br>1.5" "B" Deck<br>with 2"<br>Concrete Fill <sup>8</sup> |
|                             |               |                                  |                                       |                                       | f' <sub>c</sub> ≥ 3,0                                                    | 00 psi (20.7 MPa) (                                                      | Concrete                                                                   |                                                                           |
|                             |               |                                  | <b>3/4</b> (19)                       | <b>85</b> (0.38)                      | <b>105</b> (0.47)                                                        | _                                                                        | _                                                                          | <b>160</b> (0.71)                                                         |
|                             | PDPA<br>PDPAT | 0.157                            | <b>1</b> (25)                         | <b>150</b> (0.67)                     | <b>145</b> (0.64)                                                        | _                                                                        | _                                                                          | <b>210</b> (0.93)                                                         |
| Powder                      | PDPAWL        | (4.0)                            | <b>1 1/4</b> (32)                     | <b>320</b> (1.42)                     | <b>170</b> (0.76)                                                        | _                                                                        | _                                                                          | <b>265</b> (1.18)                                                         |
| Actuated                    |               |                                  | 1½<br>(38)                            | <b>385</b> (1.71)                     | <b>325</b> (1.45)                                                        | _                                                                        | _                                                                          | _                                                                         |
|                             | PINW<br>PINWP | <b>0.145</b> (3.7)               | 7/8<br>(22)                           | <b>85</b> (0.38)                      | <b>40</b> (0.18)                                                         | _                                                                        | _                                                                          | _                                                                         |
|                             | PSLV3         | <b>0.205</b> (5.2)               | <b>1 1/4</b> (32)                     | _                                     | <b>225</b> (1.00)                                                        | _                                                                        | _                                                                          | _                                                                         |
|                             | GDP           | 0.106                            | <b>5%</b> (16)                        | <b>75</b> (0.33)                      | _                                                                        | <b>60</b> (0.27)                                                         | <b>65</b> (0.29)                                                           | _                                                                         |
| Gas                         | GDF           | (2.7)                            | <b>3/4</b> (19)                       | <b>105</b> (0.47)                     | _                                                                        | <b>60</b> (0.27)                                                         | <b>130</b> (0.58)                                                          | _                                                                         |
| Actuated                    | GW-75         | 0.125                            | <b>5%</b> (16)                        | <b>60</b> (0.27)                      | _                                                                        | <b>35</b> (0.16)                                                         | _                                                                          | _                                                                         |
|                             | GW-100<br>GTH | GW-100 0.125                     | <b>3/4</b> (19)                       | <b>115</b> (0.51)                     | _                                                                        | <b>55</b> (0.24)                                                         | _                                                                          | _                                                                         |

- 1. The fastener shall not be driven until the concrete has reached the designated compressive strength.
- The allowable tension values are for the fastener only. Members connected to the concrete must be invesigated separately in accordance with accepted design criteria.
- 3. Metal deck must be minimum 20 gauge and have a minimum yield strength of 38,000 psi.
- 4. The minimum fastener spacing is 4". The minimum edge distances are 3½" and 3" for powder-actuated fasteners and gas-actuated fasteners, respectively.
- 5. The fastener shall be installed minimum 11/2" from the edge of flute and 4" from the end of the deck. The minimum fastener spacing is 4".
- 6. The fastener shall be installed minimum 1" from the edge of flute and 3" from the end of the deck. The minimum fastener spacing is 4". For GW and GTH fasteners, the fastener must be a minimum of 11%" from the edge of flute.
- 7. The fastener shall be installed minimum %" from the edge of flute. For inverted 1.5" "B" deck configuration, the fastener must be a minimum of 1" from the edge of flute. Fastener must be installed minimim 3" from the end of the deck. The minimum fastener spacing is 4".
- 8. The fastener shall be installed minimum 1/8" from the edge of flute and 4" from the end of the deck. The minimum fastener spacing is 4".
- 9. The allowable load values listed are for static load conditions. Refer to ICC-ES ESR-2138 and ESR-2811 code reports for seismic load conditions.

# Gas- and Powder-Actuated Fasteners Design Information - Concrete



Powder-Actuated and Gas-Actuated Fasteners — Allowable Shear Loads in Sand-Lightweight Concrete over Metal Deck

| _    |     | _ |
|------|-----|---|
|      | 1 1 | Г |
| IDO  |     | ı |
| IKI. |     | ı |
|      |     | 5 |







|                             |               |                                       | 9                                     |                                       | Allowa                                                                   | ble Shear Load —                                                           | lb. (kN)                                                                     |                                                                           |
|-----------------------------|---------------|---------------------------------------|---------------------------------------|---------------------------------------|--------------------------------------------------------------------------|----------------------------------------------------------------------------|------------------------------------------------------------------------------|---------------------------------------------------------------------------|
| Direct<br>Fastening<br>Type | Model<br>No.  | Shank<br>Diameter<br>in.<br>(mm)      | Minimum<br>Penetration<br>in.<br>(mm) | Installed in<br>Concrete <sup>9</sup> | Installed Thru.<br>3" "W" Deck<br>with 3½"<br>Concrete Fill <sup>5</sup> | Installed Thru.<br>3" "W" Deck<br>with 21/4"<br>Concrete Fill <sup>6</sup> | Installed Thru.<br>1.5" "B" Deck<br>with 21/4"<br>Concrete Fill <sup>7</sup> | Installed Thru.<br>1.5" "B" Deck<br>with 2" Concrete<br>Fill <sup>8</sup> |
|                             |               |                                       |                                       |                                       | f' <sub>C</sub> ≥ 3,0                                                    | 00 psi (20.7 MPa) (                                                        | Concrete                                                                     |                                                                           |
|                             |               |                                       | <b>3/4</b><br>(19)                    | <b>105</b> (0.47)                     | <b>280</b> (1.25)                                                        | _                                                                          | _                                                                            | <b>275</b> (1.22)                                                         |
|                             | PDPA<br>PDPAT | 0.157                                 | <b>1</b> (25)                         | <b>225</b> (1.00)                     | <b>280</b> (1.25)                                                        | _                                                                          | _                                                                            | <b>370</b> (1.65)                                                         |
| Powder                      | PDPAWL        | (4.0)                                 | <b>11/4</b> (32)                      | <b>420</b> (1.87)                     | <b>320</b> (1.42)                                                        | _                                                                          | _                                                                            | <b>460</b> (2.05)                                                         |
| Actuated                    |               |                                       | <b>1½</b> (38)                        | <b>455</b> (2.02)                     | <b>520</b> (2.31)                                                        | _                                                                          | _                                                                            | _                                                                         |
|                             | PINW<br>PINWP | <b>0.145</b> (3.7)                    | <b>7/8</b> (22)                       | <b>250</b> (1.11)                     | <b>275</b> (1.22)                                                        | _                                                                          | _                                                                            | _                                                                         |
|                             | PSLV3         | <b>0.205</b> (5.2)                    | <b>11/4</b> (32)                      | _                                     | <b>225</b> (1.00)                                                        | _                                                                          | _                                                                            | _                                                                         |
|                             | GDP           | 0.106                                 | 5 <b>%</b><br>(16)                    | <b>35</b> (0.16)                      | _                                                                        | <b>180</b> (0.80)                                                          | <b>195</b> (0.87)                                                            | _                                                                         |
| Gas                         | GDF           | (2.7)                                 | <b>3/4</b> (19)                       | <b>140</b> (0.62)                     | _                                                                        | <b>180</b> (0.80)                                                          | <b>270</b> (1.20)                                                            | _                                                                         |
| Actuated                    | GW-75         | GW-75<br>GW-100<br>GTH 0.125<br>(3.2) | <b>5%</b> (16)                        | <b>110</b> (0.49)                     | _                                                                        | <b>215</b> (0.96)                                                          | _                                                                            | _                                                                         |
|                             |               |                                       | <b>3/4</b> (19)                       | <b>130</b> (0.58)                     | _                                                                        | <b>235</b> (1.05)                                                          | _                                                                            | _                                                                         |

- 1. The fastener shall not be driven until the concrete has reached the designated compressive strength.
- 2. The allowable shear values are for the fastener only. Members connected to the concrete must be investigated separately in accordance with accepted design criteria.
- 3. Metal deck must be minimum 20 gauge and have a minimum yield strength of 38,000 psi.
- 4. Shear values are for loads applied toward edge of flute.
- 5. The fastener shall be installed minimum 11/2" from the edge of flute and 4" from the end of the deck. The minimum fastener spacing is 4".
- 6. The fastener shall be installed minimum 1" from the edge of flute and 3" from the end of the deck. The minimum fastener spacing is 4". For GW and GTH fasteners, the fastener must be a minimum of 11/6" from the edge of flute.
- 7. The fastener shall be installed minimum 1/8" from the edge of flute. For inverted 1.5" "B" deck configuration, the fastener must be a minimum of 1" from the edge of flute. Fastener must be installed minimim 3" from the end of the deck. The minimum fastener spacing is 4".
- 8. The fastener shall be installed minimum 7/8" from the edge of flute and 4" from the end of the deck. The minimum fastener spacing is 4".
- 9. The minimum fastener spacing is 4". The minimum edge distances are 31/2" and 3" for powder-actuated fasteners and gas-actuated fasteners, respectively.
- 10. The allowable load values listed are for static load conditions. Refer to ICC-ES ESR-2138 and ESR-2811 code reports for seismic load conditions.

**Direct** Fastening

# C-A-2018 @ 2018 SIMPSON STRONG-TIE COMPANY INC.

## Gas- and Powder-Actuated Fasteners Design Information – Concrete



Powder-Actuated and Gas-Actuated Assemblies -Allowable Tension Loads in Sand-Lightweight Concrete over Metal Deck







|                             |                |                                  |                                       |                                                                          | Allowable Tension                                                          | n Load — Ib. (kN)                                                          |                                                                           |
|-----------------------------|----------------|----------------------------------|---------------------------------------|--------------------------------------------------------------------------|----------------------------------------------------------------------------|----------------------------------------------------------------------------|---------------------------------------------------------------------------|
| Direct<br>Fastening<br>Type | Model<br>No.   | Shank<br>Diameter<br>in.<br>(mm) | Minimum<br>Penetration<br>in.<br>(mm) | Installed Thru.<br>3" "W" Deck<br>with 2½"<br>Concrete Fill <sup>4</sup> | Installed Thru.<br>3" "W" Deck<br>with 21/4"<br>Concrete Fill <sup>5</sup> | Installed Thru.<br>1.5" "B" Deck<br>with 2½"<br>Concrete Fill <sup>6</sup> | Installed Thru.<br>1.5" "B" Deck<br>with 2"<br>Concrete Fill <sup>7</sup> |
|                             |                |                                  |                                       |                                                                          | f' <sub>c</sub> ≥ 3,000 psi (20                                            | 0.7 MPa) Concrete                                                          |                                                                           |
|                             | PTRHA3         | 0.157                            | <b>1</b> (25)                         | <b>160</b> (0.71)                                                        | _                                                                          | _                                                                          | <b>175</b> (0.78)                                                         |
|                             | PTRHA4         | (4.0)                            | <b>1 1/4</b> (32)                     | <b>160</b> (0.71)                                                        | _                                                                          | _                                                                          | <b>175</b> (0.78)                                                         |
|                             | PCLDPA         | CLDPA <b>0.157</b> (4.0)         | <b>3/4</b> (19)                       | <b>115</b> (0.51)                                                        | _                                                                          | _                                                                          | <b>60</b> (0.27)                                                          |
| Powder<br>Actuated          |                |                                  | <b>1</b> (25)                         | <b>140</b> (0.62)                                                        | _                                                                          | _                                                                          | <b>160</b> (0.71)                                                         |
|                             |                |                                  | <b>1 1/4</b> (32)                     | <b>160</b> (0.71)                                                        | _                                                                          | _                                                                          | <b>180</b> (0.80)                                                         |
|                             | PECDLPA        | 0.157                            | <b>7/8</b> (22)                       | <b>80</b> (0.36)                                                         | _                                                                          | _                                                                          | <b>95</b> (0.40)                                                          |
|                             | PEGDLFA        | (4.0)                            | <b>1</b> (25)                         | <b>120</b> (0.53)                                                        | _                                                                          | _                                                                          | <b>135</b> (0.60)                                                         |
| Gas                         | GRH25<br>GRH37 | <b>0.125</b> (3.2)               | <b>3/4</b> (19)                       | _                                                                        | <b>95</b> (0.42)                                                           | <b>95</b> (0.42)                                                           | _                                                                         |
| Actuated                    | GAC            | <b>0.125</b> (3.2)               | <b>3/4</b> (19)                       | _                                                                        | <b>105</b> (0.47)                                                          | <b>90</b> (0.40)                                                           | _                                                                         |

- 1. The fastener shall not be driven until the concrete has reached the designated compressive strength.
- 2. The allowable tension values are for the fastener only. Members connected to the concrete must be invesigated separately in accordance with accepted design criteria.
- 3. Metal deck must be minimum 20 gauge and have a minimum yield strength of 38,000 psi.
- 4. The fastener shall be installed minimum 11/2" from the edge of flute and 4" from the end of the deck. The minimum fastener spacing is 4".
- 5. The fastener shall be installed minimum 1" from the edge of flute and 3" from the end of the deck. The minimum fastener spacing is 4".
- 6. The fastener shall be installed minimum 1/8" from the edge of flute and 3" from the end of the deck. The minimum fastener spacing is 4".
- 7. The fastener shall be installed minimum 1/8" from the edge of flute and 4" from the end of the deck. The minimum fastener spacing is 4".
- 8. The allowable load values listed are for static load conditions. Refer to ICC-ES ESR-2138 and ESR-2811 code reports for seismic load conditions.

#### Powder-Actuated and Gas-Actuated Assemblies -Allowable Oblique Loads in Sand-Lightweight Concrete over Metal Deck







| Direct<br>Fastening<br>Type |              |                                  | Minimum<br>Penetration<br>in.<br>(mm) | Allowable Oblique Load — lb. (kN)                                        |                                                                            |                                                                       |                   |  |  |  |
|-----------------------------|--------------|----------------------------------|---------------------------------------|--------------------------------------------------------------------------|----------------------------------------------------------------------------|-----------------------------------------------------------------------|-------------------|--|--|--|
|                             | Model<br>No. | Shank<br>Diameter<br>in.<br>(mm) |                                       | Installed Thru.<br>3" "W" Deck<br>with 2½"<br>Concrete Fill <sup>4</sup> | Installed Thru.<br>3" "W" Deck<br>with 21⁄4"<br>Concrete Fill <sup>5</sup> | 3" "W" Deck with 21/4" "B" Deck with 21/4" Concrete Fill <sup>6</sup> |                   |  |  |  |
|                             |              |                                  |                                       | f' <sub>c</sub> ≥ 3,000 psi (20.7 MPa) Concrete                          |                                                                            |                                                                       |                   |  |  |  |
| Powder<br>Actuated          | PCLDPA       | <b>0.157</b> (4.0)               | <b>3/4</b> (19)                       | <b>155</b> (0.69)                                                        | _                                                                          | _                                                                     | <b>175</b> (0.78) |  |  |  |
|                             |              |                                  | <b>1</b> (25)                         | <b>175</b> (0.78)                                                        | _                                                                          | _                                                                     | <b>240</b> (1.07) |  |  |  |
|                             |              |                                  | <b>11/4</b> (32)                      | <b>185</b> (0.82)                                                        | _                                                                          | _                                                                     | <b>280</b> (1.25) |  |  |  |
|                             | PECDLPA      | <b>0.157</b> (4.0)               | <b>7/8</b> (22)                       | <b>110</b> (0.49)                                                        | _                                                                          | _                                                                     | <b>110</b> (0.49) |  |  |  |
|                             |              |                                  | <b>1</b> (25)                         | <b>145</b> (0.64)                                                        | _                                                                          | _                                                                     | <b>175</b> (0.78) |  |  |  |
| Gas Actuated                | GAC          | <b>0.125</b> (3.2)               | <b>3/4</b> (19)                       | _                                                                        | <b>120</b> (0.53)                                                          | <b>90</b> (0.40)                                                      | _                 |  |  |  |

- 1. The fastener shall not be driven until the concrete has reached the designated compressive strength.
- 2. The allowable oblique values are for the fastener only. Members connected to the concrete must be invesigated separately in accordance with accepted design criteria.
- 3. Metal deck must be minimum 20 gauge and have a minimum yield strength of 38,000 psi.
- 4. The fastener shall be installed minimum 11/2" from the edge of flute and 4" from the end of the deck. The minimum fastener spacing is 4".
- 5. The fastener shall be installed minimum 1" from the edge of flute and 3" from the end of the deck. The minimum fastener spacing is 4".
- 6. The fastener shall be installed minimum %" from the edge of flute and 3" from the end of the deck. The minimum fastener spacing is 4".
- 7. The fastener shall be installed minimum %" from the edge of flute and 4" from the end of the deck. The minimum fastener spacing is 4".
- 8. Oblique load direction is 45° from the concrete member surface.
- 9. The allowable load values listed are for static load conditions. Refer to ICC-ES ESR-2138 and ESR-2811 code reports for seismic load conditions.

<sup>\*</sup> See p. 13 for an explanation of the load table icons.

# Gas- and Powder-Actuated Fasteners Design Information - CMU



Powder-Actuated and Gas-Actuated Fasteners — Allowable Tension and Shear Loads in Hollow and Grout-Filled CMU<sup>4,5,8</sup>

| IBC | 1 | • | 7 |
|-----|---|---|---|
|-----|---|---|---|

| Direct<br>Fastening<br>Type | Model<br>No.            | Shank<br>Diameter<br>in.<br>(mm) | Minimum<br>Penetration<br>in.<br>(mm) | Minimum<br>Edge<br>Distance<br>in.<br>(mm) | 8-inch Ho                     | llow CMU                      | 8-inch Grout-Filled CMU        |                                |  |
|-----------------------------|-------------------------|----------------------------------|---------------------------------------|--------------------------------------------|-------------------------------|-------------------------------|--------------------------------|--------------------------------|--|
|                             |                         |                                  |                                       |                                            | Tension Load                  | Shear Load                    | Tension Load                   | Shear Load                     |  |
|                             |                         |                                  |                                       |                                            | Allowable<br>lb. (kN)         | Allowable<br>lb. (kN)         | Allowable<br>lb. (kN)          | Allowable<br>lb. (kN)          |  |
| Powder<br>Actuated          | PDPA<br>PDPAT<br>PDPAWL | <b>0.157</b> (4.0)               | <b>13/4</b> (44)                      | <b>3½</b> (89)                             | <b>125</b> ¹ (0.56)           | <b>210</b> ¹ (0.93)           | <b>190</b> <sup>3</sup> (0.85) | <b>245</b> <sup>3</sup> (1.09) |  |
|                             | PINW<br>PINWP           | <b>0.145</b> (3.7)               | <b>13/4</b> (44)                      | <b>3½</b> (89)                             | <b>110</b> ¹ (0.49)           | <b>200</b> ¹ (0.89)           |                                | _                              |  |
| Gas<br>Actuated             | GDP                     | <b>0.106</b> (2.7)               | <b>5</b> ⁄8<br>(16)                   | <b>3</b> (76)                              | <b>35</b> <sup>1</sup> (0.16) | <b>50</b> <sup>1</sup> (0.22) | -                              | _                              |  |
|                             | GW-75<br>GW-100<br>GTH  | <b>0.125</b> 3.2)                | 5%<br>(16)                            | <b>3</b> (76)                              | <b>55</b> <sup>2</sup> (0.24) | <b>65</b> <sup>2</sup> (0.29) | _                              | _                              |  |

- 1. Allowable values for fasteners in hollow lightweight concrete masonry units conforming to ASTM C90.
- 2. Allowable values for fasteners in hollow medium-weight concrete masonry units conforming to ASTM C90.
- Allowable values for fasteners in grout-filled lightweight concrete masonry units conforming to ASTM C90 with coarse grout confroming to ASTM C746.
- 4. The minimum allowable nominal size of the CMU must be 8 inches high by 8 inches wider by 16" long, with a minimum 11/4"-thick face shell thickness.
- 5. Allowable values are for fasteners installed in the center of a CMU face shell. See Figure 1 for the applicable placement zone. Only one fastener may be installed at each cell.
- 6. Minimum penetration is measured from the outside face of the CMU.
- Allowable values are for the fastener only. Members connected to the CMU must be investigated separately in accordance with accepted design criteria.
- 8. The allowable load values listed are for static load conditions. Refer to ICC-ES ESR-2138 and ESR-2811 code reports for seismic load conditions.

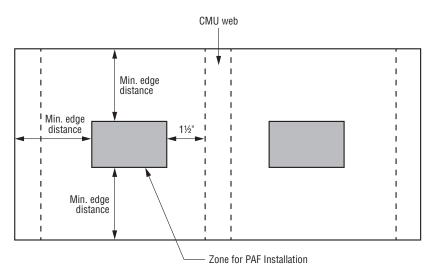



Figure 1. Zone for fastener installation in face shell of CMU

C-A-2018 @ 2018 SIMPSON STRONG-TIE COMPANY INC.

<sup>\*</sup> See p. 13 for an explanation of the load table icons.

# Gas- and Powder-Actuated Fasteners Design Information - Steel



Powder-Actuated and Gas-Actuated Fasteners — Allowable Tension Loads in Steel<sup>1</sup>



| Direct<br>Fastening<br>Type | Model<br>No.                         | Shank<br>Diameter <sup>10</sup><br>in.<br>(mm) | Minimum                      | Minimum                                 |                                        | Allowable Tension Load — lb. (kN) |                      |                                |                                |                                |                                |
|-----------------------------|--------------------------------------|------------------------------------------------|------------------------------|-----------------------------------------|----------------------------------------|-----------------------------------|----------------------|--------------------------------|--------------------------------|--------------------------------|--------------------------------|
|                             |                                      |                                                | Edge Distance<br>in.<br>(mm) | Spacing<br>in.<br>(mm)                  | Minimum<br>Steel Strength <sup>3</sup> | 1/8"-Thick<br>Steel               | 3/16"-Thick<br>Steel | 1/4"-Thick<br>Steel            | %"-Thick<br>Steel              | ½"-Thick<br>Steel              | ¾"-Thick<br>Steel              |
| Powder Actuated             | PDPA<br>PDPAT<br>PDPAWL              | <b>0.157</b> (4.0)                             | <b>0.5</b> (13)              | <b>1</b> (25)                           | ASTM A36                               | _                                 | <b>260</b> (1.16)    | <b>370</b> (1.65)              | <b>380</b> <sup>7</sup> (1.69) | <b>530</b> <sup>7</sup> (2.36) | <b>195</b> <sup>4</sup> (0.87) |
|                             |                                      |                                                | <b>0.5</b> (13)              | 1 ASTM A572 Gr. 50<br>(25) or ASTM A992 |                                        | _                                 | <b>305</b> (1.36)    | <b>335</b> (1.49)              | <b>355</b> <sup>7</sup> (1.58) | <b>485</b> <sup>5</sup> (2.16) | <b>170</b> <sup>6</sup> (0.76) |
|                             | PINW<br>PINWP                        | <b>0.145</b> (3.7)                             | <b>0.5</b> (13)              | <b>1</b> (25)                           | ASTM A36                               | _                                 | <b>155</b> (0.69)    | _                              | _                              | _                              | _                              |
|                             | PSLV3<br>Smooth<br>shank             | <b>0.205</b> (5.2)                             | <b>1</b> (25)                | <b>1½</b> (38)                          | ASTM A36                               | _                                 | <b>270</b> (1.20)    | <b>680</b> (3.02)              | _                              | _                              | _                              |
|                             | PSLV3-<br>12575K<br>Knurled<br>shank | <b>0.205</b> (5.2)                             | <b>1</b> (25)                | <b>1½</b> (38)                          | ASTM A36                               | _                                 | <b>270</b> (1.20)    | <b>870</b> (3.87)              | _                              | _                              | _                              |
| Gas<br>Actuated             | GDP                                  | <b>0.106</b> (2.7)                             | <b>0.5</b> (13)              | <b>1</b> (25)                           | ASTM A36                               | <b>125</b> (0.56)                 | <b>210</b> (0.93)    | <b>220</b> (0.98)              | _                              | _                              | _                              |
|                             |                                      |                                                | <b>0.5</b> (13)              | <b>1</b> (25)                           | ASTM A572 Gr. 50<br>or ASTM A992       | _                                 | <b>225</b> (1.00)    | <b>185</b> (0.82)              | _                              |                                | _                              |
|                             | GDPS                                 | <b>0.118/0.102</b> (3.0/2.6)                   | <b>0.5</b> (13)              | <b>1</b> (25)                           | ASTM A36                               | _                                 | <b>95</b> (0.42)     | <b>170</b> (0.76)              | <b>165</b> <sup>8</sup> (0.73) | <b>145</b> <sup>8</sup> (0.64) | _                              |
|                             |                                      |                                                | <b>0.5</b> (13)              | <b>1</b> (25)                           | ASTM A572 Gr. 50<br>or ASTM A992       | _                                 | <b>110</b> (0.49)    | <b>170</b> (0.76)              | <b>155</b> <sup>8</sup> (0.69) | -                              | _                              |
|                             | GW-50                                | <b>0.128/0.110</b> (3.3/2.8)                   | <b>0.5</b> (13)              | <b>1</b> (25)                           | ASTM A36                               | _                                 | <b>225</b> (1.00)    | <b>275</b> (1.22)              | <b>245</b> <sup>9</sup> (1.09) | _                              | _                              |
|                             |                                      |                                                | <b>0.5</b> (13)              | <b>1</b> (25)                           | ASTM A572 Gr. 50<br>or ASTM A992       | _                                 | <b>240</b> (1.07)    | <b>215</b> <sup>9</sup> (0.96) | <b>280</b> <sup>9</sup> (1.25) | _                              | _                              |

- The entire pointed portion of the fastener must penetrate through the steel to obtain the tabulated values, unless otherwise indicated.
- The allowable tension values are for the fastener only. Members connected to the steel must be investigated separately in accordance with accepted design criteria.
- 3. Steel strength must comply with the minimum requirements of ASTM A 36 ( $F_y = 36$  ksi,  $F_u = 58$  ksi), ASTM A 572, Grade 50 ( $F_y = 50$  ksi,  $F_u = 65$  ksi), or ASTM A992 ( $F_y = 50$  ksi,  $F_u = 65$  ksi).
- 4. Based upon minimum penetration depth of 0.46" (11.7 mm).
- 5. Based upon minimum penetration depth of 0.58" (14.7 mm).
- 6. Based upon minimum penetration depth of 0.36" (9.1 mm).
- 7. The fastener must be driven to where the point of the fastener penetrates through the steel.
- 8. Based upon minimum penetration depth of 0.35" (8.9 mm).
- 9. Based upon minimum penetration depth of 0.25" (6.4 mm).
- 10. For stepped shank fasteners: (Diameter of shank above the step.)/(Diameter of shank below the step.)
- 11. The allowable load values listed are for static load conditions. Refer to ICC-ES ESR-2138 and ESR-2811 code reports for seismic load conditions.

# Gas- and Powder-Actuated Fasteners Design Information - Steel







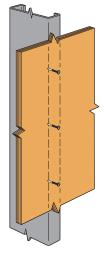


**Direct** Fastening

#### Powder-Actuated and Gas-Actuated Fasteners — Allowable Shear Loads in Steel<sup>1</sup>

| Direct             | Model                         | Shank<br>Diameter <sup>10</sup> E     |                  | Minimum                | Minimum Steel                              | Allowable Shear Load — lb. (kN) |                      |                                |                                |                                |                                |
|--------------------|-------------------------------|---------------------------------------|------------------|------------------------|--------------------------------------------|---------------------------------|----------------------|--------------------------------|--------------------------------|--------------------------------|--------------------------------|
| Fastening<br>Type  | No.                           | Diameter <sup>10</sup><br>in.<br>(mm) | in.<br>(mm)      | Spacing<br>in.<br>(mm) | in. Strength <sup>3</sup> 1/8 <sup>1</sup> |                                 | 3/16"-Thick<br>Steel | 1/4"-Thick<br>Steel            | %"-Thick<br>Steel              | ½"-Thick<br>Steel              | ¾"-Thick<br>Steel              |
|                    | PDPA, PDPAT,                  | 0.157                                 | 0.5              | 1                      | ASTM A36                                   | _                               | <b>410</b> (1.82)    | <b>365</b> (1.62)              | <b>385</b> <sup>7</sup> (1.71) | <b>385</b> <sup>7</sup> (1.71) | <b>325</b> <sup>4</sup> (1.45) |
|                    | PDPAWL                        | (4.0)                                 | (13)             | (25)                   | ASTM A572 Gr. 50<br>or ASTM A992           | _                               | <b>420</b> (1.87)    | <b>365</b> (1.62)              | <b>290</b> <sup>7</sup> (1.29) | <b>275</b> <sup>7</sup> (1.22) | <b>275</b> <sup>7</sup> (1.22) |
| Powder<br>Actuated | PINW<br>PINWP                 | <b>0.145</b> (3.7)                    | <b>0.5</b> (13)  | <b>1</b><br>(25)       | ASTM A36                                   | _                               | <b>395</b> (1.76)    | _                              | _                              | _                              | _                              |
|                    | PSLV3<br>Smooth shank         | <b>0.205</b> (5.2)                    | <b>1</b><br>(25) | <b>1½</b><br>(38)      | ASTM A36                                   | _                               | <b>770</b> (3.43)    | <b>1,120</b> (4.98)            | _                              | _                              | _                              |
|                    | PSLV3-12575K<br>Knurled shank | <b>0.205</b> (5.2)                    | <b>1</b> (25)    | <b>1½</b><br>(38)      | ASTM A36                                   | _                               | <b>930</b> (4.14)    | <b>1,130</b> (5.03)            | _                              | _                              | _                              |
|                    |                               | <b>0.106</b> (2.7)                    | <b>0.5</b> (13)  | <b>1</b> (25)          | ASTM A36                                   | <b>285</b> (1.27)               | <b>225</b> (1.00)    | <b>205</b> (0.91)              | _                              | _                              | _                              |
|                    |                               |                                       | <b>0.5</b> (13)  | <b>1</b> (25)          | ASTM A572 Gr. 50<br>or ASTM A992           | _                               | <b>250</b> (1.11)    | <b>145</b> (0.64)              | _                              | _                              | _                              |
| Gas                | GDPS                          | 0.118/0.102                           | <b>0.5</b> (13)  | <b>1</b> (25)          | ASTM A36                                   | _                               | <b>180</b> (0.80)    | <b>265</b> (1.18)              | <b>225</b> <sup>8</sup> (1.00) | <b>225</b> <sup>8</sup> (1.00) | _                              |
| Actuated           | adi 3                         | (3.0/2.6)                             | <b>0.5</b> (13)  | <b>1</b> (25)          | ASTM A572 Gr. 50<br>or ASTM A992           | _                               | <b>205</b> (0.91)    | <b>305</b> (1.36)              | <b>205</b> <sup>8</sup> (0.91) | _                              | _                              |
|                    | GW-50                         | V-50 <b>0.128/0.110</b> (3.3/2.8)     | <b>0.5</b> (13)  | <b>1</b> (25)          | ASTM A36                                   | _                               | <b>400</b> (1.78)    | <b>345</b> (1.53)              | <b>310</b> <sup>9</sup> (1.38) | _                              | _                              |
|                    |                               |                                       | <b>0.5</b> (13)  | <b>1</b> (25)          | ASTM A572 Gr. 50<br>or ASTM A992           | _                               | <b>380</b> (1.69)    | <b>325</b> <sup>9</sup> (1.45) | <b>350</b> <sup>9</sup> (1.56) | _                              | _                              |

- 1. The entire pointed portion of the fastener must penetrate through the steel to obtain the tabulated values, unless otherwise indicated.
- 2. The allowable shear values are for the fastener only. Members connected to the steel must be investigated separately in accordance with accepted design criteria.
- 3. Steel strength must comply with the minimum requirements of ASTM A 36 ( $F_y = 36$  ksi,  $F_u = 58$  ksi), ASTM A 572, Grade 50 ( $F_y = 50$  ksi,  $F_u = 65$  ksi), or ASTM A992 ( $F_y = 50$  ksi,  $F_u = 65$  ksi).
- 4. Based upon minimum penetration depth of 0.46" (11.7 mm).
- 5. Based upon minimum penetration depth of 0.58" (14.7 mm).
- 6. Based upon minimum penetration depth of 0.36" (9.1 mm).
- 7. The fastener must be driven to where the point of the fastener penetrates through the steel.
- 8. Based upon minimum penetration depth of 0.35" (8.9 mm).
- 9. Based upon minimum penetration depth of 0.25" (6.4 mm).
- 10. For stepped shank fasteners: (Diameter of shank above the step)/(Diameter of shank below the step).
- 11. The allowable load values listed are for static load conditions. Refer to ICC-ES ESR-2138 and ESR-2811 code reports for seismic load conditions.

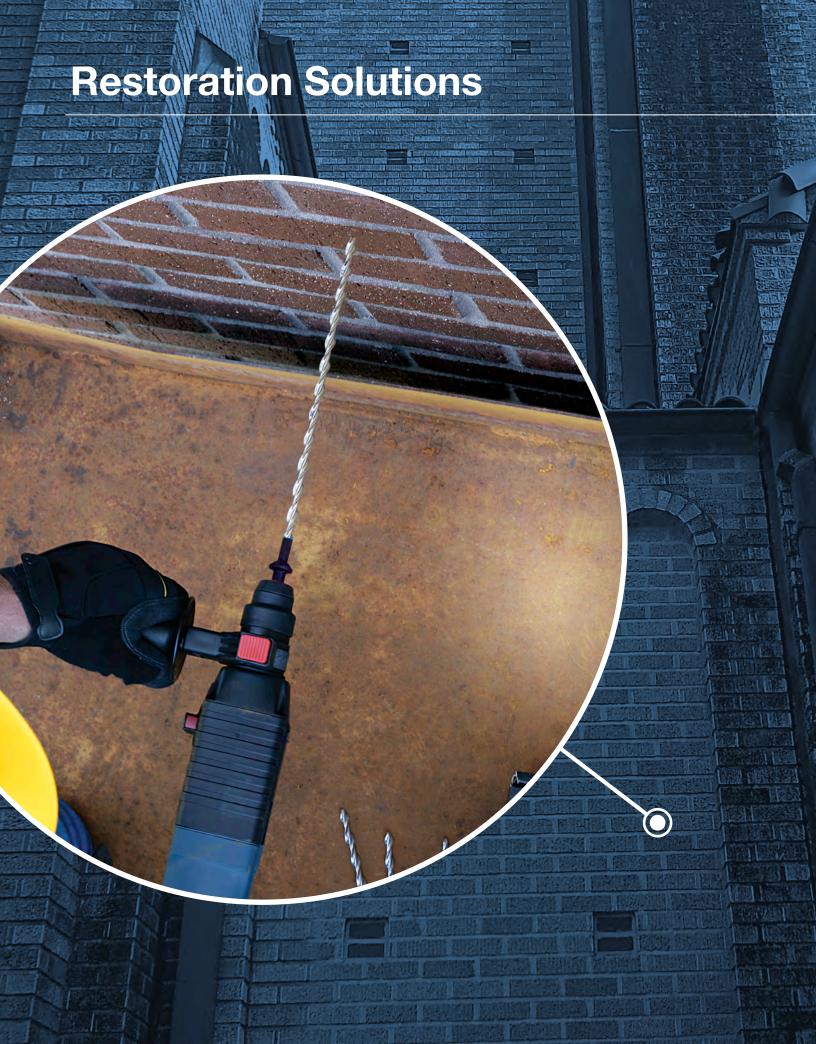

# Spiral Knurl Pin Allowable Tension and Shear Loads in Cold-Formed Steel Studs, 33 ksi Minimum Yield Strength



|              | Shank                   | Minimum                              | Minimum        | Designation                 | Allowable Loads        |                      |
|--------------|-------------------------|--------------------------------------|----------------|-----------------------------|------------------------|----------------------|
| Model<br>No. | Diameter<br>in.<br>(mm) | Edge Dist. Spacing in. in. (mm) (mm) |                | Thickness<br>mil<br>(gauge) | Tension<br>lb.<br>(kN) | Shear<br>lb.<br>(kN) |
|              | <b>0.109</b> (2.8)      |                                      |                | <b>33</b> (20)              | <b>30</b> (0.13)       | <b>70</b> (0.31)     |
| CDDCV 120    |                         |                                      | <b>4</b> (102) | <b>43</b> (18)              | <b>48</b> (0.21)       | <b>89</b> (0.40)     |
| GDPSK-138    |                         |                                      |                | <b>54</b> (16)              | <b>92</b> (0.41)       | <b>150</b> (0.67)    |
|              |                         |                                      |                | <b>68</b> (14)              | <b>73</b> (0.32)       | <b>218</b> (0.97)    |



<sup>2.</sup> The allowable tension and shear values are for the fastener only. Members connected to the steel must be investigated separately in accordance with accepted design criteria.




Typical GDPSK Installation

<sup>3.</sup> Fastener is to be installed in the center of the stud flange.

<sup>4.</sup> Loads are based on cold-formed steel members with a minimum yield strength,  $F_y = 33$  ksi and tensile strength,  $F_u = 45$  ksi for 33 mil (20 ga.) and 43 mil (18 ga.), and minimum yield strength,  $F_y = 50$  ksi and tensile strength,  $F_u = 65$  ksi for 54 mil (16 ga.) and 68 mil (14 ga.)

<sup>\*</sup> See p. 13 for an explanation of the load table icons.



### **ETI** Injection Epoxy

SIMPSON
Strong-Tie

ETI injection epoxies are two-component, high-solids formulations for the injection into cracks in concrete. Dispensed through a static mixing nozzle using either a manual, battery-powered or a pneumatic dispensing tool, these epoxies provide a waterproof, high strength (structural) repair.

#### **Features**

- Bonds chemically to concrete, providing load-bearing applications (meets the requirements of ASTM C 881 for structural repair epoxy)
- Formulated for maximum penetration under pressure (all viscosities)
- Seals out moisture, protecting rebar in the concrete from corrosion and flooring from moisture damage
- Reliable mixing and ratio control when used with the Simpson Strong-Tie<sup>®</sup>
   Optimix<sup>®</sup> static mixing nozzle (included with cartridge)
- Suitable for pressure injection
- Non-shrink material resists oils, salts and mild chemicals
- Final product color: ETI-SLV dark purple / black; ETI-LV amber; ETI-GV – gray

#### ETI-SLV Super-Low-Viscosity Epoxy

- Super-low viscosity (350 cP) repairs hairline cracks (0.002") and cracks up to ¼" in width
- · Penetrates smallest cracks
- Meets or exceeds AASHTO M-235 and ASTM C881 Type I and IV, Grade 1, Class B and C

#### ETI-LV Low-Viscosity Epoxy

- Repairs fine to medium cracks 1/64" to 1/4" in width
- Offers low surface tension to effectively penetrate narrow cracks
- Approved under NSF/ANSI standard 61
- Meets or exceeds AASHTO M-235 and ASTM C881 Type I and IV, Grade 1, Class C

#### ETI-GV Gel-Viscosity Epoxy

- Gel-viscosity (non-sag) epoxy repairs medium cracks 3/2" 1/4" in width
- · Decreases in viscosity under pressure, increasing flow
- Suitable for use as pick-proof sealant around doors, windows and fixtures
- Meets or exceeds AASHTO M-235 and ASTM C881 Type I and IV, Grade 3, Class C

#### Application Considerations

C-A-2018 @ 2018 SIMPSON STRONG-TIE COMPANY INC.

- Suitable for repairing non-moving cracks in concrete walls, floors, slabs, columns and beams.
- ETI can be used to inject cracks in damp or wet conditions (non-seeping or non-leaking conditions only) with excellent results.
- Apply to concrete 60°F or above. For best results, warm material to 60°F or above prior to application.
- Mixed material in nozzle and injection fitting hardens in 15 minutes (ETI-SLV), and in 60 minutes (ET-LV, ETI-GV) at temperatures of 40°F or above

Shelf Life: 24 months from date of manufacture in unopened cartridge

Storage Conditions: For best results, store between 45°F and 95°F

Injection Instructions: See pp. 227-231



**ETI-SLV** 



**ETI-LV** 



**ETI-GV** 

# **ETI** Injection Epoxy



| Property                       |           | Test Method                 | ETI-SLV Results* | ETI-LV Results* | ETI-GV Results* |
|--------------------------------|-----------|-----------------------------|------------------|-----------------|-----------------|
| Viscosity (75°F)               |           | ASTM D2556                  | 350 cP           | 1,790 cP        | Non-sag gel     |
| Bond Strength (moist cure)     | @ 2 days  | ASTM C882                   | 3,100 psi        | 2,500 psi       | 1,110 psi       |
|                                | @ 14 days |                             | 3,900 psi        | 2,530 psi       | 3,990 psi       |
| Tensile Strength               |           | ASTM D638                   | 10,200 psi       | 7,470 psi       | _               |
| Tensile Elongation at Break    |           | ASTM D638                   | 2.1%             | 7.7%            | _               |
| Compressive Yield Strength     |           | ASTM D695                   | 16,500 psi       | 12,500 psi      | 11,600 psi      |
| Compressive Modulus            |           | ASTM D695                   | 569,000 psi      | 342,000 psi     | 403,000 psi     |
| Heat Deflection Temperature    |           | ASTM D648                   | 140°F            | 130°F           | 131°F           |
| Water Absorption (24-hour so   | oak)      | ASTM D570                   | 0.25%            | 0.76%           | 0.58%           |
| Linear Coefficient of Shrinkag | е         | ASTM D2556                  | 0.0035           | 0.0040          | 0.0000          |
| Gel Time (60-gram mass)        |           | ASTM C881                   | 16 min.          | 68 min.         | 60 min.         |
| Volatile Organic Compounds     | (VOC)     | EPA Method 24<br>ASTM D2369 | 23 g/L           | 6 g/L           | 4 g/L           |
| Mixing Ratio by Volume (Part   | A:Part B) | _                           | 2:1              | 1:1             | 1:1             |

<sup>\*</sup>Material and curing conditions:  $73 \pm 2$ °F

#### ETI Cartridge System<sup>1</sup>

| Model No. | Capacity ounces (cubic in.) | Dispensing Tool | Mixing Nozzle        |
|-----------|-----------------------------|-----------------|----------------------|
| ETISLV    | 16.5<br>(29.8)              |                 |                      |
| ETILV22   | 22                          | EDT22S          | EMN022<br>(included) |
| ETIGV22   | (39.7)                      |                 |                      |

<sup>1.</sup> Bulk containers also available. Contact Simpson Strong-Tie for details.

<sup>2.</sup> Use only appropriate Simpson Strong-Tie® mixing nozzles in accordance with Simpson Strong-Tie instructions. Modification or improper use of mixing nozzle may impair epoxy performance.

<sup>3.</sup> EDT22S tool must be configured for 2:1 cartridge ratio.

# Crack-Pac® Injection Epoxy



The Crack-Pac injection epoxy is designed to repair cracks in concrete ranging from 1/64" to 1/4" wide in concrete walls, floors, slabs, columns and beams. The mixed adhesive has the viscosity of a light oil and a low surface tension, allowing it to penetrate fine to medium-width cracks in dry, damp or wet conditions with excellent results. Resin is contained in the cartridge and hardener is contained in the nozzle.

#### **Features**

- Dispenses with a standard caulking tool, no special dispensing tool needed
- Clean and easy to mix
- Seals out moisture, protecting rebar in the concrete from corrosion and flooring from moisture damage
- · Chemically bonds with the concrete to restore strength
- Non-shrink material resistant to oils, salts and mild chemicals
- Meets the requirements of AASHTO M-235 and ASTM C881, Type I, Grade 1, Class C

#### **Application Considerations**

- Suitable for repair of cracks ranging from 1/64" to 1/4" wide in concrete walls, floors, slabs, columns and beams
- Can be used to inject cracks in dry, damp or wet conditions with excellent results. Not for use in actively leaking cracks.
- In order for components to mix properly, the resin and hardener must be conditioned to 60°F–80°F before mixing

Shelf Life: 24 months from date of manufacture, unopened

Usage Temperature: 60°F to 90°F

Storage Conditions: For best results, store between

45°F and 95°F

C-A-2018 @ 2018 SIMPSON STRONG-TIE COMPANY INC.

Injection Instructions: See pp. 227–231



Crack-Pac Injection Epoxy (ETIPAC10)

Dispensing Systems: U.S. Patents 6,737,000 and 6,896,001 B2

# C-A-2018 @ 2018 SIMPSON STRONG-TIE COMPANY INC.

# Crack-Pac® Injection Epoxy





Crack-Pac Kit (ETIPAC10KT)

Crack-Pac injection epoxy is also available in the Crack-Pac Injection Kit (ETIPAC10KT). The kit includes everything needed to pressure inject cracks.

- 2 Crack-Pac cartridge/nozzle sets (ETIPAC10)
- 12 E-Z-Click injection ports
- 2 E-Z-Click injection fittings with 12" tubing
- 1 pint of ETR paste-over epoxy (8 oz. of resin + 8 oz. of hardener)
- 4 disposable wood paste-over applicators
- 1 pair latex gloves
- Installation video

| Property                           |           | Test Method                 | Results*    |
|------------------------------------|-----------|-----------------------------|-------------|
| Viscosity                          |           | ASTM D2556                  | 1,400 cP    |
| Bond Strength (moist cure)         | @ 2 days  | ASTM C882                   | 2,010 psi   |
|                                    | @ 14 days | ASTM C882                   | 3,830 psi   |
| Tensile Strength                   |           | ASTM D638                   | 5,860 psi   |
| Tensile Elongation at Break        |           | ASTM D638                   | 14.0%       |
| Compressive Yield Strength         |           | ASTM D695                   | 11,300 psi  |
| Compressive Modulus                |           | ASTM D695                   | 319,000 psi |
| Flexural Strength                  |           | ASTM D790                   | 8,020 psi   |
| Water Absorption (24-hour so       | oak)      | ASTM D570                   | 0.08%       |
| Linear Coefficient of Shrinkag     | е         | ASTM D2556                  | 0.0020      |
| Gel Time (60-gram mass)            |           | ASTM C881                   | 16 min.     |
| Full, Mixed Cartridge              |           | _                           | 30 min.     |
| Volatile Organic Compounds         | (VOC)     | EPA Method 24<br>ASTM D2369 | 7 g/L       |
| Initial Cure                       |           | _                           | 24 hours    |
| Mixing Ratio by Volume (Part       | A:Part B) | _                           | 8:1         |
| *Material and curing conditions: 7 | 3 ± 2°F   |                             |             |

#### Crack-Pac Cartridge System

| Orack Fac Cartriage Cystem |                      |                   |                    |                    |  |  |  |  |
|----------------------------|----------------------|-------------------|--------------------|--------------------|--|--|--|--|
| Model<br>No.               | Capacity<br>(ounces) | Cartridge<br>Type | Carton<br>Quantity | Dispensing<br>Tool |  |  |  |  |
| ETIPAC10                   | 9                    | Single            | 12                 | CDT10C             |  |  |  |  |
| ETIPAC10KT                 | 18                   | Single            | 2 (kits)           | CDT10S             |  |  |  |  |

# Crack-Pac® Flex-H<sub>2</sub>O™ Polyurethane Crack Sealer



The Crack-Pac Flex- $H_2O$  polyurethane injection resin seals leaking cracks, voids or fractures from ½" to ½" wide in concrete or solid masonry. Designed to perform in applications where water is seeping or mildly leaking from the crack, the polyurethane is packaged in the cartridge and an accelerator is packaged in the nozzle. When the resin encounters water as it is injected into the crack, it becomes an expanding foam that provides a flexible seal in leaking and non-leaking cracks.

#### **Features**

- · Can be dispensed with a standard caulking tool
- Can also be used on dry cracks if water is introduced to affected area
- Can be used with a reduced amount or without accelerator to slow down reaction time
- Expands to fill voids and seal the affected area
- Fast reacting reaction begins within 1 minute after exposure to moisture; expansion may be completed within 3 minutes (depending on the amount of moisture and the ambient temperature)
- 20:1 expansion ratio (unrestricted rise) means less material needed

#### **Application Considerations**

- Suitable for sealing cracks ranging from 1/32" to 1/4" wide in concrete and solid masonry.
- Suitable for repair of cracks in dry, damp and wet conditions with excellent results. Designed to perform in applications where water is seeping or mildly leaking from the crack.
- In order for components to mix properly, the resin and hardener must be conditioned to 60°F–90°F before mixing.

**Shelf Life:** 12 months from the date of manufacture, unopened

Usage Temperature: 60°F to 90°F

C-A-2018 @ 2018 SIMPSON STRONG-TIE COMPANY INC.

**Storage Conditions:** For best results, store in a dry area between 45°F and 90°F. Product is very moisture sensitive.

Installation Instructions: See pp. 227-231

Accessories: See p. 226 for information on crack repair accessories.



# Crack-Pac Flex-H<sub>2</sub>O Crack Sealer (CPFH09)

Dispensing System: U.S. Patents 6,737,000 and 6,896,001 B2

# **Crack-Pac® Flex-H<sub>2</sub>O™** Polyurethane Crack Sealer





Crack-Pac Flex-H<sub>2</sub>O Kit (CPFH09KT)

Crack-Pac Flex- $\rm H_2O$  injection epoxy is also available in the Crack-Pac Flex- $\rm H_2O$  Injection Kit (CPFH09KT). The kit includes everything needed to pressure inject cracks.

- 2 Crack-Pac Flex-H<sub>2</sub>O cartridge/nozzle sets (CPFH09)
- 12 E-Z-Click injection ports
- 2 E-Z-Click injection fittings with 12" tubing
- 1 pint of ETR paste-over epoxy (8 oz. of resin + 8 oz. of hardener)
- 4 disposable wood paste-over applicators
- 1 pair latex gloves

#### Crack-Pac Flex-H<sub>2</sub>O Packaging

| Model No. | Capacity           | Cartridge Type | Carton Quantity | Dispensing Tool |
|-----------|--------------------|----------------|-----------------|-----------------|
| CPFH09    | 9 ounces           | Single         | 12              | CDT10S          |
| CPFH09KT  | 18 ounces          | Single         | 2 (kits)        | 1 001105        |
| FH051     | 5 gallons resin    | Pail           | 1               |                 |
| LU02.     | 16 ounces catalyst | rdii           | I               | _               |

<sup>1.</sup> For standard reaction time, use 30:1 resin to catalyst ration.

For a faster reaction time, add more catalyst; for a slower reaction time, use less.

#### CIP / ETR Paste-Over and Crack Sealants



CIP and ETR are fast-curing epoxy used to paste-over and seal cracks while securing injection ports to the surface of concrete substrates prior to injecting an epoxy or urethane crack repair product. When properly mixed, the products will be a uniform gray color and can be left in place or removed after the repair is complete.

#### **Features**

- 1:1 two component, high solids, epoxy amine based adhesive
- · Mixed material is a uniform gray color
- Non-sag paste consistency for horizontal, vertical or overhead applications
- Fast cure times for shorter times between paste-over and injection
- · Manufactured in the USA using global materials

#### CIP-LO Low Odor Paste-Over Epoxy and Crack Sealant

- · Low odor formulation
- Strong substrate bond; requires chipping to remove
- Gel Time 6 minutes at 72°F (22°C), 28 minutes at 40°F (4°C)
- Cure Time 75 minutes at 72°F (22°C), 2 hours at 60°F (16°C) and 4–5 hours at 40°F (4°C)
- Volatile organic compound (VOC) 4 g/L
- · Available in a 22 oz. side-by-side cartridge

#### CIP-F Flexible Paste-Over Adhesive and Crack Sealant

- · Remains flexible after cure for easier removal
- · Moderate substrate bond; peels away for removal
- Gel Time 4 minutes at 72°F (22°C), 9 minutes at 40°F (4°C)
- Cure Time 1 hour at 72°F (22°C), and 3 hours at 40°F (4°C)
- ullet Volatile organic compound (VOC) 0 g/L
- Available in a 22 oz. side-by-side cartridge

#### ETR Concrete Repair and Paste-Over Epoxy

- · Canisters are mixed manually and do not require dispensing tool
- Each package contains enough material to cover approximately eight lineal feet of cracks
- Volatile organic compound (VOC) 7 g/L
- Available in two 8 fl. oz. canisters

#### **Application Considerations**

C-A-2018 @ 2018 SIMPSON STRONG-TIE COMPANY INC.

 Apply to concrete 40°F (4°C) or above. For best results, warm material to 65°F (16°C) or above prior to application.

**Shelf Life:** 24 months from date of manufacture, unopened for CIP-LO and ETR; 12 months from date of manufacture, unopened for CIP-F

**Storage Conditions:** For best results, store between 45°F (7°C) and 90°F (32°C) for CIP-LO and ETR; 60°F (16°C) – 95°F (35°C) for CIP-F

Installation Instructions: See pp. 227-231

#### Paste-Over and Crack Sealants

| Model No.            | Capacity<br>(oz.) | Cartridge    | Mixing Nozzle | Dispensing<br>Tool | Package<br>Quantity | Carton<br>Quantity |
|----------------------|-------------------|--------------|---------------|--------------------|---------------------|--------------------|
| CIPL022              | 22                | Side-by-side | EMN22I        | EDT22S, EDTA22CKT  | 1                   | 10                 |
| CIP-F22 <sup>1</sup> | 22                | Side-by-side | EMNCIPF22     | EDTA22P            | 1                   | 10                 |
| ETR16                | 16                | _            | _             | _                  | 1                   | 4                  |

<sup>1.</sup> One EMNCIPF22 mixing nozzle is supplied with each cartridge.





CIP-LO

CIP-F



# **Crack Repair Accessories**





#### EMN022 Optimix®

Mixing Nozzle

#### Mixing Nozzles

| Model No. |                                               | Description                           | Package Quantity | Carton Quantity |
|-----------|-----------------------------------------------|---------------------------------------|------------------|-----------------|
|           | EMNCIPF22-RP5 Mixing nozzle for CIPF-22 epoxy |                                       | 5                | 25              |
|           | EMN022-RP6                                    | Optimix mixing nozzle for ETI epoxies | 6                | 30              |

- 1. Use only appropriate Simpson Strong-Tie® mixing nozzle in accordance with Simpson Strong-Tie instructions. Modification or improper use of mixing nozzle may impair epoxy performance.
- 2. Includes retaining nuts.



**E-Z-Click**Ports and Injection Fitting



**EIPX-EZ**Corner Mount/
Drilled-In Port



**EIP-EZA**Flush-Mount Port

#### Injection Ports and Injection Fittings

|              |                                                     | Packa  | Carton                         |               |  |
|--------------|-----------------------------------------------------|--------|--------------------------------|---------------|--|
| Model No.    | Description                                         | Ports  | E-Z Click<br>Injection Fitting | Quantity      |  |
| EIP-EZAKT    | E-Z Click flush mount injection ports               | 20     | 1                              | 5 kits        |  |
| EIP-EZA      | E-Z Glick Hush Hount Injection ports                | 1 each | _                              | 100           |  |
| EIPX-EZKT    | F. 7 Clials corner mount or drill in injection part | 20     | 1                              | 5 kits        |  |
| EIPX-EZ-RP20 | E-Z Click corner mount or drill in injection port   | 20     | _                              | 100 (5 packs) |  |
| EIF-EZ       | E-Z Click injection fitting                         | _      | 1 each                         | 10            |  |

<sup>1.</sup> EIPX intended for use as a surface-mount port in corners and as a drilled-in port on flat surfaces.

Detailed information on the full line of Simpson Strong-Tie® manual and pneumatic dispensing tools is available on strongtie.com.



Important: These instructions are intended as recommended guidelines. Due to the variability of field conditions, selection of the proper material for the intended application and installation is the sole responsibility of the applicator.

Epoxy injection is an economical method of repairing non-moving cracks in concrete walls, slabs, columns and piers and is capable of restoring the concrete to its pre-cracked strength. Prior to doing any injection it is necessary to determine the cause of the crack. If the source of cracking has not been determined and remedied, the concrete may crack again.

#### Materials

C-A-2018 @2018 SIMPSON STRONG-TIE COMPANY INC.

- ETI-SLV for repair of hairline cracks (0.002") and those up to 1/4" in width.
- ETI-LV for repair of fine to medium-width cracks (Suggested width range: 1/64"-1/4").
- ETI-GV for repair of medium-width cracks (Suggested width range: 3/2"-1/4").
- Crack-Pac® injection epoxy for repair of fine to medium non-structural cracks (Suggested width range: 1/4"-1/4").
- Crack-Pac Flex-H<sub>2</sub>O polyurethane crack sealer for repair of fine- to medium-width cracks (Suggested width range: ½2"-¼").
- CIP-LO, CIP-F and ETR are recommended for paste-over of crack surface and installation
  of injection ports. ET-HP, ETR or SET adhesives may also be used as a substitute.
  (SET is the only paste-over epoxy approved for NSF/ANSI Standard 61.)
- E-Z-Click<sup>™</sup> injection ports, fittings and other suitable accessories.

#### Estimating Guide for Epoxy Crack Injection

|                         | Concrete           | ETI-LV, ETI-GV                                           | ETI-SLV                                                    | Crack-Pac                                               | Crack-Pac Flex-H <sub>2</sub> 0                         |
|-------------------------|--------------------|----------------------------------------------------------|------------------------------------------------------------|---------------------------------------------------------|---------------------------------------------------------|
| Width of Crack<br>(in.) | Thickness<br>(in.) | Approx. Coverage<br>per 22 oz. Cartridge<br>(linear ft.) | Approx. Coverage<br>per 16.5 oz. Cartridge<br>(linear ft.) | Approx. Coverage<br>per 9 oz. Cartridge<br>(linear ft.) | Approx. Coverage<br>per 9 oz. Cartridge<br>(linear ft.) |
|                         | 4                  | 47.7                                                     | 35.7                                                       | 18.4                                                    | _                                                       |
| 1/64                    | 6                  | 31.8                                                     | 23.8                                                       | 12.3                                                    | _                                                       |
| 764                     | 8                  | 23.8                                                     | 17.9                                                       | 9.2                                                     | _                                                       |
|                         | 10                 | 19.1                                                     | 14.3                                                       | 7.4                                                     | _                                                       |
|                         | 4                  | 23.8                                                     | 17.9                                                       | 9.2                                                     | 108.0                                                   |
| 1/                      | 6                  | 15.9                                                     | 11.9                                                       | 6.1                                                     | 72.0                                                    |
| 1/32                    | 8                  | 11.9                                                     | 8.9                                                        | 4.6                                                     | 54.0                                                    |
|                         | 10                 | 9.5                                                      | 7.1                                                        | 3.7                                                     | 43.2                                                    |
|                         | 4                  | 11.9                                                     | 8.9                                                        | 4.6                                                     | 54.0                                                    |
| 1/16                    | 6                  | 7.9                                                      | 6.0                                                        | 3.1                                                     | 36.0                                                    |
| 716                     | 8                  | 6.0                                                      | 4.5                                                        | 2.3                                                     | 27.0                                                    |
|                         | 10                 | 4.8                                                      | 3.6                                                        | 1.8                                                     | 21.6                                                    |
|                         | 4                  | 6.0                                                      | 4.5                                                        | 2.3                                                     | 27.0                                                    |
| 1/8                     | 6                  | 4.0                                                      | 3.0                                                        | 1.5                                                     | 18.0                                                    |
| 78                      | 8                  | 3.0                                                      | 2.2                                                        | 1.2                                                     | 13.5                                                    |
|                         | 10                 | 2.4                                                      | 1.8                                                        | 0.9                                                     | 10.8                                                    |
|                         | 4                  | 4.0                                                      | 3.0                                                        | 1.5                                                     | 18.0                                                    |
| 3/16                    | 6                  | 2.6                                                      | 2.0                                                        | 1.0                                                     | 12.0                                                    |
| 716                     | 8                  | 2.0                                                      | 1.5                                                        | 0.8                                                     | 9.0                                                     |
|                         | 10                 | 1.6                                                      | 1.2                                                        | 0.6                                                     | 7.2                                                     |
|                         | 4                  | 3.0                                                      | 2.2                                                        | 1.2                                                     | 13.5                                                    |
| 1/4                     | 6                  | 2.0                                                      | 1.5                                                        | 1.8                                                     | 9.0                                                     |
| 74                      | 8                  | 1.5                                                      | 1.1                                                        | 0.6                                                     | 6.8                                                     |
|                         | 10                 | 1.2                                                      | 0.9                                                        | 0.5                                                     | 5.4                                                     |

 $\label{thm:coverage listed} \mbox{Coverage listed is approximate and will vary depending on waste and condition of concrete.}$ 

# C-A-2018 @ 2018 SIMPSON STRONG-TIE COMPANY INC.

# **Crack Injection Guide**

# SIMPSON Strong-Tie

#### Preparation of the Crack for Injection

Clean the crack and the surface surrounding it to allow the paste-over to bond to sound concrete. At a minimum, the surface to receive paste-over should be brushed with a wire brush. Oil, grease or other surface contaminant must be removed in order to allow the paste-over to bond properly. Take care not to impact any debris into the crack during cleaning. Using clean, oil-free compressed air, blow out the crack to remove any dust, debris or standing water. Best results will be obtained if the crack is dry at the time of injection. If water is continually seeping from the crack, the flow must be stopped in order for epoxy injection to yield a suitable repair. Other materials such as polyurethane resins may be required to repair an actively leaking crack.

For many applications, additional preparation is necessary in order to seal the crack. Where a surfacing material has been removed using

an acid or chemical solvent, prepare the crack as follows:

- Using clean, compressed air, blow out any remaining debris and liquid.
- 2. Remove residue by high-pressure washing or steam cleaning.
- 3. Blow any remaining water from the crack with clean compressed air.

If a coating, sealant or paint has been applied to the concrete, it must be removed before placing the paste-over epoxy. Under the pressure of injection, these materials may lift and cause a leak. If the surface coating is covering the crack, it may be necessary to route out the opening of the crack in a "V" shape using a grinder in order to get past the surface contamination.

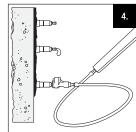
# Sealing of the Crack and Attachment of E-Z-Click™ Injection Ports

1. To adhere the port to the concrete, apply a small amount of paste-over around the bottom of the port base (Picture 1). Place the port at one end of the crack and repeat until the entire crack is ported (Picture 2). As a rule of thumb, injection ports should be placed 8" apart along the length of the crack.

**Important:** Do not allow paste-over to block the port or the crack under it; this is where the injection epoxy must enter the crack.

- 2. Using a putty knife or other paste-over tool, generously work paste-over along the entire length of the crack (Picture 3). Take care to mound the paste-over around the base of the port to approximately ¼" thick extending 1" out from the base of the port and to work out any holes in the material. It is recommended that the paste-over should be a minimum of ¾6" thick and 1" wide along the crack. Insufficient paste-over will result in leaks under the pressure of injection. If the crack passes completely through the concrete element, seal the back of the crack, if possible. If not, epoxy may be able to run out the back side of the crack, resulting in an ineffective repair.
- 3. Allow the paste-over to harden before beginning injection. Note: CIP-LO, CIP-F and ETR epoxies are fast-cure materials and may harden prematurely if left in a mixed mass on the mixing surface while installing ports. Spreading paste-over into a thin film (approximately 1/6") on the mixing surface will slow curing by allowing the heat from the reaction to dissipate.

# Injection Procedure for ETI-SLV, ETI-LV, ETI-GV and Crack-Pac® Injection Epoxy


- 1. Follow cartridge preparation instructions on the cartridge label. Verify that the material flowing from the Optimix® mixing nozzle is a uniform and consistent color: for ETI-SLV, the mixed product is black; ETI-LV is transparent amber; and ETI-GV is grey. For Crack-Pac injection epoxy, verify that the mixed material in the cartridge is a transparent amber color.
- 2. Attach the E-Z-Click fitting to the end of the nozzle by pushing the tubing over the barbs at the end of the nozzle. Make sure that all ports are pushed in to the open position.
- 3. Attach the E-Z-Click injection fitting to the first E-Z-Click port until it clicks into place. Make sure that the heads of all the ports are pushed in to the open position. In vertical applications, begin injection at the lowest port and work your way up. In a horizontal application, start at one end of the crack and work your way to the other end.
- 4. Inject epoxy into the first port until it will no longer flow into the crack. If epoxy shows at the next port and the first port still accepts material, close the second port and continue to inject into the first port until it accepts no more epoxy. Continue closing ports where epoxy appears until the first port refuses epoxy. When the first port reaches the point of refusal, brace the base of the port and pull out gently on the head of the port to close it. Pulling too hard may dislodge the port from the surface of the concrete, causing a leak. Depress the metal tab on the head of the E-Z-Click fitting and remove it from the port.
- 5. Go to the last port where epoxy appeared while injecting the first port, open it, and continue injection at this port. If the epoxy has set up and the port is bonded closed, move to the next clean port and repeat the process until every portion of the crack has refused epoxy.











While this method may appear to leave some ports uninjected, it provides maximum pressure to force the epoxy into the smaller areas of the crack. Moving to the next port as soon as epoxy appears will allow the epoxy to travel along the wider parts of the crack to the next ports rather than force it into the crack before it travels to the next ports.



#### **Injection Tips**

- If using a pneumatic dispensing tool, set the tool at a low setting when beginning injection and increase pressure if necessary to get the epoxy to flow.
- For narrow cracks, it may be necessary to increase the pressure gradually until the epoxy begins to flow. It may also be necessary to wait for a few minutes for the epoxy to fill the crack and travel to the next port.
- If desired, once the injection epoxy has cured, remove the injection ports and paste-over. An epoxy-based paste-over can be removed with a chisel, scraper or grinder. The paste-over can be simply
- peeled off if CIP-F is used. Using a heat gun to soften the epoxy is recommended when using a chisel or scraper.
- Mixing nozzles can be used for multiple cartridges as long as the epoxy does not harden in the nozzle. For injection epoxies in side-by-side cartridges, care must be taken to ensure the level of material is the same on both parts of the cartridge. This can be done by checking for air in the cartridge and the positions of the wipers in the back of the cartridge. If the liquid levels are off by more than 1/6", then Step 1 from the injection procedures must be repeated.

#### **Troubleshooting**

#### Epoxy is flowing into the crack, but not showing up at the next port.

This can indicate that the crack either expands and/or branches off under the surface of the concrete. Continue to inject and fill these voids. In situations where the crack penetrates completely through the concrete element, and the back-side of the concrete element cannot be sealed (e.g., basement walls, or footings with backfill), longer injection time may not force the epoxy to the next port. This most likely indicates that epoxy is running out the unsealed back side of the crack. In this case, the application may require a gel viscosity injection epoxy (ETI-GV) or may not be suitable for epoxy injection repair without excavation and sealing of the back side of the crack.

#### Epoxy is leaking from the pasted-over crack or around injection ports.

Stop injecting. If using a fast-cure paste-over material (ETR or CIP), wipe off the leaking injection epoxy with a cotton cloth and reapply the paste-over material. Wait approximately 10–15 minutes to allow the epoxy to begin to harden. If the leak is large (e.g., the port broke off of the concrete surface), it is a good idea to wait approximately 30 minutes, or longer as necessary, to allow the paste-over to cure more completely. Check to see that the epoxy is hard before reinjecting, or the paste-over or ports may leak. Another option for small leaks is to clean off the injection epoxy and use paraffin or crayon to seal the holes.

#### More epoxy is being used than estimated.

This may indicate that the crack either expands or branches off below the surface. Continue to inject and fill these voids. This may also indicate that epoxy is running out the back side of the crack. If the crack penetrates completely through the concrete element and cannot be sealed, the application may require a gel viscosity injection epoxy (ETI-GV) or may not be suitable for injection repair.

# Back pressure is preventing epoxy from flowing. This can indicate several situations:

- The crack is not continuous, and the portion being injected is full.
   (See above instructions about injection after the port has reached refusal.)
- The port is not aligned over the crack properly.
- The crack is blocked by debris.

C-A-2018 @ 2018 SIMPSON STRONG-TIE COMPANY INC.

- · The injection epoxy used has too high a viscosity.
- If the mixing nozzle has been allowed to sit for a few minutes full of epoxy, the material
  may have hardened in the nozzle. Attach the E-Z-Click™ fitting to a port at another uninjected
  location on the crack and attempt to inject. If the epoxy still won't flow, chances are the
  epoxy has hardened in the nozzle. If so, replace the nozzle.

#### Less epoxy is being used than estimated.

This may indicate that the crack is shallower than originally thought, or the epoxy is not penetrating the crack sufficiently before moving to the next port. Reinject some ports with a lower-viscosity epoxy to see if the crack will take more epoxy. Another option is to heat the epoxy to a temperature of 80–100°F, which will reduce its viscosity and allow it to penetrate into small cracks easier. The epoxy should be heated uniformly; do not overheat cartridge.



#### Injection Procedure for Crack-Pac® Flex-H<sub>2</sub>O™ Crack Sealer

- 1. Follow cartridge preparation instructions on the cartridge label. Verify that the material flowing from the nozzle is a uniform green color.
- 2. Attach the E-Z-Click™ fitting to the end of the nozzle by pushing the tubing over the barbs at the end of the nozzle. Make sure that all ports are pushed into the open position.
- 3. Attach the E-Z-Click injection fitting to the first E-Z-Click port until it clicks into place. Make sure that the head of the port is pushed into the open position. In vertical applications, begin injection at the lowest port and work your way up. In a horizontal application, start at one end of the crack and work your way to the other end.
- 4. Inject polyurethane into the first port until material shows at the next port. Remove the E-Z-Click fitting by bracing the base of the port and pulling out gently on the head of the port to close it. Pulling too hard may dislodge the port from the surface of the concrete, causing a leak. Depress the metal tab on the head of the E-Z-Click fitting and remove it from the port.
- 5. Move to the next port and repeat until all ports have been injected.

#### Injection Tips for Crack-Pac Flex-H<sub>2</sub>O Crack Sealer

- For narrow cracks, it may be necessary to increase the pressure gradually until the polyurethane begins to flow. It may also be necessary to wait a few minutes for the material to fill the crack and travel to the next port.
- If desired, once the polyurethane has cured, remove the injection ports and paste-over epoxy or hydraulic cement.
   The paste-over can be removed with a chisel, scraper or grinder.

#### Troubleshooting for Crack-Pac Flex-H<sub>2</sub>O Crack Sealer

#### Polyurethane is flowing into the crack, but not showing up at the next port.

This can indicate that either the crack expands and/or branches off under the surface of the concrete. Continue to inject and fill these voids. This can indicate that the crack either expands and/or branches off under the surface of the concrete. Continue to inject and fill these voids. In situations where the crack penetrates completely through the concrete element, and the back-side of the concrete element cannot be sealed (e.g., basement walls, or footings with backfill), longer injection time may not force the epoxy to the next port. This most likely indicates that epoxy is running out the unsealed back side of the crack. In this case, the application may require a gel viscosity injection epoxy (ETI-GV) or may not be suitable for epoxy injection repair without excavation and sealing of the back side of the crack.

#### Back pressure is preventing polyurethane from flowing.

This can indicate several situations:

- The crack is not continuous and the portion being injected is full.
- · The port is not aligned over the crack properly.
- The crack is blocked by debris.

#### Polyurethane is leaking from the pasted-over crack or around injection ports.

Stop injecting. If using a fast cure paste-over material (ETR or CIP), wipe off the leaking injection epoxy with a cotton cloth and reapply the paste over material. Wait a approximately 10–15 minutes to allow the paste-over to begin to harden. If the leak is large (e.g., the port broke off of the concrete surface), it is a good idea to wait approximately 30 minutes, or longer as necessary, to allow the paste-over to cure more completely. Check to see that the paste-over is hard before reinjecting or the paste-over or ports may leak.

Another option for small leaks is to clean off the injection adhesive and use paraffin or crayon to seal the holes.

#### More polyurethane is being used than estimated.

This may indicate that the crack either expands or branches off below the surface. Continue to inject and fill these voids.

#### Less polyurethane is being used than estimated.

This may indicate that the crack is shallower than originally thought, or the polyurethane is not penetrating the crack sufficiently before moving to the next port.

**Restoration** Solutions



#### **Gravity-Feed Procedure**

C-A-2018 @ 2018 SIMPSON STRONG-TIE COMPANY INC.

In some horizontal applications where complete penetration isn't a requirement, cracks can be repaired using the gravity-feed method.

- 1. Follow cartridge preparation instructions on the cartridge label. Verify that the material flowing from the Optimix® mixing nozzle is a uniform and consistent color: For ETI-SLV, the mixed product is black, while ETI-LV is transparent amber. For Crack-Pac® injection epoxy, verify that the mixed material in the cartridge is a transparent amber color.
- 2. Starting at one end of the crack, slowly dispense epoxy into the crack, moving along the crack as it fills. It will probably be necessary to do multiple passes in order to fill the crack. It is possible that the epoxy will take some time to run into the crack, and the crack may appear empty several hours after the initial application. Reapply epoxy until the crack is filled.
- 3. In situations where the crack completely penetrates the member (e.g., concrete slab), the material may continue to run through the crack into the subgrade. It may be possible to use a small amount of coarse, dry sand to act as a barrier for the injection epoxy. Place the sand in the crack to a level no more than 1/4" thickness of the member and apply the injection epoxy as described in step 2. The epoxy level will drop as it penetrates the sand, but should cure and provide a seal to the bottom of the crack. Reapply the epoxy until the crack is filled. In some cases, application of sand is impractical or not permitted and epoxy repair may not provide a complete and effective repair. Use of a gel viscosity injection epoxy (ETI-GV) may permit a surface repair to the crack with partial penetration.

# SIMPSON StrongTie

The Heli-Tie helical wall tie is a stainless-steel tie used to anchor building façades to structural members or to stabilize brick walls.

The helical design allows the tie to be driven quickly and easily into a predrilled pilot hole (or embedded into mortar joints in new construction) to provide a mechanical connection between a masonry façade and its backup material. As it is driven, the fins of the tie undercut the masonry to provide an expansion-free anchorage that will withstand tension and compression loads.

The Heli-Tie wall tie is installed into a predrilled hole using a proprietary setting tool with an SDS-PLUS shank rotohammer to drive and countersink the tie. Heli-Tie wall ties perform in concrete and masonry as well as wood and steel studs.

#### **Features**

- Installs quickly and easily with the rotohammer in hammer mode, the tie installs faster than competitive products.
- Provides an inconspicuous repair that preserves the appearance of the building. After installation, the tie is countersunk up to ½" below the surface, allowing the tie location to be patched.
- Larger core diameter provides higher torsional capacity, resulting in less deflection due to "uncoiling" under load.
- Fractionally sized anchor no metric drill bits required.
- Patented manufacturing process results in a more uniform helix along the entire tie, allowing easier driving and better interlock with the substrate.

**Material:** Type 304 stainless steel (Type 316 available by special order — contact Simpson Strong-Tie for details)

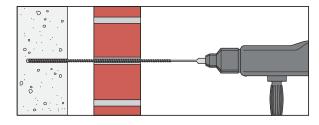
Test Criteria: CSA A370

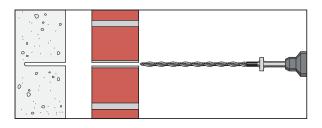
#### Installation

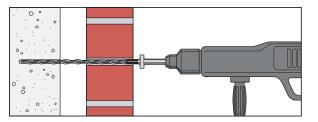
- Drill pilot hole through the façade material and into the backup material to the specified embedment depth + 1" using appropriate drill bit(s) in the chart below. Drill should be in rotation-only mode when drilling into soft masonry or into hollow backing material.
- Position blue end of the Heli-Tie fastener in the installation tool and insert the tie into the pilot hole.
- With the SDS-plus® rotohammer in hammer mode, drive the tie
  until the tip of the installation tool enters the exterior surface of the
  masonry and countersinks the tie below the surface. Patch the
  hole in the façade with a matching masonry mortar.

#### Heli-Tie Helical Wall Tie Product Data

| Size     | Model       | Higher    |     | ntity  |
|----------|-------------|-----------|-----|--------|
| (in.)    | No.         | (in.)     | Box | Carton |
| 3/8 x 7  | HELI37700A  |           | 50  | 400    |
| 3/8 X 8  | HELI37800A  |           | 50  | 400    |
| 3% x 9   | HELI37900A  |           | 50  | 400    |
| % x 10   | HELI371000A |           | 50  | 200    |
| 3% x 11  | HELI371100A | 7/32      | 50  | 200    |
| 3⁄8 x 12 | HELI371200A | 0r<br>1⁄4 | 50  | 200    |
| 3% x 14  | HELI371400A |           | 50  | 200    |
| 3% x 16  | HELI371600A |           | 50  | 200    |
| 3% x 18  | HELI371800A |           | 50  | 200    |
| 3% x 20  | HELI372000A |           | 50  | 200    |


Special-order lengths are also available; contact Simpson Strong-Tie for details.





U.S. Patent 7,269,987



#### Installation Sequence







# Heli-Tie™ Design Information



#### Guide Tension Loads in Various Base Materials

C-A-2018 @2018 SIMPSON STRONG-TIE COMPANY INC.

| Guide i                              | ension Loads                     | iii vaiious          | Dase Ivia                    | Min.                           |                                      | Tension Load <sup>1</sup>                                    |                                      |
|--------------------------------------|----------------------------------|----------------------|------------------------------|--------------------------------|--------------------------------------|--------------------------------------------------------------|--------------------------------------|
| Size<br>in.<br>(mm)                  | Base<br>Material                 | Anchor<br>Location   | Drill Bit<br>Diameter<br>in. | Embed.<br>Depth<br>in.<br>(mm) | Ultimate <sup>2</sup><br>lb.<br>(kN) | Load at Max.<br>Permitted Displ. <sup>3</sup><br>lb.<br>(kN) | Standard<br>Deviation<br>Ib.<br>(kN) |
|                                      | Solid<br>brick <sup>4</sup>      | Mortar               | 7/32                         |                                | <b>570</b> (2.5)                     | <b>240</b> (1.1)                                             | <b>79</b> (0.4)                      |
|                                      |                                  | bed joint            | 1/4                          |                                | <b>365</b> (1.6)                     | <b>130</b> (0.6)                                             | <b>46</b> (0.2)                      |
|                                      |                                  | Brick<br>face        | 7/32                         | <b>3</b><br>(76)               | <b>1,310</b> (5.8)                   | <b>565</b> (2.5)                                             | <b>84</b> (0.4)                      |
|                                      |                                  |                      | 1/4                          |                                | <b>815</b> (3.6)                     | <b>350</b> (1.6)                                             | <b>60</b> (0.3)                      |
|                                      |                                  | Mortar<br>bed joint  | 7/32                         |                                | <b>530</b> (2.4)                     | <b>285</b> (1.3)                                             | <b>79</b> (0.4)                      |
|                                      | Hollow<br>brick⁵                 | Brick                | 7/32                         |                                | <b>775</b> (3.4)                     | <b>405</b> (1.8)                                             | <b>47</b> (0.2)                      |
|                                      |                                  | face                 | 1/4                          |                                | <b>510</b> (2.3)                     | <b>185</b> (0.8)                                             | <b>20</b> (0.1)                      |
|                                      |                                  | Center of            | 7/32                         |                                | <b>1,170</b> (5.2)                   | <b>405</b> (1.8)                                             | <b>79</b> (0.4)                      |
|                                      | Grout-filled<br>CMU <sup>6</sup> | face shell           | 1/4                          |                                | <b>830</b> (3.7)                     | <b>350</b> (1.6)                                             | <b>60</b> (0.3)                      |
|                                      |                                  | Web                  | 7/32                         | <b>2¾</b><br>(70)              | <b>1,160</b> (5.2)                   | <b>440</b> (2.0)                                             | <b>56</b> (0.2)                      |
|                                      |                                  |                      | 1/4                          |                                | <b>810</b> (3.6)                     | <b>330</b> (1.5)                                             | <b>100</b> (0.4)                     |
| <sup>3</sup> / <sub>8</sub><br>(9.0) |                                  | Mortar<br>bed joint  | 7/32                         |                                | <b>720</b> (3.2)                     | <b>320</b> (1.4)                                             | <b>71</b> (0.3)                      |
|                                      |                                  |                      | 1/4                          |                                | <b>530</b> (2.4)                     | <b>205</b> (0.9)                                             | <b>58</b> (0.3)                      |
|                                      | Hollow<br>CMU <sup>7</sup>       | Center of face shell | 7/32                         |                                | <b>790</b> (3.5)                     | <b>305</b> (1.4)                                             | <b>56</b> (0.2)                      |
|                                      |                                  |                      | 1/4                          |                                | <b>505</b> (2.2)                     | <b>255</b> (1.1)                                             | <b>46</b> (0.2)                      |
|                                      |                                  | Web                  | 7/32                         |                                | <b>1,200</b> (5.3)                   | <b>445</b> (2.0)                                             | <b>50</b> (0.2)                      |
|                                      |                                  |                      | 1/4                          |                                | <b>675</b> (3.0)                     | <b>385</b> (1.7)                                             | <b>96</b> (0.4)                      |
|                                      | Normal-weight                    |                      | 7/32                         | <b>1 3/4</b><br>(44)           | <b>880</b> (3.9)                     | <b>410</b> (1.8)                                             | <b>76</b> (0.3)                      |
|                                      | concrete <sup>8</sup>            | _                    | 1/4                          | <b>2</b> 3/4<br>(70)           | <b>990</b> (4.4)                     | <b>380</b> (1.7)                                             | <b>96</b> (0.4)                      |
|                                      | 2x4 wood                         | Center of thin edge  | 7/32                         | 23/4                           | <b>590</b> (2.6)                     | <b>370</b> (1.6)                                             | <b>24</b> (0.1)                      |
|                                      | stud <sup>9,11</sup>             |                      | 1/4                          | (70)                           | <b>450</b> (2.0)                     | <b>260</b> (1.2)                                             | <b>6</b> (0.0)                       |
|                                      | Metal stud <sup>10,11</sup>      | Center of            | 7/32                         | 1                              | <b>200</b> (0.9)                     | <b>120</b> (0.5)                                             | <b>8</b> (0.0)                       |
|                                      | Metal stud 10,11                 | flange               | 1/4                          | (25)                           | <b>155</b> (0.7)                     | <b>95</b> (0.4)                                              | <b>2</b> (0.0)                       |

Caution: Loads are guide values based on laboratory testing. Onsite testing shall be performed for verification of capacity since base material quality can vary widely.

- Tabulated loads are guide values based on laboratory testing. Onsite testing shall be performed for verification of capacity since base material quality can vary widely.
- Ultimate load is average load at failure of the base material. Heli-Tie fastener average ultimate steel strength is 3,885 lb. and does not govern.
- Load at maximum permitted displacement is average load at displacement of 0.157 inches (4 mm). The designer shall apply a suitable factor of safety to these numbers to derive allowable service loads.
- Solid brick values for nominal 4-inchwide solid brick conforming to ASTM C62/C216, Grade SW. Type N mortar is prepared in accordance with IBC Section 2103.2.
- Hollow brick values for nominal 4-inchwide hollow brick conforming to ASTM C216/C652, Grade SW, Type HBS, Class H40V. Mortar is prepared in accordance with IBC Section 2103.2.
- Grout-filled CMU values for nominal 8-inch-wide lightweight, mediumweight and normal-weight concrete masonry units. The masonry units must be fully grouted. Values for nominal 8-inch-wide concrete masonry units (CMU) with a minimum specified compressive strength of masonry, f'm, at 28 days is 1,500 psi.
- Hollow CMU values for 8-inch-wide lightweight, medium-weight and normal-weight concrete masonry units.
- Normal-weight concrete values for concrete with minimum specified compressive strength of 2,500 psi.
- 9. 2x4 wood stud values for nominal 2x4 Spruce-Pine-Fir.
- 10. Metal stud values for 20-gauge C-shape metal stud.
- 11. For retrofits, due to difficulty of locating center of 2x4 or metal stud flange, install Heli-Tie from interior of building.
- For new construction, anchor one end of tie into backup material. Embed other end into veneer mortar joint.

# **Heli-Tie**<sup>™</sup> Design Information



#### Compression (Buckling) Loads<sup>1</sup>

| Size<br>in.<br>(mm) | Unsupported Length<br>in.<br>(mm) | Ultimate Compression Load¹<br>lb.<br>(kN) |
|---------------------|-----------------------------------|-------------------------------------------|
|                     | <b>1</b> (25)                     | <b>1,905</b> (8.5)                        |
| 3/8                 | <b>2</b> (50)                     | <b>1,310</b> (5.8)                        |
| (9.0)               | <b>4</b> (100)                    | <b>980</b> (4.4)                          |
|                     | <b>6</b> (150)                    | <b>785</b> (3.5)                          |

The Designer shall apply a suitable factor of safety to these numbers to derive allowable service loads.

# Heli-Tie Fastener Installation Tool — Model HELITOOL37A

Required for correct installation of Heli-Tie wall ties. Speeds up installation and automatically countersinks the tie into the façade material.



**HELITOOL37A** 

# Heli-Tie Wall Tie Tension Tester — Model HELITEST37A

Recommended equipment for onsite testing to accurately determine load values in any specific structure, the Heli-Tie wall tie tension tester features a key specifically designed to grip the Heli-Tie fastener and provide accurate results. Replacement test keys sold separately (Model HELIKEY37A).

Contact Simpson Strong-Tie for Heli-Tie onsite testing procedures.



# **Heli-Tie**<sup>™</sup> Helical Stitching Tie



The Simpson Strong-Tie® Heli-Tie helical stitching tie provides a unique solution to the preservation and repair of damaged brick and masonry structures. Ties are grouted into existing masonry joints to repair cracks and increase strength with minimum disturbance. Made of Type 304 stainless steel, the Heli-Tie stitching tie features radial fins formed on the steel wire via cold rolling process, increasing the tensile strength of the tie.



#### **HELIST254000**

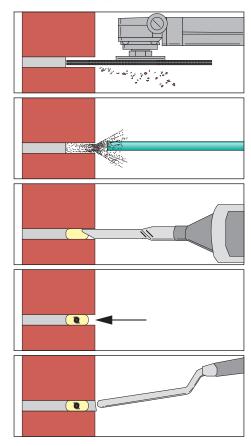
#### **Features**

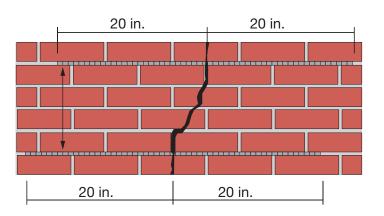
- Helical design distributes loads uniformly over a large surface area
- Installs into the mortar joint to provide an inconspicuous repair and preserve the appearance of the structure
- Type 304 stainless steel offers superior corrosion resistance to mild steel reinforcement
- Patented manufacturing process results in consistent, uniform helix configuration (U.S. Patent 7,269,987)
- Batch number printed on each tie for easy identification and inspection

**HELIST254000:** 1/4" x 40" stitching tie (special lengths are available upon request)

Material: Type 304 stainless steel

Ordering Information: Sold in tubes of 10


#### Installation Instructions


- Chase bed joint 20" on either side of the affected area to a depth of approximately 11/4" with a rotary grinding wheel. Vertical spacing of installation sites should be 12" for red brick or "every other course" for concrete masonry units.
- Clear bed joint of all loose debris.

C-A-2018 @ 2018 SIMPSON STRONG-TIE COMPANY INC.

- Mix non-shrink repair grout or mortar per product instructions and place into the prepared bed joint, filling the void to approximately two-thirds of its depth. Simpson Strong-Tie FX-263 repair mortar should be used.
- Embed the tie at one-half the depth of the void. Trowel displaced grout to fully encapsulate the tie.
- Fill any remaining voids and vertical cracks with non-shrink repair grout or other repair mortar to conceal repair site.

#### Installation Sequence





# FX-70® Structural Pile Repair and Protection System



# FX-70 Structural Pile Repair and Protection System for Concrete, Timber and Steel Structures

Degradation of structures at the waterline is common in marine environments. Tidal action, river current, saltwater exposure, chemical intrusion, floating debris, marine borers, electrolysis, wet-dry cycles and general weathering are all examples of destructive marine factors addressed by the FX-70 Structural Repair and Protection System.

The FX-70 system features custom-made tongueand-groove seamed fiberglass jackets that provide a corrosion-resistant protective shell for the life of the repair. High-strength repair grouts are used to strengthen and protect damaged piles. These products displace existing water and can be easily pumped or poured into the FX-70 jacket even while it is submerged in water.

#### **FX-70 System Advantages**

- Economically repair damage to concrete, timber and steel pilings without taking the structure out of service
- No need for cofferdams or dewatering
- No need for heavy lifting equipment
- Resists corrosion, deterioration, weathering and abrasion to protect and prevent deterioration of steel, concrete and timber pilings
- Low-impact installation in marine environments
- Easily blends with existing structure
- Economically repair damage to timber piles without taking the structure out of service
- Protect or prevent further deterioration of and steel pilings instead of replacing them
- Manufactured in the U.S.

To learn more, visit **strongtie.com/fx70** or call (800) 999-5099.



Flier F-R-FX70



Watch How to Install FX-70 Jackets in Water at strongtie.com/ videolibrary.

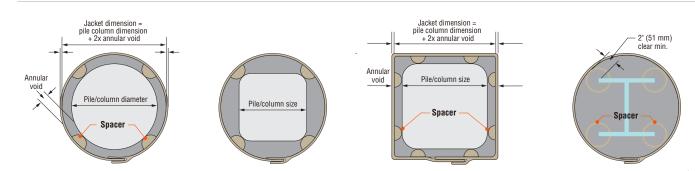


Restoration Solutions

# FX-70® Structural Pile Repair and Protection System



The FX-70 structural pile repair and protection system is customized to the exact specifications of each job, manufactured in the U.S.A., and shipped directly to your job site. The FX-70 tongue-and-groove seamed jacket provides a corrosion-resistant shell with over 40 years of demonstrated in-service performance.


Cross-Section of Tongue-and-Groove Joint

Cross-Section of Tongue-and-Groove Joint

#### For Section Loss > 25% For Section Loss ≤ 25% epoxy coating otional — concrete or steel piles only) EX-70-9" epoxy coating (optional) FX-70-9" Pile columns Pile columns Beveled top seal of optional FX-763 trowel-grade epoxy Beveled top seal of Spacer Spacer FX-763 trowel-grade 4" (102 mm) layer of epoxy mm) FX-70-6MP (456-610 mm) multi-purpose marine 8-24" (456-610 epoxy grout High-water level 18–24" ( High-water level **FX-70** fiberglass jacket Damaged region FX-70-6MP™ Length . Damaged region Length multi-purpose Reinforcing steel marine epoxy grout (optional) Jacket diameter -24" (456-610 mm) FX-70 FX-225 non-shrink mm) Jacket diameter fiberglass jacket underwater grout (456 - 610)Spacer 6" (152 mm) layer of Spacer FX-70-6MP 6" (152 mm) layer of -24 multi-purpose marine FX-70-6MP $\frac{8}{7}$ 쭈 epoxy grout multi-purpose marine epoxy grout ½" (13 mm) 2" (51 mm) annular void annular void Pile diameter Pile diameter Bottom seal Bottom seal

- FX-70-6MP multi-purpose marine epoxy grout used for bottom seal and repair
- Typical annular void of ½" (13 mm)
- ¾" (19 mm) annular void for H-piles

- FX-70-6MP multi-purpose marine epoxy grout used for top and bottom seal
- FX-225 non-shrink underwater grout used for repair
- Typical annular void of 2" (51 mm)

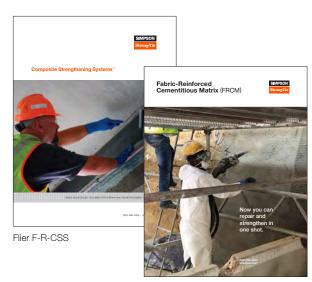


**Restoration** Solutions

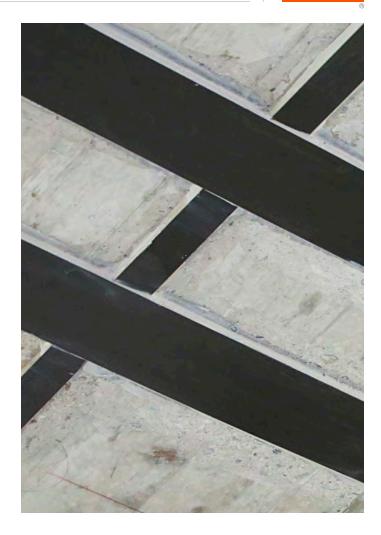
SIMPSON

# **CSS** Composite Strengthening Systems<sup>™</sup>

# Your Full-Solution Partner for Composite Strengthening Systems


Simpson Strong-Tie® Composite Strengthening Systems (CSS) provide efficient solutions for the structural reinforcement and retrofit of aging, damaged or overloaded concrete, masonry, steel and timber structures.

The primary benefit of Composite Strengthening Systems versus traditional retrofit methods is that significant flexural, axial or shear strength gains can be realized with an easy-to-apply composite that does not add significant weight or mass to the structure. Many times it is the most economical choice given the reduced prep and labor costs and may be installed without taking the structure out of service.


#### **CSS Advantages**

- No-cost in-house engineering and technical support
- Economically increase capacity without significantly increasing weight or mass
- Extremely high tensile strength
- Very lightweight and user-friendly installation
- Non-corrosive
- Low aesthetic impact
- Compatible with many finishes and protective coatings
- Many times it is the most economical choice given the reduced prep and labor costs

For complete information regarding specific products suitable to your unique situation or condition, please visit **strongtie.com/css** or call your local RPS specialist at (800) 999-5099.



Flier F-R-FRCM







#### **CSS Solutions**

CSS enhances the structural capacity of existing structural elements which require additional strengthening, rehabilitation and repair in such applications as seismic retrofit, structural preservation, force protection, blast mitigation, and corrosion-related repair and rehabilitation. CSS effectively increases capacity where adding weight or mass through traditional strengthening methods is not feasible.

#### System Solutions for Reinforcement

| Туре                           | Slab               | Beam                     | Wall                   | Column/Pile                |
|--------------------------------|--------------------|--------------------------|------------------------|----------------------------|
| Externally Applied Laminates   | Flexural/Collector | Flexural/Collector       | Tensile/Flexural       | Flexural                   |
| Near-Surface Mounted Laminates | Flexural/Collector | Flexural/Collector       | Tensile/Flexural       | Flexural                   |
| Fabrics                        | Flexural/Collector | Shear/Flexural/Collector | Shear/Flexural/Tensile | Shear/Flexural/Confinement |
| FRCM                           | Flexural/Collector | Shear/Flexural/Collector | Shear/Flexural/Tensile | Shear/Flexural/Confinement |



- 1. Slab Adds collector reinforcement, negative (not shown) and positive moment flexural capacity
- 2. Slab opening Trim reinforcement

C-A-2018 @2018 SIMPSON STRONG-TIE COMPANY INC.

- 3. Beam Laminates, FRCM or fabrics for flexure and/or collector reinforcement, fabrics or FRCM for shear stirrup reinforcement and potential use of FRP anchors (shown in orange)
- 4. Wall Stiffening, flexural, shear or tensile reinforcement with FRCM, fabrics and/or laminates
- 5. New wall opening Trim reinforcement
- **6. Column wrapping** Full column wrap to achieve required strengthening, possibly with additional near-surface mounted laminates, FRCM or fabric for flexure; effective solution for under-reinforced column ties
- 7. Protective coating High-performance protection against exposure, corrosion, chemical attack, abrasion, fire resistance and other environmental factors

# **CSS** Composite Strengthening Systems<sup>™</sup>



#### Components

#### **Fabric**

Several types of code-listed\* and non-code-listed FRP fabrics including carbon fiber and E-glass are available to meet specifier and contractor requirements. Field lamination provides flexibility and short installation time, resulting in lower labor costs and less downtime than are usual with traditional retrofit methods.

- · Conforms to any shape
- Can be cut/field-adjusted to address odd shapes/orientations
- May be placed in multiple layers for increased capacity gain
- · Variety of tow orientation/composition allows for design flexibility

#### **Carbon Fiber Fabrics**

| CSS-CUCF11* | Code-Listed Unidirectional Carbon Fabric — 11 oz./yd.² (370 g/m²)   |
|-------------|---------------------------------------------------------------------|
| CSS-CUCF22* | Code-Listed Unidirectional Carbon Fabric — 22 oz./yd.² (740 g/m²)   |
| CSS-CUCF44* | Code-Listed Unidirectional Carbon Fabric — 44 oz./yd.² (1,490 g/m²) |
| CSS-UCF10   | Unidirectional Carbon Fabric — 10 oz./yd.² (340 g/m²)               |
| CSS-UCF20   | Unidirectional Carbon Fabric — 20 oz./yd.² (680 g/m²)               |
| CSS-BCF06   | Bidirectional Carbon Fabric (0/90°) — 6 oz./yd.² (204 g/m²)         |
| CSS-BCF018  | Bidirectional Carbon Fabric (0/90°) — 18 oz./yd.² (611 g/m²)        |
| CSS-BCF418  | Bidirectional Carbon Fabric (+/-45°) — 18 oz./yd.² (611 g/m²)       |

#### **E-Glass Fiber Fabrics**

| CSS-CBGF424* | Code-Listed Bidirectional E-Glass Fabric (+/-45) — 24 oz./yd. <sup>2</sup> (814 g/m <sup>2</sup> ) |
|--------------|----------------------------------------------------------------------------------------------------|
| CSS-BGF012   | Bidirectional E-Glass Fabric (0/90°) — 12 oz./yd.² (407 g/m²)                                      |
| CSS-BGF018   | Bidirectional E-Glass Fabric (0/90°) — 18 oz./yd.² (611 g/m²)                                      |
| CSS-CUGF27*  | Code-Listed Unidirectional E-Glass Fabric 27 oz./yd.2 (915 g/m²)                                   |

#### **Carbon and E-Glass Anchors**

High-strength FRP anchors are field laminated and used to carry load into the concrete to effectively improve bond strength, or through the concrete to transfer load for increased capacity. Termination and through anchors in carbon and E-glass fiber are available in diameters from  $\frac{1}{2}$  in. (6.4 mm) to  $\frac{1}{2}$  in. (38.1 mm) in commonly used stock and custom lengths.

| CSS-CA | Carbon Fiber Anchor  |
|--------|----------------------|
| CSS-GA | E-Glass Fiber Anchor |

#### **Epoxies**

| CSS-ES-3KT   | Epoxy Primer and Saturant — 3 US gallon (11.4 L)    |
|--------------|-----------------------------------------------------|
| CSS-ES-150KT | Epoxy Primer and Saturant — 150 US gallon (567.8 L) |
| CSS-EP-3KT   | Epoxy Paste and Filler — 3 US gallon (11.4 L)       |
| CSS-UES-3KT  | Underwater Epoxy Saturant — 3 US gallon (11.4 L)    |

#### **Protective Coatings**

| FX505XXXX-5 FX | -505 Water-Based Acrylic Coating — 5 US gallon (18.9 L) |
|----------------|---------------------------------------------------------|
| FX70-9XKT3 FX  | -70-9™ Epoxy Coating — 3 US gallon (11.4 L) kit         |
| FX70-9XKT15 FX | -70-9 Epoxy Coating — 15 US gallon (56.8 L) kit         |
| FX207KT1-1 FX  | -207 Slurry Seal — 3.3 US gallon (12.5 L) kit           |

#### Fire Insulation

FX-207 Slurry Seal may be applied over CSS FRP materials for fire insulation and flame-spread/smoke-developed coating providing a 4-hour rated system per ASTM E119 and UL 263 and a Class A finish for ASTM E84 flame-spread and smoke-developed classification.



Structural concrete fiber-reinforced composite system fire resistance classification. See UL Fire Resistance Directory (R37897).









<sup>\*</sup> Code-listed fabrics and laminates (ICC-ES ESR-3403) have been evaluated per ICC-ES AC125 for Concrete and Reinforced and Unreinforced Masonry Strengthening Using Externally Bonded Fiber-Reinforced Polymer (FRP) Composite Systems.

# **CSS** Composite Strengthening Systems<sup>™</sup>



#### Components (cont.)

#### **Precured Carbon-Fiber Laminate**

CSS-CUCL is an epoxy-based, pultruded, unidirectional, high-strength, non-corrosive carbon-fiber-reinforced polymer (CFRP) precured laminate for both surface mounted and near surface mounted (NSM) structural reinforcement applications.

- Code listed (ICC-ES ESR-3403) per ICC-ES AC125
- · No field saturation required
- · Highest tensile capacity available
- Lower overall installed cost/labor savings
- Available in a variety of widths and thicknesses and may be cut to length

CSS-CUCL\* Code-Listed Unidirectional Carbon Laminate

#### Fabric-Reinforced Cementitious Matrix (FRCM)

Repair, protect and strengthen aging, damaged or overloaded concrete and masonry structures in one application and significantly reduce your installed cost. FRCM or Fabric-Reinforced Cementitious Matrix combines high-performance sprayable mortar with carbon-fiber grid to create thin-walled, reinforced concrete shells without adding significant weight or mass to the structure.

#### Benefits

- Repair and strengthen structures using only a thin layer of material
- Can be applied in multiple grid layers (four maximum) to achieve desired strengthening
- · Lightweight system for vertical surfaces and overhead applications
- Suitable for harsh environments or service conditions including marine locations, elevated temperatures, humidity, abrasion and UV
- Works on damp substrates
- Installation process is similar to that for wet shotcrete repair mortars
- · Quick installation with less preparation than traditional shotcrete repairs with rebar
- · Does not create a vapor barrier
- Matches substrate finish

CSS-CM Cementitious Matrix — 55 lb. (24.9 kg) bag

CSS-BCG19550 Bidirectional Carbon Grid
CSS-HBCG19550 Heavy Bidirectional Carbon Grid
CSS-UCG19550 Unidirectional Carbon Grid



C-A-2018 @2018 SIMPSON STRONG-TIE COMPANY INC.

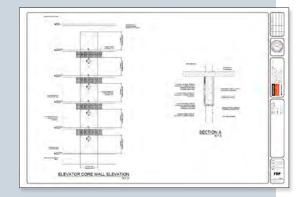
These products are part of the tested assembly in UL Design No. N859, which achieved a four-hour fire rating when subjected to ASTM E119 / UL 263 full-scale fire testing. Please refer to UL Online Certifications Directory for the UL listing.





# No-Cost Engineering and Technical Services

We recognize that specifying Simpson Strong-Tie® Composite Strengthening Systems™ is unlike choosing any other product we offer. Leverage our expertise to help with your strengthening designs.


#### **Our Complimentary Engineering and Technical Services Include:**

#### Assessment

- Feasibility studies to ensure suitable solutions for your application
- Partnering with trained and licensed contractors to provide rough order-of-magnitude (ROM) budget estimates

#### Complete Engineering Package

- Complete engineering package
- Specifications prepared to your unique project requirements
- Detailed proposal documentation, including drawings
- Calculations provided for Engineer of Record reference during submittal review
- Calculations for each unique element
- · Elevation drawings for each element and component
- Typical detail sheet showing installation details
- General notes to include in the plans
- Signed and sealed documents for all 50 states and throughout Canada

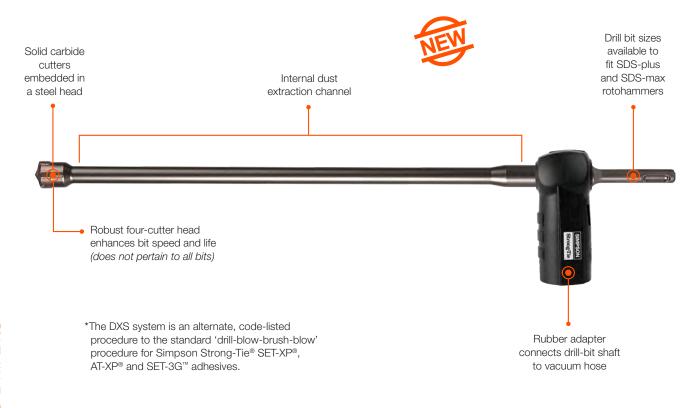




# **Drill Bit Matrix**



C-A-2018 @ 2018 SIMPSON STRONG-TIE COMPANY INC.


# **DXS Drill Bits** for Concrete and Masonry



At the heart of the Speed Clean™ DXS system is a proprietary Bosch® bit design that allows dust and debris to be removed through the hollow center of the bit during drilling. When used with a suitable rotary hammer and HEPA vacuum, the system removes dust from the hole at the moment it is created.

Minimum vacuum airflow: 129 cfm with auto-filter cleaner

Maximum hammer no-load RPM: 760



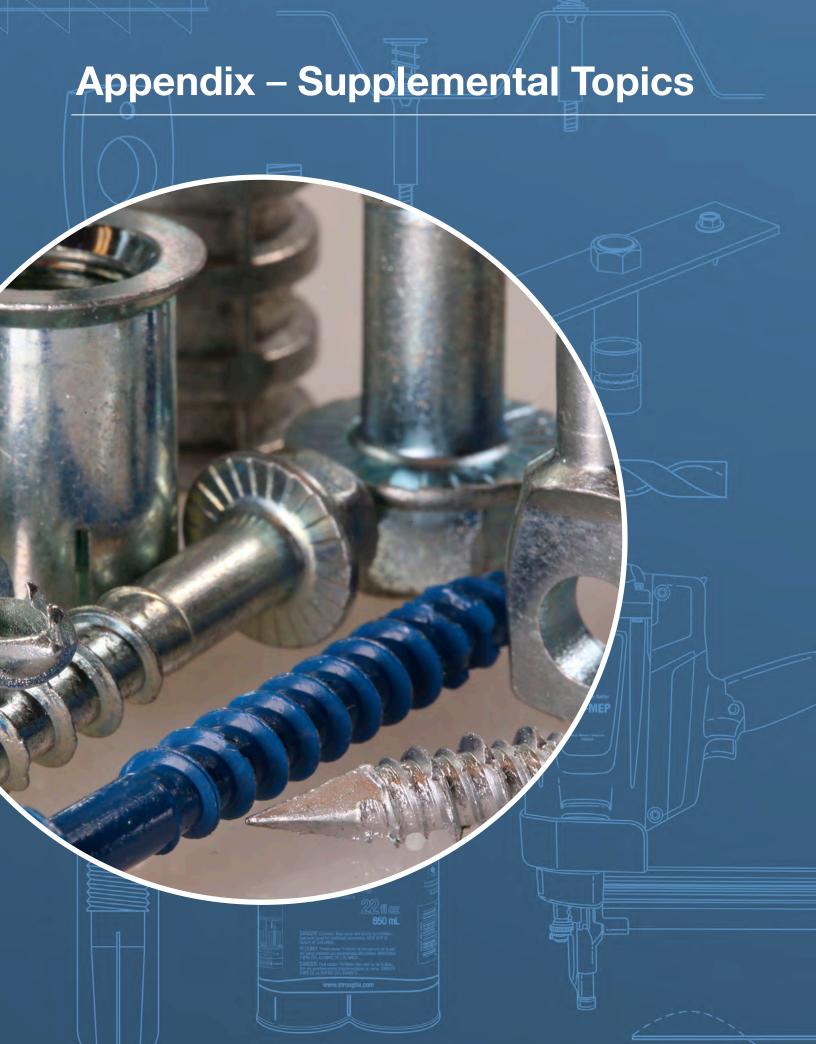
# Construction **Solutions**





Through collaborative efforts such as the Speed Clean DXS dust extraction system, Bosch and Simpson Strong-Tie are committed to optimizing every step of the installation process to save time on the jobsite and ensure the performance of the anchor. Our goal as technology leaders in our industries is to combine our talents and decades of experience to provide choices that help projects come in on time and under budget.

# **DXS Drill Bits** for Concrete and Masonry




Speed Clean<sup>™</sup> DXS Dust Extraction Drill Bits Code Tested with AT-XP<sup>®</sup>, SET-XP<sup>®</sup> and SET-3G<sup>™</sup> Adhesives

| sode rocked with the first and our od thanks we |                     |                                    |                            |                                 |                 |                                 |                          |
|-------------------------------------------------|---------------------|------------------------------------|----------------------------|---------------------------------|-----------------|---------------------------------|--------------------------|
| Model No.                                       | Description         | Size<br>(in.)                      | Drilling<br>Depth<br>(in.) | Threaded Rod<br>Anchor<br>(in.) | Rebar<br>Anchor | Threaded Rod<br>Anchor Products | Rebar<br>Anchor Products |
| DXS-PL04313                                     | SDS-plus®, 2 cutter | 7/16 X 13                          | 7½                         | 3/8                             | _               | AT-XP and SET-3G                | _                        |
| DXS-PL05013                                     | SDS-plus®, 2 cutter | ½ x 13                             | 7½                         | 3/8                             | #3              | SET-XP                          | SET-XP, AT-XP and SET-3G |
| DXS-PL05615                                     | SDS-plus®, 2 cutter | %16 X 15                           | 10                         | 1/2                             | _               | AT-XP and SET-3G                | _                        |
| DXS-PL06215Q                                    | SDS-plus®, 4 cutter | % x 15                             | 10                         | 1/2                             | #4              | SET-XP                          | SET-XP, AT-XP and SET-3G |
| DXS-PL06818Q                                    | SDS-plus®, 4 cutter | 11/16 X 18                         | 12½                        | 5/8                             | _               | AT-XP and SET-3G                | _                        |
| DXS-PL07518Q                                    | SDS-plus®, 4 cutter | 3⁄4 x 18                           | 12½                        | 5/8                             | #5              | SET-XP                          | SET-XP, AT-XP and SET-3G |
| DXS-MX07521Q                                    | SDS-max®, 4 cutter  | 3⁄4 x 21                           | 12½                        | 5/8                             | #5              | SET-XP                          | SET-XP, AT-XP and SET-3G |
| DXS-MX08125Q                                    | SDS-max®, 4 cutter  | <sup>13</sup> / <sub>16</sub> X 25 | 15                         | 3/4                             | _               | AT-XP                           | _                        |
| DXS-MX08725Q                                    | SDS-max®, 4 cutter  | 7⁄8 x 25                           | 15                         | 3/4                             | #6              | SET-XP and SET-3G               | SET-XP, AT-XP and SET-3G |
| DXS-MX10027Q                                    | SDS-max®, 4 cutter  | 1 x 27                             | 17½                        | 7/8                             | #7              | SET-XP, AT-XP and SET-3G        | SET-XP, AT-XP and SET-3G |
| DXS-MX11229Q                                    | SDS-max®, 4 cutter  | 1 1/8 x 29                         | 20                         | 1                               | #8              | SET-XP, AT-XP and SET-3G        | SET-XP, AT-XP and SET-3G |
| DXS-MX13734Q                                    | SDS-max®, 4 cutter  | 1% x 29                            | 25                         | 1 1/4                           | #10             | SET-XP, AT-XP and SET-3G        | SET-XP, AT-XP and SET-3G |

#### Speed Clean DXS Dust Extraction Adapters

| Model No. | Description      | Retail<br>Package | Carton<br>Quantity |
|-----------|------------------|-------------------|--------------------|
| DXS-MXADP | SDS-max adapter  | 1 adapter         | 10                 |
| DXS-PLADP | SDS-plus adapter | 1 adapter         | 10                 |



# Appendix — Supplemental Topics



# To keep you as informed as possible, the following topics are included in this Appendix:

| Supplemental Topics for Anchors |     |
|---------------------------------|-----|
| I. Base Materials               | 248 |
| II. Anchor Failure Modes        | 248 |
| III. Corrosion Resistance       | 248 |
| IV. Mechanical Anchors          | 250 |
| V. Adhesive Anchors             | 250 |







Appendix

C-A-2018 @ 2018 SIMPSON STRONG-TIE COMPANY INC.

# **Supplemental Topics for Anchors**



### I. Base Materials

"Base material" is a generic industry term that refers to the element or substrate to be anchored to. Base materials include concrete, brick, concrete block (CMU) and structural tile, to name a few. The most common type of base material where adhesive and mechanical anchors are used is concrete.

Concrete – Concrete can be cast-in-place or precast concrete. Concrete has excellent compressive strength, but relatively low tensile strength. Cast-in-place (or sometimes called "poured in place") concrete is placed in forms erected on the building site. Cast-in-place concrete can be either normal-weight or lightweight concrete. Lightweight concrete is often specified when it is desirable to reduce the weight of the building structure.

Lightweight concrete differs from normal-weight concrete by the weight of aggregate used in the mixture. Normal-weight concrete has a unit weight of approximately 150 pounds per cubic foot compared to approximately 115 pounds per cubic foot for lightweight concrete.

The type of aggregate used in concrete can affect the tension capacity of an adhesive anchor. Presently, the relationship between aggregate properties and anchor performance is not well understood. Test results should not be assumed to be representative of expected performance in all types of concrete aggregate.

Prefabricated concrete is also referred to as "precast concrete". Precast concrete can be made at a prefabricating plant or site-cast in forms constructed on the job. Precast concrete members may be solid or may contain hollow cores. Many precast components have thinner cross sections than cast in place concrete. Precast concrete may use either normal or lightweight concrete. Reinforced concrete contains steel bars, cable, wire mesh or random glass fibers. The addition of reinforcing material enables concrete to resist tensile stresses which lead to cracking.

The compressive strength of concrete can range from 2,000 psi to over 20,000 psi, depending on the mixture and how it is cured. Most concrete mixes are designed to obtain the desired properties within 28 days after being cast.

Concrete Masonry Units (CMU) — Block is typically formed with large hollow cores. Block with a minimum 75% solid cross section is called solid block even though it contains hollow cores. In many parts of the country building codes require steel reinforcing bars to be placed in the hollow cores, and the cores to be filled solid with grout.

In some areas of the eastern United States, past practice was to mix concrete with coal cinders to make cinder blocks. Although cinder blocks are no longer made, there are many existing buildings where they can be found. Cinder blocks require special attention as they soften with age.

Brick — Clay brick is formed solid or with hollow cores. The use of either type will vary in different parts of the United States. Brick can be difficult to drill and anchor into. Most brick is hard and brittle. Old, red clay brick is often very soft and is easily over-drilled. Either of these situations can cause problems in drilling and anchoring. The most common use of brick today is for building facades (curtain wall or brick veneer) and not for structural applications. Brick facade is attached to the structure by the use of brick ties spaced at intervals throughout the wall. In older buildings, multiple widths, or "wythes" of solid brick were used to form the structural walls. Three and four wythe walls were common wall thicknesses.

Clay Tile — Clay tile block is formed with hollow cores and narrow cavity wall cross sections. Clay tile is very brittle, making drilling difficult without breaking the block. Caution must be used in attempting to drill and fasten into clay tile.

# II. Anchor Failure Modes

Four different tension failure modes and three different shear failure modes are generally observed for post-installed anchors under tension loading.

#### Failure Modes

| Tension                                                                              | Shear |
|--------------------------------------------------------------------------------------|-------|
| Steel Fracture<br>Breakout<br>Pullout (Mechanical Anch<br>Bond Failure (Adhesive Anc |       |

Breakout Failure — Breakout failure occurs when the base material ruptures, often producing a cone-shaped failure surface when anchors are located away from edges, or producing a spall when anchors are located near edges. Breakout failure can occur for both mechanical and adhesive anchors and is generally observed at shallower embedment depths, and for installations at less than critical spacings or edge distances.

**Pullout Failure** — Pullout failure occurs when a mechanical anchor pulls out of the drilled hole, leaving the base material otherwise largely intact.

**Bond Failure** — Bond failure occurs when an adhesive anchor pulls out of the drilled hole due to an adhesion failure at the adhesive-to-base-material interface, or when there is a cohesive failure within the adhesive itself. When bond failure occurs, a shallow cone-shaped breakout failure surface will often form near the base material surface. This breakout surface is not the primary failure mechanism.

**Pryout Failure** — Pryout failure occurs for shallowly embedded anchors when a base material failure surface is pried out "behind" the anchor, opposite the direction of the applied shear force.

Steel Fracture — Steel fracture occurs when anchor spacings, edge distances and embedment depths are great enough to prevent the base-material-related failure modes listed above and the steel strength of the mechanical anchor or adhesive anchor insert is the limiting strength.

### III. Corrosion Resistance

Many environments and materials can cause corrosion, including ocean salt air, fire-retardants, fumes, fertilizers, preservative-treated wood, de-icing salts, dissimilar metals and more. Metal fixtures, fasteners and anchors can corrode and lose load-carrying capacity when installed in corrosive environments or when installed in contact with corrosive materials

The many variables present in a building environment make it impossible to accurately predict if, or when, corrosion will begin or reach a critical level. This relative uncertainty makes it crucial that specifiers and users are knowledgeable about the potential risks and select a product suitable for the intended use. It is also prudent that regular maintenance and periodic inspections are performed, especially for outdoor applications.

It is common to see some corrosion in outdoor applications. Even stainless steel can corrode. The presence of some corrosion does not mean that load capacity has been affected or that failure is imminent. If significant corrosion is apparent or suspected, then the fixtures, fasteners and connectors should be inspected by a qualified engineer or qualified inspector. Replacement of affected components may be appropriate.

**Chemical Attack** — Chemical attack occurs when the anchor material is not resistant to a substance with which it is in contact. Chemical-resistance information regarding anchoring adhesives is found on p. 252–253.

# **Supplemental Topics for Anchors**



Some wood-preservative chemicals and fire-retardant chemicals and retentions pose increased corrosion potential and are more corrosive to steel anchors and fasteners than others. Additional information on this subject is available at **strongtie.com**.

We have attempted to provide basic knowledge on the subject of corrosion here, but it is important to fully educate yourself by reviewing our technical bulletins on the topic (strongtie.com/info) and also by reviewing information, literature and evaluation reports published by others.

Galvanic Corrosion — Galvanic corrosion occurs when two electrochemically dissimilar metals contact each other in the presence of an electrolyte (such as water) that acts as a conductive path for metal ions to move from the more anodic to the more cathodic metal. In the galvanic couple, the more anodic metal will corrode preferentially. The Galvanic Series of Metals table provides a qualitative guide to the potential for two metals to interact galvanically. Metals in the same group (see table) have similar electrochemical potentials. The farther the metals are apart on the table, the greater the difference in electrochemical potential, and the more rapidly galvanic corrosion will occur. Corrosion also increases with increasing conductivity of the electrolyte.

Good detailing practice, including the following, can help reduce the possibility of galvanic corrosion of anchors:

- Use of anchors and metals with similar electrochemical potentials
- · Separating dissimilar metals with insulating materials
- Ensuring that the anchor is the anode, when dissimilar materials are present.
- Preventing exposure to and pooling of electrolytes

#### Galvanic Series of Metals

| Corroded End (Anode)                                                                         |
|----------------------------------------------------------------------------------------------|
| Magnesium<br>Magnesium alloys<br>Zinc                                                        |
| Aluminum 1100<br>Cadmium<br>Aluminum 2024-T4<br>Iron and Steel                               |
| Lead<br>Tin<br>Nickel (active)<br>Inconel Ni-Cr alloy (active)<br>Hastelloy alloy C (active) |
| Brasses<br>Copper<br>Cu-Ni alloys<br>Monel                                                   |
| Nickel (passive)                                                                             |
| 304 stainless steel (passive)<br>316 stainless steel (passive)<br>Hasteloy alloy C (passive) |
| Silver<br>Titanium<br>Graphite<br>Gold<br>Platinum                                           |
| Protected End (Cathode)                                                                      |

C-A-2018 @ 2018 SIMPSON STRONG-TIE COMPANY INC.

#### Hydrogen-Assisted Stress-Corrosion Cracking

Some hardened fasteners may experience premature failure if exposed to moisture as a result of hydrogen-assisted stress-corrosion cracking. These fasteners are recommended specifically for use in dry, interior locations.

#### Guidelines for Selecting Corrosion-Resistant Anchors and Fasteners

#### **Evaluate the Application**

Consider the importance of the connection.

#### Evaluate the Exposure

Consider these moisture and treatment chemical exposure conditions:

- Dry Service: Generally INTERIOR applications and includes wall and ceiling cavities, raised floor applications in enclosed buildings that have been designed to prevent condensation and exposure to other sources of moisture. Prolonged exposure during construction should also be considered, as this may constitute a Wet Service or Elevated Service Condition.
- Wet Service: Generally EXTERIOR construction in conditions other than Elevated Service. These include Exterior Protected and Exposed and General Use Ground Contact as described by the AWPA UC4A.
- Elevated Service: Includes fumes, fertilizers, soil, some preservative-treated wood (AWPA UC4B and UC4C), industrial zones, acid rain and other corrosive elements.
- Uncertain: Unknown exposure, materials or treatment chemicals.
- Ocean/Water Front: Marine environments that include airborne chlorides and some splash. Environments with de-icing salts are included.
- Treatment Chemicals: See AWPA Use Category Designations. The preservative-treated wood supplier should provide all of the pertinent information about the wood being used. The information should include Use Category Designation, wood species group, wood treatment chemical and chemical retention. See appropriate evaluation reports for corrosion effects of treatment chemicals and fastener corrosion resistance recommendations.

#### Use the Simpson Strong-Tie® Corrosion Classification Table

If the treatment chemical information is incomplete, Simpson Strong-Tie recommends the use of a 300-series stainless-steel product. Also if the treatment chemical is not shown in the Corrosion Classification Table, then Simpson Strong-Tie has not evaluated it and cannot make any recommendations other than the use of coatings and materials in the Severe category. Manufacturers may independently provide test results of other product information; Simpson Strong-Tie expresses no opinion regarding such information.

#### Minimum Corrosion Resistance Recommendations

| Corrosion<br>Resistance<br>Classification | Material or Coating                               |
|-------------------------------------------|---------------------------------------------------|
| Low                                       | ZN                                                |
| LOW                                       | Zinc plated                                       |
|                                           | Mechanically galvanized (ASTM B695-Class 55)1     |
| Medium                                    | Ceramic coating                                   |
| Medium                                    | Hot-dip galvanized (ASTM A153-Class C)            |
|                                           | Type 410 stainless steel with protective top coat |
| High                                      | Type 302, 303 or 304 stainless steel              |
| Severe                                    | Type 316 stainless steel                          |

Mechanically galvanized Titen HD® anchors are recommended only for temporary outdoor service.

# **Supplemental Topics for Anchors**



Corrosion Resistance Classifications

|                  | Material To Be Fastened   |                           |                                       |                                       |        |                       |          |
|------------------|---------------------------|---------------------------|---------------------------------------|---------------------------------------|--------|-----------------------|----------|
| Environment      | Untreated                 | Preservative-Treated Wood |                                       |                                       |        |                       |          |
| EHVILOHIHEHL     | Wood or<br>Other Material | SBX-DOT<br>Zinc Borate    | Chemical<br>Retention ≤ AWPA,<br>UC4A | Chemical<br>Retention > AWPA,<br>UC4A | ACZA   | Other or<br>Uncertain | FRT Wood |
| Dry Service      | Low                       | Low                       | Low                                   | High                                  | High   | High                  | Med      |
| Wet Service      | Med                       | N/A                       | Med                                   | High                                  | High   | High                  | High     |
| Elevated Service | High                      | N/A                       | Severe                                | Severe                                | High   | Severe                | N/A      |
| Uncertain        | High                      | High                      | High                                  | Severe                                | High   | Severe                | High     |
| Ocean/Waterfront | Severe                    | N/A                       | Severe                                | Severe                                | Severe | Severe                | N/A      |

- These are general guidelines that may not consider all application criteria. Refer to product-specific information for additional guidance.
- 2. Type 316/305/304 stainless-steel products are recommended where preservative-treated wood used in ground contact has chemical retention level greater than those for AWPA UC4A; CA-C, 0.15 pcf; CA-B, 0.21 pcf; micronized CA-C, 0.14 pcf; micronized CA-B, 0.15 pcf; ACQ-Type D (or C), 0.40 pcf.
- 3. Testing by Simpson Strong-Tie following ICC-ES AC257 showed that mechanical galvanization (ASTM B695, Class 55), Quik Guard coating, and Double Barrier coating will provide corrosion resistance equivalent to hot-dip galvanization (ASTM A153, Class D) in contact with chemically treated wood in dry service and wet service exposures (AWPA UC1 UC4A, ICC-ES AC257 Exposure Conditions 1 and 3) and will perform adequately subject to regular maintenance and periodic inspection.
- Mechanical galvanizations C3 and N2000 should not be used in conditions that would be more corrosive than AWPA UC3A (exterior, above ground, rapid water run off).
- 5. If uncertain about Use Category, treatment chemical, or environment, use Types 316/305/304 stainless steel, silicon bronze or copper fasteners.
- 6. Some treated wood may have excess surface chemicals making it potentially more corrosive than lower retentions. If this condition is suspected, use Types 316/305/304 stainless steel, silicon bronze or copper fasteners.
- 7. Types 316/305/304 stainless steel, silicon bronze or copper fasteners are the best recommendation for ocean salt-air and other chloride-containing environments. Hot-dip galvanized fasteners with at least ASTM A153, Class C protection can also be an alternate for some applications in environments with ocean air and/or elevated wood moisture content.

# IV. Mechanical Anchors

#### **Pre-Load Relaxation**

Expansion anchors that have been set to the required installation torque in concrete will experience a reduction in pre-tension (due to torque) within several hours. This is known as pre-load relaxation. The high compression stresses placed on the concrete cause it to deform which results in a relaxation of the pre-tension force in the anchor. Tension in this context refers to the internal stresses induced in the anchor as a result of applied torque and does not refer to anchor capacity. Historical data shows it is normal for the initial tension values to decrease by as much as 40–60% within the first few hours after installation. Retorquing the anchor to the initial installation torque is not recommended or necessary.

## V. Adhesive Anchors

#### Installation into Green Concrete

The strength design data for adhesive anchors in this catalog are based on installations into concrete that is at least 21-days old. For anchors installed into concrete that has cured for less than 21 days, refer to the following modification factors that should be applied to the published adhesive bond strength.

| Products       | Concrete Age<br>When Installed | Concrete Age<br>When Loaded | Bond Strength<br>Factor |
|----------------|--------------------------------|-----------------------------|-------------------------|
| AT             | 1.4 days                       | 21 days                     | 1.0                     |
| AT-XP<br>ET-HP | 14 days                        | 14 days                     | 0.9                     |
| SET<br>SET-XP  | 7 days                         | 21 days                     | 1.0                     |
| SET-3G 7 days  | 7 days                         | 0.7                         |                         |

#### Oversized Holes

The performance data for adhesive anchors are based upon anchor tests in which holes were drilled with carbide-tipped drill bits of the same diameter listed in the product's load table. Additional static tension tests were conducted to qualify anchors installed with SET-3G<sup>™</sup>, SET, SET-XP<sup>®</sup>, ET-HP<sup>®</sup> and AT adhesives for installation in holes with diameters larger than those listed in the load tables. The tables indicate the acceptable range of drilled hole sizes and the corresponding tension-load reduction factor (if any). The same conclusions also apply to the published shear load values. Drilled holes outside of the accepted range shown in the charts are not recommended.

#### SET Adhesive — Acceptable Hole Diameter

| Insert<br>Diameter<br>(in.) | Acceptable Hole<br>Diameter Range<br>(in.) | Acceptable Load<br>Reduction Factor |
|-----------------------------|--------------------------------------------|-------------------------------------|
| 3/8                         | 1/2 — 3/4                                  | 1.0                                 |
| 1/2                         | 5/8 - 1 5/16                               | 1.0                                 |
| 5/8                         | 3/4 - 11/8                                 | 1.0                                 |
| 3/4                         | 7/8 — 1 5/ <sub>16</sub>                   | 1.0                                 |
| 7/8                         | 1 – 1½                                     | 1.0                                 |
| 1                           | 1 1/8 - 1 11/16                            | 1.0                                 |
| 1 1/8                       | 11/4 - 17/8                                | 1.0                                 |
| 1 1/4                       | 13/8 - 21/16                               | 1.0                                 |
| 1%                          | 11/2 - 21/4                                | 1.0                                 |

C-A-2018 @ 2018 SIMPSON STRONG-TIE COMPANY INC.

#### SET-XP and ET-HP Adhesives — Acceptable Hole Diameter

| Insert<br>Diameter<br>(in.) | Acceptable Hole<br>Diameter Range<br>(in.)                  | Acceptable Load<br>Reduction Factor |
|-----------------------------|-------------------------------------------------------------|-------------------------------------|
| 1/2                         | 5/8 — 3/4                                                   | 1.0                                 |
| 5/8                         | <sup>3</sup> / <sub>4</sub> - <sup>15</sup> / <sub>16</sub> | 1.0                                 |
| 3/4                         | <sup>7</sup> / <sub>8</sub> − 1 ½                           | 1.0                                 |
| 7/8                         | 1 – 15/16                                                   | 1.0                                 |
| 1                           | 11/8 - 11/2                                                 | 1.0                                 |
| 1 1/4                       | 1% - 1%                                                     | 1.0                                 |

# C-A-2018 @ 2018 SIMPSON STRONG-TIE COMPANY INC.

# **Supplemental Topics for Anchors**



#### AT Adhesive — Acceptable Hole Diameter

| Insert<br>Diameter<br>(in.) | Acceptable Hole<br>Diameter Range<br>(in.)                  | Acceptable Load<br>Reduction Factor |
|-----------------------------|-------------------------------------------------------------|-------------------------------------|
| 3/8                         | 7/16 - 1/2                                                  | 1.0                                 |
| 1/2                         | 9/16 — 5/8                                                  | 1.0                                 |
| 5/8                         | 11/16 - 3/4                                                 | 1.0                                 |
| 3/4                         | <sup>13</sup> / <sub>16</sub> — <sup>7</sup> / <sub>8</sub> | 1.0                                 |
| 7/8                         | 1                                                           | 1.0                                 |
| 1                           | 1 1/16 - 1 1/8                                              | 0.75 for 1 1/4 only                 |

#### AT-XP and SET-3G Adhesive — Acceptable Hole Diameter

| Insert<br>Diameter<br>(in.) | Acceptable Hole<br>Diameter Range<br>(in.)                  | Acceptable Load<br>Reduction Factor |
|-----------------------------|-------------------------------------------------------------|-------------------------------------|
| 3/8                         | <sup>7</sup> / <sub>16</sub> − ½                            | 1.0                                 |
| 1/2                         | 9/16 — 5/8                                                  | 1.0                                 |
| 5/8                         | <sup>11</sup> / <sub>16</sub> - <sup>3</sup> / <sub>4</sub> | 1.0                                 |

#### Core-Drilled Holes

The performance data for adhesive anchors are based upon anchor tests in which holes were drilled with carbide-tipped drill bits. Additional static tension tests were conducted to qualify anchors installed with SET-3G<sup>™</sup>, SET-XP<sup>®</sup>, ET-HP<sup>®</sup>, SET and AT anchoring adhesives for installation in holes drilled with diamond-core bits. In these tests, the diameter of the diamond-core bit matched the diameter of the carbidetipped drill bit recommended in the product's load table. The test results showed that no reduction of the published allowable tension load for SET and AT anchoring adhesives is necessary for this condition. SET-3G, SET-XP, and ET-HP anchoring adhesive require a reduction factor of 0.7 is applied to the characteristic bond strength ( $\tau_k$ ). The same conclusions also apply to the published allowable shear loads. Tests conducted in core-drilled holes are for non-IBC jurisdictions.

#### Installation in Damp, Wet and Submerged **Environments**

#### SET-XP®, SET-3G™, ET-HP® and AT-XP®:

The performance data for adhesive anchors using SET-XP, SET-3G, ET-HP and AT-XP adhesives are based upon tests according to ICC-ES AC308. This criteria requires adhesive anchors that are to be installed in outdoor environments to be tested in water-saturated concrete holes that have been cleaned with less than the amount of hole cleaning recommended by the manufacturer. A product's sensitivity to this installation condition is considered in determining the product's "Anchor Category" (strength reduction factor).

SET-XP, ET-HP and AT-XP may be installed in dry or water-saturated concrete.

SET-3G may be installed in dry, water-saturated or water-filled holes in concrete.

#### Reliability Testing per ICC-ES AC308 is defined as:

- Dry Concrete Cured concrete whose moisture content is in equilibrium with surrounding non-precipitate atmospheric conditions.
- Water-Saturated Concrete Cured concrete that is covered with water and water saturated.
- Submerged Concrete Cured concrete that is covered with water and water saturated.
- Water-Filled Hole Drilled hole in water-saturated concrete that

is clean yet contains standing water at the time of installation.

The performance data for adhesive anchors using SET and AT adhesives are based upon tests in which anchors are installed in dry holes. Additional static tension tests were conducted for some products in damp holes, water-filled holes and submerged holes.

The legacy test results show that no reduction of the published allowable tension load is necessary for SET and AT adhesives in damp holes, or for SET and AT adhesives in water-filled holes. For SET and AT adhesives in submerged holes, the test results show that a reduction factor of 0.60 is applicable. The same conclusions also apply to the published allowable shear load values.

#### Reliability Testing per ICC-ES AC58 is defined as:

- Dry Concrete Cured concrete whose moisture content is in equilibrium with surrounding non-precipitate atmospheric conditions.
- Damp Hole A damp hole, as defined in ASTM E1512 and referenced in ICC-ES AC58, is a drilled hole that has been properly drilled, cleaned and then is filled with standing water for seven days. After seven days, the standing water is blown out of the hole with compressed air and the adhesive anchor is installed.
- Water-Filled Hole A water-filled hole is defined similarly to a damp hole; however, the standing water is not blown out of the hole. Instead, the adhesive is injected directly into the water-filled hole (from the bottom of the hole up) and the insert is installed.
- Submerged Hole A submerged hole is similar to a water-filled hole with one major exception — in addition to standing water within the hole, water also completely covers the surface of the base material.

\*Note that drilling debris and sludge should be removed from the drilled hole prior to installation. ICC-ES AC58 does not address this condition.

#### **Elevated In-Service Temperature**

The performance of all adhesive anchors is affected by elevated base material temperature. The in-service temperature sensitivity table provided for each adhesive provides the information necessary to apply the appropriate load adjustment factor to either the allowable tension based on bond strength or allowable shear based on concrete edge distance for a given base material temperature. While there is no commonly used method to determine the exact load-adjustment factor, there are a few guidelines to keep in mind when designing an anchor that will be subject to elevated base-material temperature. In any case, the final decision must be made by a qualified design professional using sound engineering judgment:

- When designing an anchor connection to resist wind and/or seismic forces only, the effect of fire (elevated temperature) may be disregarded.
- The base-material temperature represents the average internal temperature and, hence, the temperature along the entire bonded length of the anchor.
- The effects of elevated temperature may be temporary. If the in-service temperature of the base material is elevated such that a load-adjustment factor is applicable but, over time, the temperature is reduced to a temperature below which a load-adjustment factor is applicable, the full allowable load based on bond strength is still applicable. This is applicable provided that the degradation temperature of the anchoring adhesive (350°F for SET-3G, SET-XP, SET, ET-HP, AT-XP and AT adhesives) has not been reached.

**Appendix** 

# **Supplemental Topics for Anchors**

# Strong-Tie

#### **Chemical Resistance of Adhesive Anchors**

- Samples of Simpson Strong-Tie® anchoring adhesives were immersed in the chemicals shown here until they exhibited minimal weight change (indicating saturation) or for a maximum of three months.
- The samples were then tested according to ASTM D 543 Standard Practices for Evaluating the Resistance of Plastics to Chemical Changes, Procedures I & II, and either ASTMD 790 Standard Test Method for Flexural Properties of Unreinforced and Reinforced Plastics and Electrical Insulating Materials or ASTM D 695 Standard Test Method for Compressive Properties of Rigid Plastics.
- In cases where mild chemicals were evaluated, the exposure was accelerated per ASTM D 3045 Standard Practice for Heat Aging of Plastics Without Load.
- Samples showing no visible damage and demonstrating statistically equivalent strength and elastic modulus as compared to control samples were classified as "Resistant" (R).
  - These adhesives are considered suitable for continuous exposure to the identified chemical when used as a part of an adhesive anchor assembly.
- Samples exhibiting slight damage, such as swelling or crazing, or not demonstrating both statistically equivalent strength and elastic modulus as compared to control samples were classified a "Non-Resistant" (NR).
  - These adhesives are considered suitable for periodic exposure to the identified chemical if the chemical will be diluted and washed away from the adhesive anchor assembly after exposure, or if only emergency contact with the chemical is expected and subsequent replacement of the anchor would be undertaken.
  - Some manufacturers refer to this as "limited resistance" or "partial resistance" in their literature.
- Samples that were completely destroyed by the chemical, or that demonstrated a significant loss in strength after exposure were classified as "Failed" (F).
  - These adhesives are considered unsuitable for exposure to the identified chemical.

**Note:** In most actual service conditions, the majority of the anchoring adhesive is not exposed to the chemical and thus some period of time is required for the chemical to saturate the entire adhesive. An adhesive anchor would be expected to maintain bond strength and creep resistance until a significant portion of the adhesive is saturated.

|                                                 |                      |          |         |         |        | (6   |
|-------------------------------------------------|----------------------|----------|---------|---------|--------|------|
| Chemical                                        | Concentration        | AT-XP    | SET-XP  | ET-HP   | AT     | SET  |
| Acetic Acid                                     | Glacial              | NR       | F       | F       | F      | F    |
| ACELIC ACIU                                     | 5%                   | R        | F       | F       | R      | F    |
| Acetone                                         | 100%                 | F        | F       | F       | _      | _    |
| Aluminum Ammonium<br>Sulfate<br>(Ammonium Alum) | 10%                  | R        | R       | R       | R      | R    |
| Aluminum Chloride                               | 10%                  | R        | R       | R       | _      | _    |
| Aluminum Potassium<br>Sulfate (Potassium Alum)  | 10%                  | R        | R       | R       | R      | R    |
| Aluminum Sulfate (Alum)                         | 15%                  | R        | R       | R       | R      | R    |
| ruarimari Garato (ruari)                        | 28%                  | NR       | R       | NR      | R      | R    |
| Ammonium Hydroxide                              | 10%                  | R        | R       | R       | R      | R    |
| (Ammonia)                                       | pH = 10              | R        | R       | R       |        | _    |
| Ammonium Nitrate                                | 15%                  | R        | R       | R       | R      | R    |
| Ammonium Sulfate                                | 15%                  | R        | R       | R       | R      | R    |
| Automotive Antifreeze                           | 50%                  | R        | R       | R       | _      | _    |
| Aviation Fuel (JP5)                             | 100%                 | R        | R       | R       | _      | _    |
| Brake Fluid (DOT3)                              | 100%                 | R        | NR      | F       |        | _    |
| Calcium Hydroxide                               | 10%                  | R        | R       | R       |        | _    |
| Calcium Hypochlorite                            | 15%                  | R        | R       | R       | R      | R    |
| (Chlorinated Lime)  Calcium Oxide (Lime)        | 5%                   | R        | R       | R       | R      | R    |
| Calcium Oxide (Lime)                            | 10%                  | NR       | F       | F       | n      | n    |
| Carbolic Acid                                   | 5%                   | NR       | F       | F       |        |      |
| Carbon Tetrachloride                            | 100%                 | R        | R       | R       |        |      |
| Chromic Acid                                    | 40%                  | R        | NR      | NR      |        |      |
| Citric Acid                                     | 10%                  | R        | R       | R       |        |      |
| 5.1.15.1.15.1                                   |                      | R        |         | R       |        |      |
| Copper Sulfate                                  | 10%                  | **       | R       |         |        |      |
| Detergent (ASTM D543)                           | 100%                 | R        | R       | R       |        |      |
| Diesel Oil                                      | 100%                 | R        | R       | NR      | _      | _    |
| Ethanol, Aqueous                                | 95%<br>50%           | NR<br>NR | F<br>NR | F<br>NR | _      | _    |
| Ethanal Danaturad                               |                      | R        | F       | F       | _      | _    |
| Ethanol, Denatured                              | 100%                 | R        | R       | R       |        |      |
| Ethylene Glycol                                 | 100%                 |          |         |         |        |      |
| Fluorosilicic Acid                              | 25%                  | R<br>F   | R<br>F  | R<br>F  | R      | R    |
| Formic Acid                                     | Concentrated<br>10%  | R        | F       | F       | _      | _    |
| Gasoline                                        |                      |          | R       |         | _      |      |
| Gasonne                                         | 100%<br>Concentrated | R        | F       | R<br>F  |        | F    |
| Hydrochloric Acid                               | 10%                  | NR<br>R  | NR      | F F     | R<br>R | NR   |
| Hydrochloric Acid                               | pH = 3               | R        | R       | R       | n<br>_ | INIT |
|                                                 | 30%                  | R        | F       | F       | R      | F    |
| Hydrogen Peroxide                               | 3%                   | R        | R       | R       | R      | NR   |
| Iron (II) Chloride<br>(Ferrous Chloride)        | 15%                  | R        | R       | R       | R      | R    |
| Iron (III) Chloride<br>(Ferric Chloride)        | 15%                  | R        | R       | R       | R      | NR   |
| Iron (III) Sulfate<br>(Ferric Sulfate)          | 10%                  | R        | R       | F       | _      | _    |
| Isopropanol                                     | 100%                 | R        | F       | F       | _      | _    |
| Lactic Acid                                     | 85%                  | R        | F       | F       |        | _    |
| Lauliu Mulu                                     | 10%                  | R        | F       | F       | _      | _    |
| Machine Oil                                     | 100%                 | R        | R       | R       | _      | _    |
| Methanol                                        | 100%                 | NR       | F       | F       |        |      |
| Methyl Ethyl Ketone                             | 100%                 | NR       | F       | F       | _      | _    |

# sudix

Strong-T

# **Supplemental Topics for Anchors**

| Chemical                                               | Concentration | AT-XP | SET-XP | ET-HP | AT | SET |
|--------------------------------------------------------|---------------|-------|--------|-------|----|-----|
| Methyl Isobutyl Ketone                                 | 100%          | NR    | NR     | NR    | _  | _   |
| Mineral Oil                                            | 100%          | R     | R      | R     | _  | _   |
| Mineral Spirits                                        | 100%          | R     | R      | R     | _  |     |
| Mixture of Amines <sup>1</sup>                         | 100%          | R     | F      | F     | _  | _   |
| Mixture of Aromatics <sup>2</sup>                      | 100%          | NR    | NR     | R     | _  | _   |
| Motor Oil (5W30)                                       | 100%          | R     | R      | R     |    |     |
| N,N-Diethyaniline                                      | 100%          | R     | R      | R     |    |     |
| N,N Dietryamine                                        | Concentrated  | F     | F      | F     | F  | F   |
|                                                        | 40%           | NR    | F      | F     | F  | F   |
| Nitric Acid                                            | 10%           | R     | R      | F     | R  | NR  |
|                                                        | pH = 3        | R     | R      | R     | _  | _   |
|                                                        | 85%           | R     | F      | F     | F  | F   |
| Dhaonharia Aaid                                        | 40%           | R     | F      | F     | R  | NR  |
| Phosphoric Acid                                        | 10%           | R     | F      | F     | R  | NR  |
|                                                        | pH = 3        | R     | R      | R     | _  | _   |
|                                                        | 40%           | NR    | R      | NR    | _  | _   |
| Potassium Hydroxide                                    | 10%           | NR    | R      | R     | _  | _   |
|                                                        | pH = 13.2     | R     | R      | R     | _  | _   |
| Potassium Permanganate                                 | 10%           | R     | R      | R     | R  | R   |
| Propylene Glycol                                       | 100%          | R     | R      | NR    | _  | _   |
| Seawater (ASTM D1141)                                  | 100%          | R     | R      | R     | _  | _   |
| Soap (ASTM D543)                                       | 100%          | R     | R      | R     | _  | _   |
| Sodium Bicarbonate                                     | 10%           | R     | R      | R     | R  | R   |
| Sodium Bisulfite                                       | 15%           | R     | R      | R     | R  | NR  |
| Sodium Carbonate                                       | 15%           | R     | R      | R     | R  | R   |
| Sodium Chloride                                        | 15%           | R     | R      | R     | R  | R   |
| Sodium Fluoride                                        | 10%           | R     | R      | R     | R  | R   |
| Sodium Hexafluorosilicate<br>(Sodium Silicon Fluoride) | 5%            | R     | R      | R     | R  | R   |
| Sodium Hydrosulfide                                    | 10%           | R     | R      | R     | _  | _   |
|                                                        | 60%           | R     | R      | R     | _  | _   |
| Codium I hadronido                                     | 40%           | R     | R      | R     | _  | _   |
| Sodium Hydroxide                                       | 10%           | R     | R      | R     | _  |     |
|                                                        | pH = 10       | R     | R      | R     | _  |     |
| Sodium Hypochlorite                                    | 25%           | R     | R      | R     | R  | R   |
| (Bleach)                                               | 10%           | R     | R      | R     | R  | R   |
| Sodium Nitrate                                         | 15%           | R     | R      | R     | R  | R   |
| Sodium Phosphate<br>(Trisodium Phosphate)              | 10%           | R     | R      | R     | R  | R   |
| Sodium Silicate                                        | 50%           | R     | R      | R     | R  | R   |
|                                                        | Concentrated  | F     | F      | F     | F  | F   |
| Sulfuric Acid                                          | 30%           | R     | NR     | F     | R  | NR  |
| Ounand Adia                                            | 3%            | R     | NR     | F     | R  | NR  |
|                                                        | pH = 3        | R     | R      | R     | _  |     |
| Toluene                                                | 100%          | NR    | F      | NR    | _  | _   |
| Triethanol Amine                                       | 100%          | R     | NR     | R     | _  | _   |
| Turpentine                                             | 100%          | R     | R      | R     | _  | _   |
| Water                                                  | 100%          | R     | R      | R     | R  | R   |
|                                                        |               |       |        |       |    |     |

<sup>&</sup>quot;R" - Resistant, "NR" - Non-Resistant, "F" - Failed, "-" - Not tested

<sup>1.</sup> triethanol amine, n-butylamine, N,N-dimethylamine

<sup>2.</sup> toluene, methyl naphthalene, xylene

C-A-2018 @ 2018 SIMPSON STRONG-TIE COMPANY INC.

## **Glossary**



ACI - American Concrete Institute

**ACRYLIC** — Polymer based on resins prepared from a combination of acrylic and methacrylic esters.

**ADHESIVE ANCHOR** — Typically, a threaded rod or rebar that is installed in a predrilled hole in a base material with a two-part chemical compound.

**ADMIXTURE** — A material other than water, aggregate or hydraulic cement used as an ingredient of concrete and added to concrete before or during its mixing to modify its properties.

**AERATED CONCRETE** — Concrete that has been mixed with air-entraining additives to protect against freeze-thaw damage and provide additional workability.

**AGGREGATE** — A granular material, such as sand, gravel, crushed stone and iron blast-furnace slag, used with a cementing medium to form a hydraulic cement concrete or mortar.

AISC — American Institute of Steel Construction

**ALLOWABLE LOAD** — The maximum design load that can be applied to an anchor. Allowable loads for mechanical and adhesive anchors are based on applying a factor of safety to the average ultimate load.

**ALLOWABLE STRESS DESIGN (ASD)** — A design method in which an anchor is selected such that service loads do not exceed the anchor's allowable load. The allowable load is the average ultimate load divided by a factor of safety.

**AMINE CURING AGENT** — Reactive ingredient used as a setting agent for epoxy resins to form highly crosslinked polymers.

**ANCHOR CATEGORY** — The classification for an anchor that is established by the performance of the anchor in reliability tests such as sensitivity to reduced installation effort for mechanical anchors or sensitivity to hole cleaning for adhesive anchors.

ANSI — American National Standards Institute

**ASTM** — American Society for Testing and Materials

**BASE MATERIAL** — The substrate (concrete, CMU, etc.) into which adhesive or mechanical anchors are to be installed.

**BOND STRENGTH** — The mechanical interlock or chemical bonding capacity of an adhesive to both the insert and the base material.

**BRICK** — A solid masonry unit of clay or shale formed into a rectangular prism while plastic and burned or fired in a kiln that may have cores or cells comprising less than 25% of the cross sectional area.

 ${\bf CAMA-Concrete\ Anchor\ Manufacturer's\ Association}$ 

**CAST-IN-PLACE ANCHOR** — A headed bolt, stud or hooked bolt installed into formwork prior to placing concrete.

**CHARACTERISTIC DESIGN VALUE** — The nominal strength for which there is 90% confidence that there is a 95% probability of the actual strength exceeding the nominal strength.

**CONCRETE** — A mixture of Portland cement or any other hydraulic cement, fine aggregate, coarse aggregate and water, with or without admixtures. Approximate weight is 150 pcf.

**CONCRETE BRICK** — A solid concrete masonry unit (CMU) made from Portland cement, water, and aggregates.

**CONCRETE COMPRESSIVE STRENGTH (f'c)** — The specified compressive load carrying capacity of concrete used in design, expressed in pounds per square inch (psi) or megapascals (MPa).

**CONCRETE MASONRY UNIT (CMU)** — A hollow or solid masonry unit made from cementitious materials, water and aggregates.

**CORE DRILL** — A method of drilling a smooth wall hole in a base material using a special drill attachment.

**CREEP** — Displacement under a sustained load over time.

**CURE TIME** — The elapsed time required for an adhesive anchor to develop its ultimate carrying capacity.

**DESIGN LOAD** — The calculated maximum load that is to be applied to the anchor for the life of the structure.

**DESIGN STRENGTH** — The nominal strength of an anchor calculated per ACI 318, ICC-ES AC193 or ICC-ES AC308 and then multiplied by a strength reduction factor  $(\phi)$ .

**DROP-IN ANCHOR** — A post-installed mechanical anchor consisting of an internally-threaded steel shell and a tapered expander plug. The bottom end of the steel shell is slotted longitudinally into equal segments. The anchor is installed in a pre-drilled hole using a hammer and a hand-setting tool. The anchor is set when the tapered expander plug is driven toward the bottom end of the anchor such that the shoulder of the hand-setting tool makes contact with the top end of the anchor. A drop-in anchor may also be referred to as a displacement controlled expansion anchor.

**DUCTILITY** — A material under tensile stress with an elongation of at least 14% and an area reduction of at least 30% prior to rupture.

**DUCTILE ANCHOR SYSTEM** — The behavior of an anchor system where a ductile steel insert governs the design over concrete breakout, pullout and adhesive bond.

 ${f DYNAMIC\ LOAD}$  — A load whose magnitude varies with time.

#### **EDGE DISTANCE:**

**EDGE DISTANCE (C)** — The measure between the anchor centerline and the free edge of the concrete or masonry member.

CRITICAL EDGE DISTANCE ( $C_{cr}$  or  $C_{ac}$ ) — The least edge distance at which the allowable load capacity of an anchor is applicable without reductions.

**MINIMUM EDGE DISTANCE (C\_{min})** — The least edge distance at which the anchors are tested for recognition.

**EFFECTIVE EMBEDMENT DEPTH** — The dimension measured from the concrete surface to the deepest point at which the anchor tension load is transferred to the concrete.

**EMBEDMENT DEPTH** — The distance from the top surface of the base material to the installed end of the anchor. In the case of a post-installed mechanical anchor, the embedment depth is measured prior to application of the installation torque.

**EPOXY RESIN** — A viscous liquid containing epoxide groups that can be crosslinked into final form by means of a chemical reaction with a variety of setting agents.

**Glossary of Terms** 

## **Glossary**



**EXPANSION ANCHOR** — A mechanical fastener placed in hardened concrete or assembled masonry, designed to expand in a self-drilled or predrilled hole of a specified size and engage the sides of the hole in one or more locations to develop shear and/or tension resistance to applied loads without grout, adhesive or drypack.

**FATIGUE LOAD TEST** — A test in which the anchor is subjected to a specified load magnitude for  $2 \times 10^6$  cycles in order to establish the endurance limit of the anchor.

**GEL TIME** — The elapsed time at which an adhesive begins to increase in viscosity and becomes resistant to flow.

**GROUT** — A mixture of cementitious material and aggregate to which sufficient water is added to produce pouring consistency without segregation of the constituents.

#### GROUTED MASONRY (or GROUT-FILLED MASONRY) -

Hollow-unit masonry in which the cells are filled solidly with grout. Also, double or triple-wythe wall construction in which the cavity(s) or collar joint(s) is filled solidly with grout.

**HOT-DIP GALVANIZED** — A part coated with a relatively thick layer of zinc by means of dipping the part in molten zinc.

IAPMO UES — IAPMO Uniform Evaluation Service. An ISO 17065 ANSI-accredited company that issues evaluation reports expressing a professional opinion as to a product's building code compliance.

IBC — International Building Code.

C-A-2018 @ 2018 SIMPSON STRONG-TIE COMPANY INC.

ICC-ES — ICC Evaluation Service. An ISO 17065 ANSI-accredited company that issues evaluation reports expressing a professional opinion as to a product's building code compliance.

**LEGACY ACCEPTANCE CRITERIA** — A past version of an ICC-ES anchor qualification criteria. These are no longer current standards, but are the basis for legacy allowable load data for anchors in concrete. These standards have been replaced by modern standards such as ICC-ES AC193 and AC308.

**LIGHTWEIGHT CONCRETE** — Concrete containing lightweight aggregate. The unit weight of lightweight concrete is not to exceed 115 pcf.

**MASONRY** — Brick, structural clay tile, stone, concrete masonry units or a combination thereof bonded together with mortar.

**MECHANICALLY GALVANIZED** — A part coated with a layer of zinc by means of mechanical impact. The thickest levels of mechanical galvanizing (ASTM B695, Class 55 or greater) are considered to be alternatives to hot-dip galvanizing and provide a medium level of corrosion resistance.

**MORTAR** — A mixture of cementitious materials, fine aggregate and water used to bond masonry units together.

**NOMINAL STRENGTH** — The strength of an element as calculated per ACI 318, ICC-ES AC193 or ICC-ES AC308.

**NORMAL WEIGHT CONCRETE** — Concrete containing normal weight aggregate. The unit weight of normal weight concrete is approximately 150 pcf.

**OBLIQUE LOAD** — A load that is applied to an anchor, which can be resolved into tension and shear components.

**PLAIN CONCRETE** — Structural concrete with no reinforcement or with less reinforcement than the minimum specified for reinforced concrete.

**PORTLAND CEMENT** — Hydraulic cement consisting of finely pulverized compounds of silica, lime and alumina.

**POST-INSTALLED ANCHOR** — Either a mechanical or adhesive anchor installed in a pre-drilled hole in the base material.

**POST-TENSION** — A method of prestressing in which tendons are tensioned after concrete has hardened.

**POT LIFE** — The length of time a mixed adhesive remains workable (flowable) before hardening.

**PRECAST CONCRETE** — A concrete structural element cast elsewhere than its final position in the structure.

**PRESTRESSED CONCRETE** — Structural concrete in which internal stresses have been introduced to reduce potential tensile stresses in concrete resulting from loads.

**PRETENSIONING** — A method of prestressing in which tendons are tensioned before concrete is placed.

**REBAR** — Deformed reinforcing steel which comply with ASTM A615.

**REINFORCED CONCRETE** — Structural concrete reinforced with no less than the minimum amount of prestressed tendons or nonprestressed reinforcement specified in ACI 318.

**REINFORCED MASONRY** — Masonry units and reinforcing steel bonded with mortar and/or grout in such a manner that the components act together in resisting forces.

**REQUIRED STRENGTH** — The factored loads and factored load combinations that must be resisted by an anchor.

**SCREEN TUBE** — Typically a wire or plastic mesh tube used with adhesives for anchoring into hollow base materials to prevent the adhesive from flowing uncontrolled into voids.

**SCREW ANCHOR** — A post-installed anchor that is a threaded mechanical fastener placed in a predrilled hole. The anchor derives its tensile holding strength from the mechanical interlock of the fastener threads with the grooves cut into the concrete during the anchor installation.

 ${f SHEAR\ LOAD}$  — A load applied perpendicular to the axis of an anchor.

**SHOTCRETE** — Concrete that is pneumatically projected onto a surface at high velocity. Also known as gunite.

**SLEEVE ANCHOR** — A post-installed mechanical anchor consisting of a steel stud with nut and washer, threaded on the top end and a formed uniform tapered mandrel on the opposite end around which a full length expansion sleeve formed from sheet steel is positioned. The anchor is installed in a predrilled hole and set by tightening the nut by torquing thereby causing the expansion sleeve to expand over the tapered mandrel to engage the base material.

## **Glossary**



#### SPACING:

 $\ensuremath{\mathsf{SPACING}}$  (S) — The measure between anchors, centerline-to-centerline distance.

**CRITICAL SPACING (S\_{cr})** — The least anchor spacing distance at which the allowable load capacity of an anchor is applicable such that the anchor is not influenced by neighboring anchors.

**MINIMUM SPACING (S\_{min})** — The least anchor spacing at which the anchors are tested for recognition.

**STAINLESS STEEL** — A family of iron alloys containing a minimum of 12% chromium. Type-316 stainless steel provides greater corrosion resistance than Types 303 or 304.

**STANDARD DEVIATION** — As it pertains to this catalog, a statistical measure of how widely dispersed the individual test results were from the published average ultimate loads.

 $\mbox{\bf STATIC LOAD}$  — A load whose magnitude does not vary appreciably over time.

**STRENGTH DESIGN (SD)** — A design method in which an anchor is selected such that the anchor's design strength is equal to or greater than the anchor's required strength.

**STRENGTH REDUCTION FACTOR (** $\phi$ **)** — A factor applied to the nominal strength to allow for variations in material strengths and dimensions, inaccuracies in design equations, required ductility and reliability, and the importance of the anchor in the structure.

**TENDON** — In pretensioned applications, the tendon is the prestressing steel. In post-tensioned applications, the tendon is a complete assembly consisting of anchorages, prestressing steel, and sheathing with coating for unbonded applications or ducts with grout for bonded applications.

**TENSION LOAD** — A load applied parallel to the axis of an anchor.

**THIXOTROPIC** — The ability of a fluid to become less viscous (resistant to flow) under shear, then thicken when the shear force is removed.

**TORQUE** — The measure of the force applied to produce rotational motion usually measured in foot-pounds. Torque is determined by multiplying the applied force by the distance from the pivot point to the point where the force is applied.

**ULTIMATE LOAD** — The average value of the maximum loads that were achieved when five or more samples of a given product were installed and statically load tested to failure under similar conditions. The ultimate load is used to derive the allowable load by applying a factor of safety.

**UNDERCUT ANCHOR** — A post-installed anchor that develops its tensile strength from the mechanical interlock provided by undercutting of the concrete at the embedded end of the anchor.

**UNREINFORCED MASONRY (URM)** — A form of clay brick masonry bearing wall construction consisting of multiple wythes periodically interconnected with header courses. In addition, this type of wall construction contains less than the minimum amounts of reinforcement as defined for reinforced masonry walls.

**WEDGE ANCHOR** — A post-installed mechanical anchor consisting of a steel stud with nut and washer, threaded on the top end and a formed uniform tapered mandrel on the opposite end around which an expansion clip formed from sheet steel is positioned. The anchor is installed in a predrilled hole and set by tightening the nut by torquing, thereby causing the expansion clip to expand over the tapered mandrel to engage the base material. A wedge anchor may also be referred to as a torque controlled expansion anchor.

 $\label{eq:WYTHE} \textbf{WYTHE} - \textbf{A} \text{ continuous vertical section of masonry one unit in thickness.}$ 

**ZINC PLATED** — A part coated with a relatively thin layer of zinc by means of electroplating.

# Alphabetical Index of Products

C-A-2018 @ 2018 SIMPSON STRONG-TIE COMPANY INC.



| ARC       | Adhesive Retaining Caps                          | 107, 108                              |
|-----------|--------------------------------------------------|---------------------------------------|
| AST       | Adhesive Shear Tube                              | 112                                   |
| AT .      | Acrylic Adhesive                                 | 84–99                                 |
| AT-XP     | Acrylic Adhesive                                 | 74–83                                 |
| ATS       | Acrylic Screens                                  | 111–112                               |
| CD        | Crimp Drive® Anchor                              | 197–200                               |
| CDT10S    | Adhesive Dispensing Tool                         | 222                                   |
| CIP-F     | Crack Injection Paste Over                       | 225                                   |
| CIP-LO    | Low Odor Crack Injection Paste Over              | 225                                   |
| CPFH      | Crack-Pac® Flex-H20™ Crack Sealer                | 223–224                               |
| CSD       | Countersunk Split Drive                          | 201, 202                              |
|           | ·                                                | · · · · · · · · · · · · · · · · · · · |
| CSS       | Composite Strengthening Systems™                 | 238–241                               |
| DIA       | Drop-In Anchor                                   | 187–191                               |
| DIAB      | Drop-In Anchor                                   | 182–186                               |
| DSD       | Duplex Head Split Drive                          | 201, 202                              |
| DXS       | Speed Clean™ Drill Bits for Concrete and Masonry | 244–245                               |
| EIF       | Injection Fitting                                | 226                                   |
| EIP       | Injection Port                                   | 226                                   |
| EMN       | Epoxy Mixing Nozzle                              | 226                                   |
| ET-HP®    | Epoxy Adhesive                                   | 44–53                                 |
| ETB       | Hole-Cleaning Brush                              | 106                                   |
| ETBR      | Hole-Cleaning Brush                              | 106                                   |
| ETBS      | Hole-Cleaning Brush                              | 106                                   |
| ETI       | Crack Injection Epoxy                            | 219–220                               |
| ETIPAC    | Crack-Pac® Injection Epoxy                       | 221–222                               |
| ETR       | Epzoxy Paste                                     | 222, 224, 225                         |
| ETS       | Epoxy Screens                                    | 111–112                               |
| EWSP      | Opti-Mesh Adhesive-Anchoring Screen Tube         | 109, 110                              |
| EZAC      | Easy-Set Pin-Drive Anchor                        | 164                                   |
| E-Z-Click | Injection System                                 | 222, 224, 226                         |
| FT        | FlipToggle® Anchor                               | 203–204                               |
| FX-70®    | Structural Pile Repair and Protection System     | 236–237                               |
| FX207     | Slurry Seal                                      | 240                                   |
| FX505     | Water-Based Acrylic Coating                      | 240                                   |
| GAC       | Gas Pins                                         | 208, 210, 214                         |
| GCC       | Gas Pins                                         | 208                                   |
| GCL       | Gas Pins                                         | 208                                   |
| GCN-MEP   | Gas-Actuated Concrete Nailer                     | 208                                   |
| GCT       | Gas Pins                                         | 208                                   |
| GDP       | Gas Pins                                         | 208, 209, 212, 213, 215–217           |
| GDPS      | Gas Pins                                         | 208, 216, 217                         |
| GDPSK     | Spiral-Knurled Gas Pins                          | 208, 217                              |
| GFC       | Gas Fuel Cell                                    | 208                                   |
| GRH       | Gas Pins                                         | 208, 210, 214                         |
| GTH       | Gas Pins                                         | 208, 209, 212, 213, 215               |
| GTS       | Gas Pins                                         | 208                                   |
| GW        | Gas Pins                                         | 208, 209, 212, 213, 215–217           |

# **Alphabetical Index of Products**



C-A-2018 @ 2018 SIMPSON STRONG-TIE COMPANY INC.

| HDIA                | Hollow Drop-In Anchor                                                | 192–195                      |
|---------------------|----------------------------------------------------------------------|------------------------------|
| HELI                | Heli-Tie Helical Wall and Stitching Tie                              | 232–235                      |
| PBXDP               | BX Cable Strap                                                       | 207                          |
| PCC                 | Conduit Clip                                                         | 207                          |
| PCLDPA              | Ceiling Clip                                                         | 207, 210, 214                |
| PDPA                | 0.157" Shank Diameter Drive Pin                                      | 207, 209, 212, 213, 215–217  |
| PDPAS               | .157" Shank Diameter Drive Pin                                       | 207                          |
| PDPAT               | 0.157" Shank Diameter Tophat Fastener                                | 207, 209, 212, 213, 215–217  |
| PDPAWL              | 0.157" Shank Diameter with 1" Metal Washer                           | 207, 209, 211–213, 215,–217  |
| PDPWLSS             | 0.145" Shank Diameter and 1" Metal Washer – Type-304 Stainless Steel | 207, 209                     |
| PECLDPA             | Ceiling Clip                                                         | 207, 210                     |
| PHBC                | Highway Basket Clip                                                  | 207                          |
| PINW                | 100 through 300 – 0.300" Headed Pin with 17/16" Washer               | 207, 209, 212, 213, 215–217  |
| PINWP               | 100 through 300 – 0.300" Headed Pin with 17/16" Plastic Washer       | 207, 209, 212, 213, 215–217  |
| PKP                 | Concrete Forming Pin                                                 | 207                          |
| PP                  | Piston Plug                                                          | 107, 108                     |
| PSLV3               | 3/s" Threaded Stud                                                   | 207, 209, 212, 213, 216, 217 |
| PT-22A              | .22 Cal. Powder-Actuated Tool                                        | 207                          |
| PT-22HA             | Hammer-Activated Powder Tool                                         | 207                          |
| PT-27               | .27 Cal. Powder-Actuated Tool                                        | 207                          |
| PTRHA               | 0.157" Shank Diameter Threaded Rod Hanger                            | 207, 210, 214                |
| RFB                 | Retrofit Bolt                                                        | 113                          |
| RND                 | Rod Hanger Nut Driver                                                | 178–181                      |
| RSH                 | Steel Rod Hanger – Horizontal                                        | 178–179                      |
| RSV                 | Steel Rod Hanger – Vertical                                          | 178–179                      |
| RWH                 | Wood Rod Hanger – Horizontal                                         | 180–181                      |
| RWV                 | Wood Rod Hanger – Vertical                                           | 180–181                      |
| SET                 | Epoxy Adhesive                                                       | 54–73                        |
| SET-3G <sup>™</sup> | Epoxy Adhesive                                                       | 21–27                        |
| SET-XP®             | Epoxy Adhesive                                                       | 28–43                        |
| SL                  | Sleeve-All® Anchor                                                   | 160–163                      |
| STB2                | Strong-Bolt® 2 Wedge Anchor                                          | 133–146                      |
| STB2 SS             | Strong-Bolt® 2 Type 304 Stainless-Steel Wedge Anchor                 | 133–146                      |
| SWN                 | Sure Wall Anchor – Nylon                                             | 205                          |
| SWZ                 | Sure Wall Anchor – Zinc                                              | 205                          |
| THD                 | Titen HD® Heavy-Duty Screw Anchor                                    | 115–123                      |
| THDB                | Titen HD® Heavy-Duty Screw Anchor                                    | 115–123                      |
| THD RC              | Titen HD® Rod Coupler                                                | 131–132                      |
| THD RH              | Titen HD® Rod Hanger                                                 | 174–177                      |
| THDSS               | Stainless-Steel Titen HD® Heavy-Duty Screw Anchor                    | 124–130                      |
| TTN2                | Titen® 2 Concrete and Masonry Screw                                  | 167–171                      |
| TTNSS               | Titen® Stainless Steel Concrete and Masonry Screw                    | 172–173                      |
| TW                  | Tie Wire Anchor                                                      | 165, 166                     |
| WA                  | Wedge-All® Anchor                                                    | 147–159                      |
| ZN                  | Zinc Nailon™                                                         | 196                          |





The new Simpson Strong-Tie® stainless-steel Titen HD® screw anchor delivers all the benefits of our high-strength Titen HD anchor and can now be installed in exterior and corrosive environments. Its innovative carbon helical-coil thread effectively cuts the concrete while significantly limiting the carbon steel in the anchor to maximize corrosion resistance.

To learn more about the Type 316 stainless-steel Titen HD screw anchor, visit **go.strongtie.com/titenhdss** or call (800) 999-5099.



# The best adhesive performs in the worst conditions.





The next generation of Simpson Strong-Tie® epoxy adhesive is more reliable and versatile. With a code report ICC-ES ESR-4057, the high-strength SET-3G™ anchoring adhesive performs in extreme in-service temperatures (from −40°F to 176°F) as well as in dry or water-saturated concrete environments to provide the high bond strength values and performance needed for adhesive anchoring applications on your projects.

Specify SET-3G adhesive for your next project. Visit **strongtie.com/set3g** or call us at (800) 999-5099.

